<) FIREEYE”

FL;\RE

Flare-On 7: Challenge 6 — codeit.exe

Challenge Author: Mike Hunhoff (@mehunhoff)

INTRODUCTION

codeit.exe is a compiled AutoIt executable for the Windows operating system. The program lets users
generate Quick Response (QR) codes from text submitted to a GUI.

AutolIt is a freeware BASIC-like scripting language designed for general scripting and automating the
Windows GUI. An AutoIt script can be executed directly by the AutoIt interpreter or compiled to a
stand-alone executable. The current version of AutoIt has a feature rich installation package to help
develop and debug AutoIt scripts. There is also a customized a customized version of the AutoIt Script
Editor that includes additional coding tools for AutoIt.

Analysis tools including Exe2Aut and AutoIT Extractor can extract the source script from a compiled
AutoIt executable. This write-up focuses primarily on analysis of the source script extracted from
codeit.exe using Exe2Aut.

Notes on source material: codeit.exe generates QR codes using QR Code generator developed by
Nayuki . This library is open sourced under the permissive MIT License and available on GitHub.

INITIAL DYNAMIC ANALYSIS

To get a basic understanding of the program we perform initial dynamic analysis. On startup the program
presents us with a simple GUI that allows QR codes to be generated from text. Figure 1 shows
screenshots of the program generating a QR code for the text "Hello World!".

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

https://www.autoitscript.com/site/autoit/downloads/
https://www.autoitscript.com/site/autoit-script-editor/downloads/
https://www.autoitscript.com/site/autoit-script-editor/downloads/
https://github.com/fireeye/flare-vm/issues/172
https://gitlab.com/x0r19x91/autoit-extractor
https://www.nayuki.io/page/qr-code-generator-library
https://github.com/nayuki/QR-Code-generator#license
https://github.com/nayuki/QR-Code-generator

) FIREEY

] Codelt Plus!
Help

Entertext to encode

[=7] Codelt Plus!
Help

Hello World!

Can haz code?

(o}
©)

Let’s generate
some codes!

| Can haz code?

Figure 1: Screenshots of codeit.exe encoding "Hello World!"

c

To gain a better understanding of how codeit.exe interacts with our system we start Process Monitor
and continue interacting with the program. Figure 2 shows a screenshot of the events captured by Process
Monitor filtered for the Operation type CreateFile.

ZJ Process Monitor - Sysinternals: wunw sysinternals.com

File Edit Event Filter Tools Options Help

EHABE|vAS B M

5

Time. Process Name PID Operation

odett.exe 2808 BACreateFile
odet exe 2808 A CreateFile
2808 A CreateFile
2808 A CreateFile
2808 EhCreateFile
2808 (A CreateFile
2808 FACreateFile
2808 A CreateFile
2808 A CreateFile
2808 A CreateFile
2808 A Createfile
2808 BACreateFile
2808 R CreateFile
2808 A CreateFile
2808 A Createfiie

2808 A CreateFile
2808 A CreateFile
2808 EhCreateFile
2808 BhCreateFile
2808 A CreateFile
2808 A CreateFile
2808 A CreateFile

A CreateFile

2808 A CreateFile
2808 [BhCreateFile
2808 A CreateFile
2808 BACreateFile
2808 BACreateFile
2808 [BhCreateFile
2808 A CreateFile
2808 A CreateFile
2808 A CresteFile

Path

\Users\User'Desktop'\codett\codeit exe
\Wsers'user\Desktop\codeit\codstt.exe
Users\user\Desidop\codeit \gaprihiafiamndingy dil
Users\user\Desklop'\codsit

\Wsers'wser\AppDatatLocal\Temp

Users\user\AppData'Local\ Temp \autCDEDtmp
Users\user\AppData\Local' Temp\autCDB0 imp
Users\user\AppData\Local' Temp'autCDB0 tmp
\Users\user\Desktop\codett\kgapnihiaifiamndingv.dll
Users\user\AppData'Local\ Temp autCDE0tmp

Users\user\ Desklop'\codeit'\gaprihijalfiamndingy il

\Users\user' Desktop'\codeit'kggpribijafiiamndingy di
\Users‘user\Desktop\codeit\kgapnihiaifiamndingv.dll

Users\user\ Desidop'codeit'gaprihijafiamndingy dil
Users\user\Desklop'\codeit'codeit exe
\Users\User'Desktop'\codett\codeit exe
\sers'user\Deskiop'\codet yryrkmpaagbyfomadz bmp
Users\user\Desklop\codsit

Users\user\AppData'\Local\ Temp
\Users\user\AppData\Local\Temp\autCO704mp
Users\user\AppData'Local\ Temp\autCD 70.mp
Users\user\AppData\Local' Temp\autCO 70 mp
Users\user\Desktophcodsit'yryrkmpaagbyfgmegdz bmp
\Users\user'\AppData\Local\Temp\autCO704mp

