

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

1

Flare-On 7: Challenge 7 – re_crowd.pcapng
Challenge Authors: Christopher Gardner, Moritz Raabe, Blaine Stancill

Introduction
The challenge ZIP (re_crowd.zip) contains two files:

• README.txt
• re_crowd.pcapng

The file README.txt explains that a corporation named "Reynholm Industries" has suffered a data breach
and requires assistance to determine what data was stolen. Armed with only a packet capture (PCAP),
our job is to analyze the network traffic and discover the stolen data.

The following tools are used in this write-up:

• Wireshark
• Python3
• IDA Pro
• x64dbg
• shellcode_launcher
• CyberChef

PCAP ANALYSIS

Opening the file re_crowd.pcapng in Wireshark, we are immediately presented with a DNS request for
it-dept.reynholm-industries.com and subsequently the HTTP GET request shown in Figure 1.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

2

To reconstruct the downloaded HTML page contained in the PCAP, Wireshark offers the ability to export
objects contained in various protocols such as HTTP. Navigating the file menu via File Export Objects
 HTTP… we can save all exported objects to a directory of our choosing as shown in Figure 2.

Since multiple file objects have the filename "\", we can determine the actual HTML page by sorting the
directory of exported objects by size and rename the largest file with a size of 11kB to "index.html" as
shown in Figure 3.

GET / HTTP/1.1
Host: it-dept.reynholm-industries.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Upgrade-Insecure-Requests: 1
Pragma: no-cache
Cache-Control: no-cache

Figure 1: HTTP GET request for it-dept.reynholm-industries.com

Figure 2: Saving exported HTTP objects

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

3

Figure 4 depicts a static rendering of the file index.html within a web browser.

Figure 4: Reconstructed web page contained in the PCAP

Reading over the webpage we obtain our first clue to what data was stolen as seen in Figure 5, namely
the file C:\accounts.txt.

Figure 3: Renaming index.html

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

4

Turning our attention back to the PCAP, Figure 6 displays an overview of the conversations between
hosts obtained by navigating the menu options Statistics Conversations.

Figure 6: Odd port numbers

We immediately notice two ports of interest: 4444 and 1337. Following the TCP stream directly prior to
the communication over these two ports, we find a PROPFIND request over TCP port 80 as outlined in
Figure 7.

Figure 5: Potential stolen file C:\accounts.txt

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

5

Leveraging open-source intelligence (OSINT) by searching for the string:

propfind "(Not <locktoken:write1>)"

we quickly discover that this is likely an attempt to exploit an Internet Information Services (IIS) buffer
overflow vulnerability (CVE-2017-7269). The original source of this exploit appears to be
https://github.com/edwardz246003/IIS_exploit/blob/master/exploit.py (shown in Figure 8).

Figure 8: Proof of concept code for CVE-2017-7269 available on GitHub

Figure 7: Suspicious PROPFIND request

https://github.com/edwardz246003/IIS_exploit/blob/master/exploit.py

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

6

The exploit uses a return-oriented programming (ROP) chain to start a shellcode payload. In the original
exploit, and in this Metasploit module, the payload is encoded using alphanumeric characters.

SHELLCODE ANALYSIS

We save the alphanumeric characters VVYAIA…aOUsAA to the file shellcode.bin and open it up as
Binary file in IDA Pro. From the reference exploit code, we know that the exploit targets the x86
architecture. So, we instruct IDA Pro to disassemble the file in 32-bit mode. Figure 9 shows the start of
the nicely disassembled shellcode after defining code at offset zero.

Figure 9: Start of disassembled shellcode

The code appears to perform some decoding, but only executes properly up to a point. Successful
execution seemingly requires a properly prepared state, i.e., specific register values. To recover this
state, we could analyze the ROP chain prior to the shellcode. However, this requires access to specific
IIS DLLs which we don’t have.

To figure out the real trick here, let’s take a closer look at the Metasploit module again. Figure 10 shows
the payload configuration. The EncoderType is set to AlphanumUnicodeMixed.

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/iis/iis_webdav_scstoragepathfromurl.rb

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

7

Figure 10: Payload configuration in Metasploit module

In the respective encoding module shown in Figure 11 we recognize the familiar character sequences
VVYA and IA.

