

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

1

Flare-On 7: Challenge 6 – codeit.exe
Challenge Author: Mike Hunhoff (@mehunhoff)

INTRODUCTION

codeit.exe is a compiled AutoIt executable for the Windows operating system. The program lets users
generate Quick Response (QR) codes from text submitted to a GUI.

AutoIt is a freeware BASIC-like scripting language designed for general scripting and automating the
Windows GUI. An AutoIt script can be executed directly by the AutoIt interpreter or compiled to a
stand-alone executable. The current version of AutoIt has a feature rich installation package to help
develop and debug AutoIt scripts. There is also a customized a customized version of the AutoIt Script
Editor that includes additional coding tools for AutoIt.

Analysis tools including Exe2Aut and AutoIT Extractor can extract the source script from a compiled
AutoIt executable. This write-up focuses primarily on analysis of the source script extracted from
codeit.exe using Exe2Aut.

Notes on source material: codeit.exe generates QR codes using QR Code generator developed by
Nayuki . This library is open sourced under the permissive MIT License and available on GitHub.

INITIAL DYNAMIC ANALYSIS

To get a basic understanding of the program we perform initial dynamic analysis. On startup the program
presents us with a simple GUI that allows QR codes to be generated from text. Figure 1 shows
screenshots of the program generating a QR code for the text "Hello World!".

https://www.autoitscript.com/site/autoit/downloads/
https://www.autoitscript.com/site/autoit-script-editor/downloads/
https://www.autoitscript.com/site/autoit-script-editor/downloads/
https://github.com/fireeye/flare-vm/issues/172
https://gitlab.com/x0r19x91/autoit-extractor
https://www.nayuki.io/page/qr-code-generator-library
https://github.com/nayuki/QR-Code-generator#license
https://github.com/nayuki/QR-Code-generator

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

2

Figure 1: Screenshots of codeit.exe encoding "Hello World!"

To gain a better understanding of how codeit.exe interacts with our system we start Process Monitor
and continue interacting with the program. Figure 2 shows a screenshot of the events captured by Process
Monitor filtered for the Operation type CreateFile.

Figure 2: Screenshot of a selection of events capture by Process Monitor

We see that codeit.exe repeatedly creates and deletes multiple files in its working directory. We can
prevent the program from deleting these files by modifying the permissions of this folder as shown in Figure
3.

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

3

Figure 3: Removing delete permissions from current user for working directory

codeit.exe can no longer delete files after we modify the permissions of its working directory. This allows
us access to these files for analysis but unfortunately a quick look does not reveal anything interesting.

The files created with a .bmp file extension contain the generated QR codes and multiple copies of the
default image displayed in the GUI. The files created with a .dll file extension are copies of the same
binary and strings found in this binary, listed in Figure 4, indicate it may simply be a supporting library used
to generate QR codes.

justConvertQRSymbolToBitmapPixels
justGenerateQRSymbol
qencode.dll
C:\Users\spring\source\repos\qencode\Release\qencode.pdb

Figure 4: Strings found in binary generated by codeit.exe

INITIAL STATIC ANALYSIS

To get a better understanding of the format and code structure of codeit.exe we perform initial static
analysis. Opening codeit.exe in CFF Explorer reveals that the program is packed with UPX as shown
in Figure 5.

https://ntcore.com/?page_id=388
https://en.wikipedia.org/wiki/UPX

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

4

Figure 5: CFF Explorer identifying codeit.exe as UPX-packed

We use the UPX Utility available in CFF Explorer to unpack the program as shown in Figure 6.

Figure 6: Unpacking codeit.exe with CFF Explorer

Strings found in the unpacked copy of codeit.exe, some of which are listed in Figure 7, indicate the
program is a compiled AutoIt script.

This is a third-party compiled AutoIt script.
>>>AUTOIT NO CMDEXECUTE<<<
>>>AUTOIT SCRIPT<<<

Figure 7: AutoIt-related strings found in unpacked copy of codeit.exe

We use the program Exe2Aut to retrieve the AutoIt script source from the original copy of codeit.exe as
shown in Figure 8.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

5

Figure 8: Extracting AutoIt script source with Exe2Aut

Exe2Aut unpacks two files named qr_encoder.dll and sprite.bmp. Generating hashes for these two
files reveals they are the same files that we observed codeit.exe repeatedly creating and deleting
during our dynamic analysis.