Users\user\ Desidop'codeit yryrkmpgagbyfamugdz bmp
Users\user\ Desilop'\codeit'yryrkmpgagbyfgmxgdz bmp
\Users\user' Desktop'\codeit\yryrkmpaagbyfamxadz bmp
\Users‘user\Desktop\codeit\kgapnihiaifiamndingv.dll

Users\user\ Desidop'codeit'gaprihijafiamndingy dil
Users\user\ Desilop'\codeit'\gaprihijalfiamndingy il
\Users\User'Desktop'\codett\psppyznpmpayfphocywmekezl bmp
\UsersuserDesktop'\cadeit\psppyznpmpayfphocywmekezu bmp
Users\user\ Desidop\codeit gaprihijalfiamndingy dil
Users\user\Desklop'\codeit'psppyznpmpgyfphocywmekezlu bmp
\Users'user\Desktop'\cadett\psppyznpmpayfphocywmekezu bmp

0NNNO0ONNONNNNNNNNNNN0N0NNNNNNN0000N000

Resutt

SUCCESS
SUCCESS
NAME NOT FOUND
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
NAME NOT FOUND
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

Detail
Desired Access:

Desired Access:

Desired Access:
Desired Access:

Desired Access:
Desired Access:

Desired Access:
Desired Access:

Desired Access:

Desired Access:
Desired Access:

Desired Access:
Desired Access:

Desired Access:
Desired Access:

Desired Access:
Desired Access:

Desired Access:
Desired Access:

Desired Access:
Desired Access:

Desired Access:
Desired Access:

Desired Access:

Desired Access:
Desired Access:

Desired Access:
Desired Access:

Desired Access:
Desired Access:

Desired Access:
Desired Access:

Desired Access:
Desired Access:

Desired Access:

: Generic Read, Dispostion: Open, Optians: Synchronou

Read Attrbutes, Dispostion: Open, Options: Open Rep
Read DataList Directory. Synchronize., Dispostton: Op.

Generic Read, Dispostion: Create, Options: Synchrono
Generic Witte, Read Aftibutes, Disposition: Ovenwitel,
Generic Read, Dispostion: Open. Options: Synchronou
Genenic Read/Wite. Dispostion: Ovanwite, Options:
Read Attrbutes, Delete, Disposition: Open, Options: No
Generic Wiite, Read Aftibutes, Disposition: Open. Opti

Read Data/List Directory, Execute/Traverse, Synchroni
Generic Read, Dispostion: Open, Options: Synchronou
Generic Read, Disposition: Open. Options: Synchronou

Read Data/List Directory, Synchronize, Disposttion: Op
Read Attrbutes, Dispostion: Open. Options: Open Rep

Generic Witte, Read Attibutes, Dispositon: Ovenwriel,
Generic Rsad, Disposiion: Open, Options: Synchronou
Generic Read/Wite. Dispostion: Overwitelf. Options:

Generic Witte, Read Aftibutes, Disposition: Open, Opti
Generic Read, Disposition: Open. Options: Synchronou

Read Data/List Directory, Execute/Traverse, Synchron
Generic Read, Disposition: Open. Options: Synchronou

Generic Witte, Read Aftrbutes, Dispostion: Open. Opti
Read Attrbutes, Delete, Disposition: Open, Options: No
Geneic Read, Disposttion: Open. Options: Synchronou

Read Attributes, Disposttion: Open, Options: Open Rep...

Read Attributes, Disposttion: Open, Options: Open Rep...

Read Attrbuis, Dispostion: Open, Optians: Open Rep..

Read Attrbutes, Dispostion: Open, Optians: Open Rep...
Fead Attrbutes, Dispostion: Open, Optians: Open Rep...

Generic Read, Disposition: Create, Options: Synchrono...

Read Attributes, Delete, Disposttion: Open, Options: No...

Read Attrbutes, Delete, Dispostion: Open, Ogtions: No...
Read Attributes, Disposttion: Open, Options: Open Rep...

Generic Write, Read Attributes, Disposition: Ovenwritef....

Read Attributes, Delete, Disposttion: Open, Options: No...

Showing 35 of 1,413 events (24%)

Backed by virtual memory

Figure 2: Screenshot of a selection of events capture by Process Monitor

We see that codeit.exe repeatedly creates and deletes multiple files in its working directory. We can
prevent the program from deleting these files by modifying the permissions of this folder as shown in Figure

3.