Figure 11: Decoder prefix for AlphanumUnicodeMixed encoding

Moreover, the subsequent payload characters (jXAQADAZABARALA…) line up with the decoder code shown
in Figure 12. We’re on the right track.

https://github.com/rapid7/rex/blob/master/lib/rex/encoder/alpha2/unicode_mixed.rb

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

8

Figure 12: Decoder code for AlphanumUnicodeMixed encoding

It becomes clear now that we’ve used the wrong encoding initially. As can be seen in the generic alpha2
code the payload is expected to be formatted as Unicode. Figure 13 shows example Python code we can
use to properly encode the shellcode bytes.

d = "VVYAIAIAIAIAIAIAIAIAIAIAIAIAIAIAjXAQADAZAB…".decode("utf-8").encode("utf-16le")
with open("shellcode_unicode.bin", "wb") as f:
 f.write(d)

Figure 13: Python code to encode shellcode bytes

Now we can disassemble the file shellcode_unicode.bin containing the Unicode encoded payload in
IDA Pro. Figure 14 shows how the disassembly lines up with the start of the decoder code shown above
in Figure 12.

Figure 14: Start of decoder prefix at offset 0x40 in shellcode_unicode.bin

PAYLOAD ANALYSIS

Now we need to decode the actual payload. The easiest way to do that is to run the shellcode in a
debugger and dump it after decoding. In most alphanumeric shellcode encoders, the start address of the
code can be placed into a register. By reexamining the Metasploit module in Figure 10 we see that this

https://github.com/rapid7/rex/blob/master/lib/rex/encoder/alpha2/generic.rb
https://github.com/rapid7/rex/blob/master/lib/rex/encoder/alpha2/generic.rb

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

9

exploit places the address of the shellcode into the ESI register. So we load the shellcode in our favorite
launcher tool, debug it with our favorite debugger, and set ESI to the start of the shellcode (Figure 16).

Figure 15: Setting the ESI register to the start of the shellcode buffer

After letting the shellcode run for a few instructions, a loop is decoded and the code after it starts to look
like regular shellcode (see Figure 17).

Figure 16: The decoder loop of the encoder

https://github.com/clinicallyinane/shellcode_launcher
https://x64dbg.com/

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

10

We set a hardware breakpoint on the address directly after the jne instruction and run the shellcode to
fully decode it, as shown in Figure 18. We dump the respective memory region, for example using Scylla
or Process Hacker, and analyze it in IDA Pro.

Figure 17: Start of the decoded shellcode

The decoded payload contains many shellcode hashes. Searching for the values, again, leads us to
Metasploit. After examining the general shellcode structure, we determine that we are looking at a slightly
modified version of the “stager_reverse_tcp_rc4” stager payload. Its source assembly with comments is
available at https://github.com/rapid7/metasploit-
framework/blob/master/external/source/shellcode/windows/x86/src/stager/stager_reverse_tcp_rc4.asm.

The only differences to the original source are the keys used for encoding the network traffic. Figure 18
shows that this sample uses the key “KXOR” for encoding the length of the payload (instead of the original
“XORK”) and the RC4 key “killervulture123”.

https://github.com/rapid7/metasploit-framework/blob/master/external/source/shellcode/windows/x86/src/stager/stager_reverse_tcp_rc4.asm
https://github.com/rapid7/metasploit-framework/blob/master/external/source/shellcode/windows/x86/src/stager/stager_reverse_tcp_rc4.asm

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

11

Figure 18: Decoding keys in the stager shellcode

Further inspecting the stager, we see that it connects to the hard-coded IP address 192.168.68.21 on
port 4444 (see Figure 19), receives a 4-byte length, and then receives that number of bytes. The stager
RC4 decrypts the received bytes with the aforementioned key and executes the result.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

12

Figure 19: C2 connection code

SECOND-STAGE PAYLOAD ANALYSIS

In Wireshark we identify the connection to the C2 server by using the filter: tcp.port==4444. To extract
the bytes sent from the C2 server we first right click one of the packets and select Follow TCP Stream,
change the data type at the bottom to "Raw", and save the raw bytes to the file payload.bin. The first
four bytes of this data is the XOR-encoded length that decodes to 0x4D7. RC4 decrypting the remaining
0x4D7 bytes results in a second-stage shellcode payload.