Figure 9 shows a snippet of the AutoIt script source. The code is obviously obfuscated.

Figure 9: Snippet of obfuscated code found in AutoIt script source

UNDERSTANDING THE OBFUSCATION

Several features of codeit.exe are obfuscated, including control flow, number constants, and string
constants.

CONTROL FLOW

codeit.exe leverages the order in which AutoIt executes code to obfuscate its control flow. AutoIt
resolves directives (e.g. #Include) first and then uses a top-down approach to run code found in the
global scope.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

6

We see that codeit.exe makes heavy use of code located in the global scope to make it difficult to tell
which functions are called and in what order. The directive #OnAutoItStartRegister found towards the
top of the script is set to areihnvapwn indicating that the function areihnvapwn is the first function called
by AutoIt. After this function returns AutoIt continues running code found in the global scope until it
reaches a call to the function areialbhuyt shown in Figure 10.

Figure 10: Call to function areialbhuyt

The function areialbhuyt is our most likely candidate for "main".

NUMBER CONSTANTS

Number constants are obfuscated by their definition as global variables with random names as shown in
Figure 11, rather than being referenced directly. We undo the obfuscation by rewriting references to those
variables with their actual value.

https://www.autoitscript.com/autoit3/docs/keywords/OnAutoItStartRegister.htm

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

7

Figure 11: Assigning number constants to global variables

We can remove the obfuscation of number constants using Python and regular expressions. Figure 12
shows one possible example of this solution.

find and replace global variables with number constant e.g. $flerqqjbmh = Number(" 1 ") -> 1 = Number(" 1 ")
for match in re.finditer(r"(\$fl[0-9a-z]{8})\s\=\sNumber\(\"\s([0-9]+)\s\"\)", source):
 source = source.replace(match.groups()[0], match.groups()[1])

Figure 12: Example code to remove obfuscation of number constants

Figure 13 shows the updated contents of the function arepfnkwypw after removing the obfuscation of
number constants.

Figure 13: Removing obfuscation of number constants from function arepfnkwypw

STRING CONSTANTS

String constants are hex-encoded and accessed through the global array $os. The array $os is initialized
by the function areihnvapwn which is the first function called by AutoIt as a result of the
#OnAutoItStartRegister directive.

The function areihnvapwn initializes the string variable $dlit to a single, large string containing all hex-
encoded string constants separated by the string value 4FD5$. The string variable $dlit is then split into

https://www.autoitscript.com/autoit3/docs/keywords/OnAutoItStartRegister.htm

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

8

individual hex-encoded strings using the string value 4FD5$ as a delimiter and assigned to the array
variable $os. After the function areihnvapwn executes string constants can be accessed by an index into
the array $os and decoded by the function arehdidxrgk.

We can remove the obfuscation of string constants using Python and regular expressions. Figure 14
shows one possible example of this solution.

dlit = []

collect contents of $dlit from source script
for match in re.finditer(r"\$dlit\s(\&)?\=\s\"([0-9a-zA-Z\$]{2,100})\"", source):
 dlit.append(match.groups()[1])

string_array = []

combine $dlit into single string, split on delimiter 4FD5$, and decode
for encoded in "".join(dlit).split("4FD5$"):
 string_array.append(binascii.unhexlify(encoded).decode("utf-8"))

find and replace $os array accesses with original string constant e.g. arehdidxrgk($os[25]) -> "kernel32.dll"
for match in re.finditer(r"(arehdidxrgk\(\$os\[([0-9]+)\]\))", source):
 # (index – 1) as AutoIt arrays index starting at 1
 source = source.replace(match.groups()[0], "\"%s\"" % string_array[int(match.groups()[1], 10) - 1])

Figure 14: Example code to remove obfuscation of string constants

Figure 15 shows the updated contents of the function arepfnkwypw after removing the obfuscation of string
constants.