FireEye, Inc. | 601 McCarthy Blvd. Mi

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks

or service marks of their respective owners. WRD.EN-US.032019

tas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

{)FIREEYE

| . codeit Properties | 2 \
| General | Sharing | Securty | Previous Versions | Customize |
Advanced Security Settings for codeit (=]
Pemiissions | Audiing | Owner | Effective Pemmissins |
o _ _ \
. Advanced Security Settings for codeit [=]
H Permissions
T &
! [
R Permission Entry for codeit | 2 \
Object
il
Name: user (\user) Change... n Ju—
Apply to: [This folder, subfolders and fles @ |t bl o
rl, This folder, subfolders a...
; Permissions: Allow Deny T, This folder, subfolders a...
st folder {read data @] &l o rl, This folder, subfolders a...
Read attributes (] =)
i i
Read extended attributes (] =)
Create files f write data (] =)
Create folders / append data (] =)
|, Write atiributes =] 0 |=
L] I yrite extended attribute: 0)
i Delete subfolders and files = ct
Delete]
— Read permissions L |L</N
b Change permissions (] B |+
] Apply these permissions to objects andfor [Clear All] [o]'4] [Cancel Apply
containers within this container only
Managing permissions

Figure 3: Removing delete permissions from current user for working directory

codeit.exe can no longer delete files after we modify the permissions of its working directory. This allows
us access to these files for analysis but unfortunately a quick look does not reveal anything interesting.

The files created with a .bmp file extension contain the generated QR codes and multiple copies of the
default image displayed in the GUI. The files created with a .d11 file extension are copies of the same
binary and strings found in this binary, listed in Figure 4, indicate it may simply be a supporting library used
to generate QR codes.

justConvertQRSymbolToBitmapPixels

justGenerateQRSymbol

gencode.dll
C:\Users\spring\source\repos\gencode\Release\gencode.pdb

Figure 4: Strings found in binary generated by codeit.exe

INITIAL STATIC ANALYSIS

To get a better understanding of the format and code structure of codeit.exe we perform initial static
analysis. Opening codeit.exe in CFF_Explorer reveals that the program is packed with UPX as shown
in Figure 5.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

https://ntcore.com/?page_id=388
https://en.wikipedia.org/wiki/UPX

-

~' CFF Explorer VII - [codeit.exe] [= =] =]
File Settings 7
H " codeit.exe x
2N
Property Value ‘
(=] File: codeit
= - = — File Name ChUsersiuser\Desktophcodeit\ codeit.exe
— 2 Dos Header
(2] Mt Headers File Type Portable Executable 32
|2l File Header
File Inf UPXv3.0
(=] Optional Header feno hé I
[l Data Directories [« File Size 470,00 KB (481280 bytes)
— & Seclion Headers k] PE Size 470.00 KB (481280 bytes)
— @\mpnn Directory
| [Resource Directory Crested Friday 31 July 2020, 13.53.06
— (D Relocation Directory Modified Friday 31 July 2020, 13.53.06
— *‘),Md'ms Converter
| 9 Dependency Walker Accessed Friday 31 July 2020, 13.53.06
— “ Hex Editor MD5 8EDIEECTTL05B703F4SEED8459152C20
— &, Identifier
- L‘j“wm Adder SHA-1 B48703260D5C3B0F43240D50DDFI1 COBS4364ETA
— -‘j_,Quck Disassembler
[L“"’ Rebuilder Property Value
— *‘)_, Resource Editor
— {\, UPX Uhility Empty Mo additicnal info available

Figure 5: CFF Explorer identifying codeit.exe as UPX-packed

{)FIREEYE

We use the UPX Utility available in CFF Explorer to unpack the program as shown in Figure 6.

' CFF Explorer VII - [codeit.exe] EI@
File Settings 7
H " codeit.axe X
-
B [T File: codeit.exe Check if the Portable Executable is already packed
— (=] Dos Header
=) Nt Headers pex
(=] File Header Pack Export Directory IComprassmn Level: 7 -
[=] Optional Header .
3 Data Directories [|| Pack Resource Directory FlForce [F] Al Methods
— =] Section Headers f] [Campress all icons but first directory '] [Exact [] Al Filters
+— () Import Directory
|— I) Resource Directory [¥] Strip Relocation Directory Unpack
+— () Relocation Directory
— “);Mdm Converter Ultimate Packer for eXecutables -
L@ Copyright (C) 1996 - 2011
‘%’m Walker UPX 3.08w Markus Oberhumer, Laszlo Molnar & John Reiser Dec 12th 2011
— “k Hex Editor
.
— .‘3[.’ Identifier File size Ratio Format Name
_ ‘:d:;f:k“ [’:’de" 063584 <- 481280 49.95% win32fpe upxSF20.tmp
— &, sassembler
|— @, Rebuilder Unpacked 1 fiie.
— -‘);,Fm.n:e Editor L
— 9, UPX Lnility

Figure 6: Unpacking codeit.exe with CFF Explorer

Strings found in the unpacked copy of codeit.exe, some of which are listed in Figure 7, indicate the

program is a compiled AutoIt script.