After disassembling the decrypted shellcode in IDA Pro using 32-bit mode, we see the shellcode uses
runtime linking to dynamically resolve function pointers for Window APIs. Using a rebased address of
0x240000, we see the function at virtual address (VA) 0x2401F1 is responsible for resolving the Windows
APIs and expects two DWORDs as arguments, a DLL and API name hash respectively. We also see that
the function at VA 0x24038F uses these resolved Windows APIs.

The API resolving function iterates the process environment block's (PEB) loaded module list, capitalizes
each DLL name, and uses an additive rotate-13 (ROR13) hashing algorithm to compute a DLL name
hash. It compares the computed DLL name hash with the provided hash input. If a match is found, the
function iterates the loaded DLL's export table and computes an API hash for each export name using the
same additive ROR13 hashing algorithm, but without capitalization. If a match is found with the input API
name hash, the function has successfully found the API function and returns a pointer to this function.
Otherwise, it returns zero.

If we return to the start of the shellcode, we see references to global data located at VA 0x24046D,
0x240479, and 0x24048D. Since we know how the API resolving function works, we now know the global
data's purpose. As Figure 20 shows, VA 0x24048D stores a list of DLL and API name hashes, VA
0x24046D and 0x240479 are used to store the resolved function pointers, and the two strings
“C:\accounts.txt” and “intrepidmango” follow.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

13

Figure 20: Global data

To resolve the function hashes, we have multiple tools at our disposal:

• We can use the IDA Pro shellcode_hashes_search_plugin.py Python script available at
https://github.com/fireeye/flare-ida

• We can use an emulation tool such as scdbg (https://github.com/dzzie/SCDBG)
• We can resolve the APIs dynamically in a debugger

Using the last technique, we launch and debug the shellcode. Our debugging session has positioned the
shellcode at VA 0x240100 and hence our previous virtual addresses seen statically in IDA Pro will be off
by 0x100 bytes. Figure 21 shows the global data after running to the breakpoint set at VA 0x24013F.

Figure 21: Resolved API function pointers

To better understand the code in IDA Pro at VA 0x24038F that uses these resolved API function pointers,
we define two structures with the corresponding API names as seen in Figure 22.

https://github.com/fireeye/flare-ida
https://github.com/dzzie/SCDBG

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

14

Figure 22: API name structures

Applying these structures and fixing pointers to global data gives us an understanding of the overall code
flow for the function at VA 0x24038F as seen in Table 1 and Figure 23 below.

Table 1: Code flow for VA 0x24038F

Virtual Address Description
0x2403C4 Open the file C:\accounts.txt
0x2403E4 Read the file data
0x240403 Set the RC4 key using the string intrepidmango
0x20401A RC4 encrypt the file data
0x24043C Connect to the hard-coded IP address 192.168.68.21 over TCP port 1337
0x240459 Send the encrypted file data
0x240465 Shutdown the socket

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

15

Figure 23: Overview of function at VA 0x24038F

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

16

C2 COMMUNICATION ANALYSIS

Returning to Wireshark, we identify the final connection to the C2 server by using the filter:
tcp.port==1337. Like before, we extract and save the raw bytes to the file accounts.txt.bin. Using
either a Python script or a tool like CyberChef (https://gchq.github.io/CyberChef/), we RC4 decrypt the
exfiltrated data as shown in Figure 24.

Figure 24: RC4 decryption in CyberChef

Having decrypted the exfiltrated data, we definitively know what data was stolen from "Reynholm
Industries" and can report back. As it turns out, there is also a FLARE-On challenge flag embedded in this
data, h4ve_you_tri3d_turning_1t_0ff_and_0n_ag4in@flare-on.com, as seen more clearly in Figure
25.

Figure 25: Decrypted contents of C:\accounts.txt

roy:h4ve_you_tri3d_turning_1t_0ff_and_0n_ag4in@flare-on.com:goat
moss:Pot-Pocket-Pigeon-Hunt-8:narwhal
jen:Straighten-Effective-Gift-Pity-1:bunny
richmond:Inventor-Hut-Autumn-Tray-6:bird
denholm:123:dog

https://gchq.github.io/CyberChef/

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

17

	Introduction
	PCAP Analysis
	Shellcode Analysis
	Payload Analysis
	Second-stage Payload Analysis
	C2 Communication Analysis