Figure 15: Removing obfuscation of number and string constants from function arepfnkwypw

UNDERSTANDING THE CODE

After removing the obfuscation of number and string constants and identifying the function areialbhuyt
as our most likely candidate for "main" we begin analyzing the code.

We notice that codeit.exe makes frequent use of the following AutoIt functions:

• DllStructCreate

https://www.autoitscript.com/autoit3/docs/functions/DllStructCreate.htm

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

9

• DllStructGetData
• DllStructSetData
• DllStructGetSize
• DllCall
• FileInstall

These functions can be used in AutoIt scripts to call functions exported by a DLL. This is often used to
call library code that performs CPU intensive tasks. codeit.exe performs a majority of its tasks using the
AutoIt function DllCall to execute Windows library functions.

Taking a closer look at the function areialbhuyt we find the code executed when a user interacts with the
Can haz code? button shown in Figure 16.

Figure 16: Code executed when user interacts with Can haz code? button

The calls at lines 352 and 356 execute the functions justGenerateQRSymbol and
justConvertQRSymbolToBitmapPixels exported by a DLL named qr_encoder.dll. qr_encoder.dll
is installed by the call at line 350 and deleted by the call at line 362. Each time a user interacts with the Can
haz code? button codeit.exe creates and deletes the file qr_encoder.dll, which matches what we
observed during our dynamic analysis. We ignore qr_encoder.dll and the calls at lines 352 and 356 for
now based on our suspicion that the DLL simply contains code used to generate QR codes.

We see that the structure variable $flnpapeken is created at line 351 and passed to the function
justGenerateQRSymbol at line 352. We also see that the structure variable $flnpapeken is passed to the
function areyzotafnf at line 354 before it is passed to the function
justConvertQRSymbolToBitmapPixels at line 356. Based on the names of the two exported functions
we assume that the call at line 352 fills the structure variable $flnpapeken with QR symbol data which is
then converted to bitmap pixels by the call at line 356. But why the call to the function areyzotafnf in
between?

Taking a closer look at the function areyzotafnf we see a number of interesting calls to Windows library
functions including CryptAcquireContextA, CryptHashData, CryptImportKey, and CryptDecrypt.
These functions indicate that the function areyzotafnf may decrypt data containing the challenge flag.

Figure 17 shows the code found in the function areyzotafnf.

https://www.autoitscript.com/autoit3/docs/functions/DllStructGetData.htm
https://www.autoitscript.com/autoit3/docs/functions/DllStructSetData.htm
https://www.autoitscript.com/autoit3/docs/functions/DllStructGetSize.htm
https://www.autoitscript.com/autoit3/docs/functions/DllCall.htm
https://www.autoitscript.com/autoit3/docs/functions/FileInstall.htm
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptacquirecontexta
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-crypthashdata
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptimportkey
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptdecrypt

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

10

Figure 17: Code found in function areyzotafnf

UNDERSTANDING THE DECRYPTION

We first determine the encryption algorithm used by taking a closer look at the calls to the Windows function
CryptAcquireContextA at line 267 and the Windows function CryptImportKey at line 269. We see that
the provider type specified for CryptAcquireContextA is 24 or PROV_RSA_AES. Based on the
documentation for PROV_RSA_AES we know the encryption algorithm is one of RC2, RC4, or AES.

The second argument to the function CryptImportKey is a byte array containing a BLOBHEADER structure
followed by the algorithm-specific encryption key. We see that the second argument to the function
CryptImportKey is data stored at index five of the structure variable $fluelrpeax. Tracing uses of the
structure variable $fluelrpeax reveals that index five is set to the binary variable $flmtvyzrsy at line
265. The binary variable $flmtvyzrsy stores the BLOBHEADER structure and is initialized at line 260 to the
12-byte value 080200001066000020000000 followed by data stored at index four of the structure variable
$flnttmjfea.