This is a third-party compiled Autolt script.
>>>AUTOIT NO CMDEXECUTE<<<
>>>AUTOIT SCRIPT<<KL

Figure 7: AutoIt-related strings found in unpacked copy of codeit.exe

We use the program Exe2Aut to retrieve the AutoIt script source from the original copy of codeit.exe as

shown in Figure 8.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks

or service marks of their respective owners. WRD.EN-US.032019

{)FIREEYE

@ Exe2 Aut - Autolt3 Decompiler

#RBegion
fRutolt3Wrapper_ UseUpx=y

#EndRegion

Clobal Const $str_nocasesense = 0

Global Const 3str_casesense = 1

Flobal Const $sStr_nocasesensebasic = 2

Global Const $str_stripleading = 1

Clobal Const $str_striptrailing = 2

Global Const $str_stripspaces = 4

Global Const $str_stripall = 8

Global Const $str_chrsplit = 0

Global Const $str_entiresplit = 1

Clobal Const $str_nocount = 2

Global Const $str_regexpmatch = 0

Global Const 3$str_regexparraymatch = 1

Global Const $str_regexparrayfullmatch = 2

Clobal Const $str_regewparrayglobzlmatch = 3

Global Const $str_regewparrayglobalfullmatch = 4

Global Const $str_endisstart = 0

Flobal Const $str_endnotstart = 1

Global Const $sb_ansi = 1

Global Const $sb_utfléle = 2

Global Const $sb_utflfbe = 3

Elobal Const $sb utfd = 4

Global Const $se_utfls = 0

Global Const $se_ansi = 1

Global Const $se_utf8 = 2

Elobal Const $str_utflé = 0

Elobal Const $str_ucsZ = 1

Func _hextostring($shex)

4 [m

i
e
.

Figure 8: Extracting AutoIt script source with Exe2Aut

Exe2Aut unpacks two files named qr_encoder.d11 and sprite.bmp. Generating hashes for these two
files reveals they are the same files that we observed codeit.exe repeatedly creating and deleting

during our dynamic analysis.

Figure 9 shows a snippet of the AutoIt script source. The code is obviously obfuscated.

Func arepfnkwypw

xpiv
tCreate (arehdidxrgk($os[$flgjtxmatd
DllStructGetSize (SEltpvi

Local $fltpviccve D
DllStructSetData ($£lt)

$flmdzzmo3v

arehdidxrgk
If $flagh hxtot ST smkim
If DllStructGetData($Eltpy:
If DllStructGetData
$flggbtibmi = $flht

EndIf

zlvskjaw

-
arehdidxrgk ($os [$§flrxnffbjl

arehdidxrgk ($os [§flvlzpmufo arehdidxrgk($os [$£fldevsitmj $fltpvicevy

Figure 9: Snippet of obfuscated code found in AutoIt script source

UNDERSTANDING THE OBFUSCATION

Several features of codeit.exe are obfuscated, including control flow, number constants, and string

constants.

CONTROL FLOW

codeit.exe leverages the order in which AutoIt executes code to obfuscate its control flow. AutoIt
resolves directives (e.g. #Include) first and then uses a top-down approach to run code found in the

global scope.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks S

or service marks of their respective owners. WRD.EN-US.032019

{)FIREEYE

We see that codeit.exe makes heavy use of code located in the global scope to make it difficult to tell
which functions are called and in what order. The directive #0OnAutoItStartRegister found towards the
top of the script is set to areihnvapwn indicating that the function areihnvapwn is the first function called

by AutoIt. After this function returns AutoIt continues running code found in the global scope until it
reaches a call to the function areialbhuyt shown in Figure 10.

Func arepggkaeto(§flmwacufre, $fljxaivild
Local §fljiye -1

Local §flmwacuf

dermagic = D1lStructCreate ("struct;ushort;endstruct”
D11StructSetDat

Imwacufreheadermagie, 1, 19778
1 §flivpiogmf = aremyfdtfgp(§flixaivild, False
vpiogmf <> -1 Then

lkbend = aremfkxlayv($flivpiogmf, Dl1StructGetPtr(§flmwacufreheadermagic), D11StructGetSize (§flmwacufreheadermagic

§flivpiogmf, Dl1StructGetPtr(§flmwacufre[0] D11StructGetSize (§flmwacufre[0]

arevtgksjhu (§flivpiogmE
EndIf
Return §fljiveluhx

EndFunc

hreialbhuyt

Func arelassehha(§flbagvujsl, $flkelsuuiy

Local §flefoubdxt = -1
Local §flamtlcncz = arepaggkaeto (§flbagvujsl, §$flkelsuuiy!
If §flamtlencx <> -1 Then

u = aremyfdtfgp (§flkelsuuiy, True
1 Then

1djlwrg = Abs (DllStructGetData (§flbagvuisl[0]

cetuu = D11StructGetData (§flbagvuj
flaphcjgtp = DllStructCreate ("struct;by
For §fllrevawmx = 0 To §E -1

0 2 §flwldjlwrg - 1 : ©
dstruct"

amtlcnex = aremfkx
§$flamtlcnex = -1 Tt

kmhzwu, D11StructGetPtr (§flbagvujsl[1l], Abs(§flumncetuu - §fllrcvawmx) + 1), Dl1StructGetData($flbagvujsl[0], "biWidth") * 3
lamtlcnex = aremfks vikmhzwu, D1lStructGetPtr ($flgphejgtp

, Mod (DllStructGetData (§flbagvujsl[0], "biWidth"), 4
If §flamtlcnex = -1
Next
If §flamtlencx -1 Then
flefoubdxt = 0
EndIf
arevtgksjhu (§£1lvikmhxwu
EndIf
EndIf
Return §flefoubdxt

EndFunc
Figure 10: Call to function areialbhuyt

The function areialbhuyt is our most likely candidate for "main".

NUMBER CONSTANTS

Number constants are obfuscated by their definition as global variables with random names as shown in

Figure 11, rather than being referenced directly. We undo the obfuscation by rewriting references to those
variables with their actual value.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks 6
or service marks of their respective owners. WRD.EN-US.032019

https://www.autoitscript.com/autoit3/docs/keywords/OnAutoItStartRegister.htm

{)FIREEYE

Global Number (" © $flerggibmh = Number(" 1 "), $flowfrek Number (" = Number (" 0 "), Number (" 2 "), Sflddxnmz
Global = Number (" Sflwjxfofkr = Number{" 0 "), Sflhacmbu. Number (" sfldtvrladn = Number (" 1 "), Numbexr (" 1 "), Sflbxttsc
Global Number (" = Number(" 1 "), $flgmsyadm Number (" Sflochbwfdku = Number (" 1 "), Number (" 2 "), $flmjgnaz
Global Number (" = Number(" 4 "), $flzwiyyirb = Number(" Sflyxhsymcx = Number(" 0 "), Numbexr (" 0 "), $flalocog
Global g = Number(" = Number(" 2 "), 5flskosixpo = Number(" 1 Sfltygfaazv = Number(" 0 "), Number (" 2 "), Sflispmmi
Global S$flffikmnrin = Number (" = Number(" & "), $flvuvsuzbc = Number(" $flzpvbdewm = Number(" 0 "), Number (" 2 "), S$flgz
Global = Number (" = Number(" 0 "), 5flptdindai = Number (" Numbexr (" 2 "), Number (" 0 "), $fljuclpk
Global Number (" 1 1 = Number(" 1 "), §flaisigmms = Number (" Numbexr (" & "), Numbexr (" 0 "), §flefscaw
Global = Number(" © $flhsoyzund = Number(" 0 "), $flq Number (" 1 Numbex (" 0 "), Number (" & "), Sflnmnjax
Global = Number(" 3 ogepwg = Number(" 0 "), Sfimbbmuicf = Number (" Humbex (" Number (" 0 "), Sflmvwpfa
Global = Number (" zracriv = Number(" "), Sflhbzvedem = Number (" Number (" 2& "), Sfli
Global = Number (" 5f1brberyhas = Number (" "), $flgxfkfbsod = Number (" Number (" 5
Global $flyhhitbme = Number(" 12778 "), Sflejpkmadl = Number "), §flkhegsvel = Number (" 5flikwkugfv = Number ("

Global $flnspnlrbe = Number(" 26 "), SE. Number (" Number (" 13 $flzaghexft = Number ("

Global Sflpuwwmba Number (" 26 "), §flo Number (" 1 Sflrkparhzh = Number({" 26 "), 5fl
Global $fldcdylyrl = Number(" 34 "), Sf. = Number (" Numbex (" $flkxleyzxr = Number ("

Global $flamsjjpgg = Mumber(" 26 "), 5 = Number (" = Number (" 2 5flnpzlyjmk = Number ("

Global Sflbkxrnx Number (" 28 "), Sflmgldspdj = Number(" n = Number (" , Sfltzgiggdk = Number(" 36 "), Sflnyytfkei = Number(" 36 "), §flz
Global $flxzavem Number (" "), $flmigin Number { tsisc = Number("), $flvelubnxk = Number(" 111 "), S$fl pzhb = Number(" 112 "),
Global Sflwvicvsms = Number (" "), Sflcpbndhbg = Number (" Sfliecifrps = Number (" 2 Sflghxsbamp = Number (" 26 "), §floaidmlpx = Number(" 27 "), Sfll
Global $fly Number (" = Number (" $flevoknzhs = Number (" Sflezsvibbu = Number(" 61 "), S$flvtgedrnc = Number(" &2 "), Sflu
Global 5fli Number (" Number (" Sf1xdfspfko = Number (" 2 §flssrmhicp = "y, Number (" 28 "), 5fld
Global Sflxquvzrly = Number (" Number (" §f1hgijglfws = Number (" 2 $flwvzhffsc = "y, Number (" "y, Sfif
Global $flhanaxdhn = Number(" 22 "), $flaexdgsrh = Number (" $flgnduvhbh = Number (" "), Sflsmpswutk "), $flamfdduxi = Number(" 26 ")}, Sf
Global Sflwybtlyiv = Number(" 54 "), Sflimbucowk = Number(" £ Sf1fbipgyus = Number ("), Sflscprhusg = Number (" 10 "), §flbzbowgxo = Number(" 11 "), 5flm