Figure 18 shows the definition of the BLOBHEADER structure.

https://docs.microsoft.com/en-us/windows/win32/seccrypto/prov-rsa-aes
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/ns-wincrypt-publickeystruc

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

11

typedef struct _PUBLICKEYSTRUC {
 BYTE bType;
 BYTE bVersion;
 WORD reserved;
 ALG_ID aiKeyAlg;
} BLOBHEADER, PUBLICKEYSTRUC;

Figure 18: BLOBHEADER structure definition

The 12 bytes stored in the binary variable $flmtvyzrsy map to the values shown in Figure 19.

Description | Size (in bytes) | Value
--
Type | 1 | 0x8
Version | 1 | 0x2
Reserved | 2 | 0x0
Algorithm ID | 4 | 0x6601
Key length | 4 | 0x20

Figure 19: Mapping values store in the binary variable $flmtvyzrsy

Based on the documentation for ALG_ID, we determine that the encryption algorithm used is AES256. We
also determine that index four of the structure variable $flnttmjfea contains the 32-byte AES256
encryption key used in the call to the function CryptDecrypt at line 271.

The call at line 271 uses the AES256 encryption key to decrypt data stored at index four of the structure
variable $fluelrpeax. If the decryption is successful, the decrypted data is stored in the structure
variable $flodiutpuy. The structure variable $flodiutpuy contains the data that is eventually passed to
the function justConvertQRSymbolToBitmapPixels at line 356 of the function areialbhuyt.
Therefore, we assume that the encrypted data at index four of the structure variable $fluelrpeax stores
QR code-related data containing the challenge flag.

UNDERSTANDING THE AES256 KEY GENERATION

Tracing uses of the structure variable $flnttmjfea we find the data stored at index four is derived from
calls to the Windows functions CryptCreateHash, CryptHashData, and CryptGetHashParam at lines
254, 256, and 258. The second argument to the Windows function CryptCreateHash, 32780 or
CALG_SHA256, tells us that the call at line 256 generates a SHA256 hash and the call at line 258 stores
the resulting hash value at index four of the structure variable $flnttmjfea. The second argument to
CryptHashData reveals that the SHA256 hash is generated from data stored in the structure variable
$flisilaylnraw.

We see that the structure variable $flisilaylnraw is initialized at line 248 to binary data returned from
the call at line 244 and the call at line 244 is a simple wrapper function that executes the Windows
function GetComputerNameA. Based on these findings we determine that the AES256 key is derived from
the SHA256 hash of our system's computer name.

https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptcreatehash
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-crypthashdata
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptgethashparam
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getcomputernamea

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

12

We see the structure variable $flisilaylnraw containing our system's computer name is passed to the
function aregtfdcyni at line 249. The code found in the function aregtfdcyni appears to use an
unrecognized algorithm to transform the computer name.

UNDERSTANDING THE TRANSFORM FUNCTION

Based on our analysis so far, the function aregtfdcyni is passed our system's computer name and
returns a transformation of the value. The SHA256 hash of the transformed string is used as the AES256
key to decrypt what we assume is QR code-related data containing the challenge flag.

Figure 20 shows the code found in the function aregtfdcyni.

Figure 20: Code found in function aregtfdcyni

The call at line 216 installs a file named sprite.bmp and the calls at lines 217, 219, and 222 read its
contents into memory. We see that the data read from sprite.bmp is assigned to the structure variable
$flxmdchrqd at line 224. The structure variable $flxmdchrqd splits the data between two arrays: the first
array at index one stores 54 bytes and the second array at index two stores the remaining bytes.

The real magic happens at lines 227 through 234. Multiple bitwise operations are executed using bytes
read from index two of the structure $flxmdchrqd. Because the structure $flxmdchrqd is mapped to the
data read from sprite.bmp we know that index two stores data starting at offset 54 of sprite.bmp. We
look at sprite.bmp in a hex editor and immediately notice irregularities in the data starting at offset 54 as
shown in Figure 21.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

13

Figure 21: Viewing sprite.bmp in hex editor

Lines 228 through 232 can be translated to the Python code shown in Figure 22.

c = ord("a")
for bidex in reversed(range(7)):

c += ((ord(f.read(1)) & 0x1) << bidex)

Figure 22: Lines 228 through 232 translated to Python

These lines sum each character of the original filename with seven, 7-bit numbers calculated from the least
significant bits (LSB) of seven bytes read from sprite.bmp. An example of this calculation is shown in
Figure 23.