Figure 11: Assigning number constants to global variables

We can remove the obfuscation of number constants using Python and regular expressions. Figure 12
shows one possible example of this solution.

find and replace global variables with number constant e.g. $flerqqjbmh = Number(" 1 ") -> 1 = Number(" 1 ")
for match in re.finditer(r"(\$f1[0-9a-2]1{8})\s\=\sNumber\(\"\s([@-9]+)\s\"\)", source):
source = source.replace(match.groups()[@], match.groups()[1])

Figure 12: Example code to remove obfuscation of number constants

Figure 13 shows the updated contents of the function arepfnkwypw after removing the obfuscation of
number constants.

Func arepfnkwypw |
Local $flggbtjbmi = -1
Local $fltpvjccvg = DllStructCreate (arehdidzargk(Sos[128]
DllStructSetData ($fltpviccvg, 1, DllStructGetSize ($fltpvijccvg

I H

Local $flaghdvgyv 11Call (arehdidxrgk ($0=[25]), arehdidxrgk($os[26]), arehdidxrgk($os[1298])), arehdidxrgk($os[39]), $fltpvjccva)
If $flaghdvgyv[0] <> 0 Then
If DllStructGetData($fltpvjccvyg, 2} = & Then
If DllStructGetData ($fltpvjcevg, 2) = 1 Then
$flggbtijbmi = 0
EndIf
EndIf
EndIf
Return $flggbtjbmi

EndFunc

Figure 13: Removing obfuscation of number constants from function arepfnkwypw

STRING CONSTANTS

String constants are hex-encoded and accessed through the global array $os. The array $os is initialized
by the function areihnvapwn which is the first function called by AutoIt as a result of the
#OnAutoItStartRegister directive.

The function areihnvapwn initializes the string variable $d1it to a single, large string containing all hex-
encoded string constants separated by the string value 4FD5$. The string variable $d1it is then split into

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

https://www.autoitscript.com/autoit3/docs/keywords/OnAutoItStartRegister.htm

{)FIREEYE

individual hex-encoded strings using the string value 4FD5$% as a delimiter and assigned to the array
variable $os. After the function areihnvapwn executes string constants can be accessed by an index into
the array $os and decoded by the function arehdidxrgk.

We can remove the obfuscation of string constants using Python and regular expressions. Figure 14
shows one possible example of this solution.

dlit = []

collect contents of $dlit from source script
for match in re.finditer(r"\$dlit\s(\&)?\=\s\"([0-9a-zA-Z\$]{2,100})\"", source):
dlit.append(match.groups()[1])

string_array = []

combine $dlit into single string, split on delimiter 4FD5$, and decode
for encoded in "".join(dlit).split("4FD5%$"):
string_array.append(binascii.unhexlify(encoded).decode("utf-8"))

find and replace $os array accesses with original string constant e.g. arehdidxrgk($os[25]) -> "kernel32.d1ll"
for match in re.finditer(r"(arehdidxrgk\(\$os\[([@-9]+)\]\))", source):

(index - 1) as AutoIt arrays index starting at 1

source = source.replace(match.groups()[0], "\"%s\"" % string_array[int(match.groups()[1], 10) - 1])

Figure 14: Example code to remove obfuscation of string constants

Figure 15 shows the updated contents of the function arepfnkwypw after removing the obfuscation of string
constants.

Func arepfnkwypw
Local $flggbtjbmi 1
Local §$fltpvijccvg Dl115tructCreate ("struct;dword;dword;dword;dword:;dword; byte[128] ;endstruct™
Dll5tructSetData ($fltpvijcevg, 1, D11StructGetSize (Sfltpvjccovg

"int"™, "GetVersiomnExA", "struct*", $fltpviccvg
Then
If DllStructGetData ($fltpvjcevg, 3 1 Then
Sflggbtjbmi 0
EndIf
EndIf
EndIf
Return $flggbtjbmi

EndFunc
Figure 15: Removing obfuscation of number and string constants from function arepfnkwypw

UNDERSTANDING THE CODE

After removing the obfuscation of number and string constants and identifying the function areialbhuyt
as our most likely candidate for "main" we begin analyzing the code.

We notice that codeit.exe makes frequent use of the following AutoIt functions:

e DllStructCreate
FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

https://www.autoitscript.com/autoit3/docs/functions/DllStructCreate.htm

{)FIREEYE

e DIl1StructGetData
e DIl1StructSetData
o DIIStructGetSize

e DllCall

e FilelInstall

These functions can be used in AutoIt scripts to call functions exported by a DLL. This is often used to
call library code that performs CPU intensive tasks. codeit.exe performs a majority of its tasks using the
Autolt function D11Call to execute Windows library functions.

Taking a closer look at the function areialbhuyt we find the code executed when a user interacts with the
Can haz code? button shown in Figure 16.

GUICtrlRead ($flokwzamxw

aregfmvbsgd (26
DllStructCreate ("sStruct;dword;dword:b:
D11C lwxdpsimz, "int:cdecl”, "ju

DllStructGetData($flnpapeken, 2 DllStructGetDat.
ymbolToBitmapPixels”, "stIuct*", $flnpapeken, "struct*"

DllStructGecDaca (§flnpapeken, 2 1024

0 n
tlghh = arewuoknzvh (25, 30 " bmp"
sehha ($flbvokdzrky, Sflpnltlghh

Figure 16: Code executed when user interacts with Can haz code? button

The «calls at lines 352 and 356 execute the functions justGenerateQRSymbol and
justConvertQRSymbolToBitmapPixels exported by a DLL named qr_encoder.dll. qr_encoder.dll
is installed by the call at line 350 and deleted by the call at line 362. Each time a user interacts with the Can
haz code? button codeit.exe creates and deletes the file qr_encoder.dll, which matches what we
observed during our dynamic analysis. We ignore qr_encoder.d11 and the calls at lines 352 and 356 for
now based on our suspicion that the DLL simply contains code used to generate QR codes.

We see that the structure variable $flnpapeken is created at line 351 and passed to the function
justGenerateQRSymbol at line 352. We also see that the structure variable $f1npapeken is passed to the
function areyzotafnf at line 354 before it is passed to the function
justConvertQRSymbolToBitmapPixels at line 356. Based on the names of the two exported functions
we assume that the call at line 352 fills the structure variable $f1npapeken with QR symbol data which is
then converted to bitmap pixels by the call at line 356. But why the call to the function areyzotafnf in
between?

Taking a closer look at the function areyzotafnf we see a number of interesting calls to Windows library
functions including CryptAcquireContextA, CryptHashData, CryptImportKey, and CryptDecrypt.
These functions indicate that the function areyzotafnf may decrypt data containing the challenge flag.

Figure 17 shows the code found in the function areyzotafnf.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks 9
or service marks of their respective owners. WRD.EN-US.032019

https://www.autoitscript.com/autoit3/docs/functions/DllStructGetData.htm
https://www.autoitscript.com/autoit3/docs/functions/DllStructSetData.htm
https://www.autoitscript.com/autoit3/docs/functions/DllStructGetSize.htm
https://www.autoitscript.com/autoit3/docs/functions/DllCall.htm
https://www.autoitscript.com/autoit3/docs/functions/FileInstall.htm
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptacquirecontexta
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-crypthashdata
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptimportkey
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptdecrypt

{)FIREEYE

243 [H Func areyzotafnf (ByRef S$flodiutpuy

244 Local §flisilayln = areuznagfmn

245 = 1 1 Then

246 r Binary (StringLower (BinaryToString (§flisilayln

247 Local $flisilaylnraw DllStructCreate ("struct:;byte[" BinaryLen($flisilayln "];endstruct”
248 DllStructSetData (§£
248 aregtfdcyni ($flisilaylnraw

250 Local £flnttmijfea DllStructCreate ("struct;ptr;ptr;dword;byte[32];endstruct”

251 DllStructSetData ($flnttmjfea, 3, 32

Z5Z Local $fluzytjacbh D11Call ("advapi32.dll", "int", "CryptAcquireContextA", "ptr", DllStructGetPrr($flnttmjfea, 1
253 If §fluzytjach[0 0

silaylnraw, 1, $flisilayln

254 $fluzytjach D11Call ("advapi32.dll", "int", "CryptCreateHash", "ptr", DllStructGetData($flnttmjfea, 1 "dword"

255 If §fluzytjach[0)
256 $fluzytjach = D11Cal
257 If §fluzytjachb[O
258 $fluzytiach
258 [If $fluzytjacb[0 o
280 Local $flmtvyzrsy "ox"
26l Local $flkpzlgkch Binary("Ox"
262 Local $fluelrpeax DllStructCreate ("str
263 DllStructSetData($fluslrpeax, 3, BinaryLen($flkpzlgkch
264 DllStructSetData($fluelrpeax, 4, $flkpzlgkch

265 DlliStructSetData ($fluelrpeax, 5, S$flmtvyzrsy

266 DllStructSetData (§fluelrpeax, &, BinaryLen(§flmtvyzrsy,

ningn

"ptr", DllStructGetData($flnttmjifea

nEgFaZ M np;