Byte Index | Calculated Number

0 | 1 0 0 0 0 0 0
1 | 1 0 0 0 0 0
2 | 0 0 0 0 0
3 | 0 0 0 0
4 | 0 0 0
5 | 0 0
6 | 1

 1 1 0 0 0 0 1 = 97

Figure 23: Summing a 7-bit number extracted from sprite.bmp

The LSB of each of the seven bytes stores one bit of the 7-bit number where the LSB of the first byte stores
the most significant bit (MSB) of the 7-bit number and the LSB of the last byte stores the LSB of the 7-bit
number. Figure 24 shows an example of using this logic to convert the byte sequence
FFFFFEFEFEFEFFFFFFFFFEFFFEFF back to its original two numbers.

FF FF FE FE FE FE FF = 1 1 0 0 0 0 1 = 97 = 'a'
FF FF FF FE FF FE FF = 1 1 1 0 1 0 1 = 117 = 'u'

Figure 24: Converting byte sequence FFFFFEFEFEFEFFFFFFFFFEFFFEFF

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

14

We can see from the example in Figure 24 that the calculations executed at lines 228 through 232 are used
to decode characters hidden in sprite.bmp. Based on our analysis each character of the original computer
name is summed with an encoded character read from sprite.bmp. The resulting sum is used for one last
calculation at line 233.

Line 233 can be translated to the Python code shown in Figure 25.

chr((val // 2) + ((val & 0x1) << 7))

Figure 25: Line 233 translated to Python

Taking a closer look at line 233 we realize that the transformation algorithm used by the function
aregtfdcyni is simple. Each character of the original computer name is summed with a character hidden
in sprite.bmp. The final transformed character is the result of dividing that sum by two. Figure 26 shows
two examples of this transformation.

('a' + 'a') / 2 = 'a'
('a' + 'e') / 2 = '?'

Figure 26: Example transformations

We can see that the final transformed character is equal to the original character if the original character
and the encoded character are equal. But how does adding the result of ((val & 0x1) << 7) to the sum
affect this calculation?

Short answer: it doesn't when we care.

Long answer: When the sum is even, meaning the two characters are the same, ((val & 0x1) << 7)
equals zero and the final result is not changed.

From what we have learned the original computer name is not modified if each character matches the
corresponding character hidden in sprite.bmp. That means the value hidden in sprite.bmp is probably
the computer name that we need to correctly decrypt the QR code-related data.

We can use Python to extract the computer name hidden in sprite.bmp. Figure 27 shows one possible
example of this solution.

encoded = []

with open("sprite.bmp", "rb") as f:
 f.seek(54, 0) # starting offset is 54
 for fidx in range(13):
 c = 0

 for bidex in reversed(range(7)):
 c += ((ord(f.read(1)) & 0x1) << bidex)
 encoded.append(chr(c))

 print(f'Key: {"".join(encoded)}')

Figure 27: Code to extract string hidden in sprite.bmp

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

15

The computer name hidden in sprite.bmp is aut01tfan1999.

SOLVING THE CHALLENGE

Based on our analysis we determine that the QR code-related data found in the function areyzotafnf is
successfully decrypted and displayed if our system's computer name is aut01tfan1999.

To confirm this, we set our system's computer name to aut01tfan1999, reboot, and re-run the program.
After changing our system's computer name codeit.exe displays the same QR code regardless of the
text entered as shown in Figure 28.

Figure 28: QR code displayed by codeit.exe after changing computer name

The QR code stores the challenge flag:

L00ks_L1k3_Y0u_D1dnt_Run_Aut0_Tim3_0n_Th1s_0ne!@flare-on.com

	Introduction
	Initial Dynamic Analysis
	Initial Static Analysis
	understanding the Obfuscation
	control flow
	Number constants
	String constants

	Understanding the Code
	Understanding the decryption
	Understanding the AES256 Key Generation
	Understanding the Transform Function
	solving the challenge