DllstructGetData

BinaryLen ($flmtvyzray,

"int", "CryptHashData", "ptr", Dll5tructGetData($flnttmjfea, 2 "struct*", $flisilaylnri

"dword", 2, "pt:

n373

rd; endstrl

2687 Local $fluzytjach D1 . "int" yptaAcqu ontextA"” "ptr", DllStructGetPtr ($fluelrpeax, 1 "pt:

288 [If Sfluzytiachl0 0
268 $fluzytjach = D11Call ("
270 If Sfluzytiach(0 0
271 $fluzytjach = DllCall
272 [If $fluzytjacbl0

"ptr", DllStructGetData($fln

273 Local $flsekbkmru aryMid (Dl1StructGetData ($fluelrpeax, 4 1, DllStructGetData ($f1

274 $flfzfsuacz Binary
275 Binary
276 BinaryMid ($flsekbkmru, 1, BinaryLen($flfzfsuaoz

277 BinaryMid (§flsekbkmru, BinaryLen(§flsekbkmru BinaryLen (§fltvwgdotg
278 [—] 1fzfsuaoz Sflgggftges AND Sfltvwgdotg miatrft Then

278 11S5tructSetData ($flodiutpuy, 1, BinaryMid 6, 4

280 llStructSetData ($flodiutpuy, 2, BinaryMid lsze. I 10, 4

281 11S5tructSetData($flodintpuy, 3, BinaryMid($flsekbkmru, 14, BinaryLen($flsekblmru
282 =
283 =
284
285 5
286 D11Call ("advapi32.d1l", "int", "CryptReleaseContext"™, "ptr"™, Dl1StructGetData{$fluelrpeax, 1
287 B EndIf

288] EndIf

288 B EndIf

280 D11Call ("advapi32.d1l™, "int", "CryptDestroyHash", "ptr", DllStructGetData{$flnttmjfea, 2Z
281 = EndIf

232 D11Call ("advapi32.dll", "int", "CryptReleaseContext", "ptr", DllStructGetData{$flnttmjfea, 1 "dword™, 0
283 = EndIf

234 e EndIf

285 — EndFunc

call("advapi32.dll", "int", "CryptDestroyKey", "ptr", DllStructGetData($fluelrpeax, 2

Figure 17: Code found in function areyzotafnf

UNDERSTANDING THE DECRYPTION

lrpeax

"ptr", DllStructGetData($fluelrpeax, 2

1 "ptr", D1l

rpeax, 3

1, BinarylLen(Sfltvw

We first determine the encryption algorithm used by taking a closer look at the calls to the Windows function
CryptAcquireContextA at line 267 and the Windows function CryptImportKey at line 269. We see that
the provider type specified for CryptAcquireContextA is 24 or PROV RSA AES. Based on the
documentation for PROV_RSA_AES we know the encryption algorithm is one of RC2, RC4, or AES.

The second argument to the function CryptImportKey is a byte array containing a BLOBHEADER structure
followed by the algorithm-specific encryption key. We see that the second argument to the function
CryptImportKey is data stored at index five of the structure variable $fluelrpeax. Tracing uses of the
structure variable $fluelrpeax reveals that index five is set to the binary variable $f1lmtvyzrsy at line
265. The binary variable $f1mtvyzrsy stores the BLOBHEADER structure and is initialized at line 260 to the
12-byte value ©80200001066000020000000 followed by data stored at index four of the structure variable

$flnttmjfea.

Figure 18 shows the definition of the BLOBHEADER structure.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

10

https://docs.microsoft.com/en-us/windows/win32/seccrypto/prov-rsa-aes
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/ns-wincrypt-publickeystruc

{)FIREEYE

typedef struct _PUBLICKEYSTRUC {
BYTE bType;
BYTE bVersion;
WORD reserved;
ALG_ID aiKeyAlg;
} BLOBHEADER, PUBLICKEYSTRUC;

Figure 18: BLOBHEADER structure definition

The 12 bytes stored in the binary variable $f1mtvyzrsy map to the values shown in Figure 19.

Description | Size (in bytes) | Value
Type | 1 | ox8
Version | 1 | ex2
Reserved | 2 | oxe
Algorithm ID | 4 | ex6601
Key length | 4 | ex2e

Figure 19: Mapping values store in the binary variable $f1lmtvyzrsy

Based on the documentation for ALG_ID, we determine that the encryption algorithm used is AES256. We
also determine that index four of the structure variable $f1nttmjfea contains the 32-byte AES256
encryption key used in the call to the function CryptDecrypt at line 271.

The call at line 271 uses the AES256 encryption key to decrypt data stored at index four of the structure
variable $f1luelrpeax. If the decryption is successful, the decrypted data is stored in the structure
variable $flodiutpuy. The structure variable $flodiutpuy contains the data that is eventually passed to
the function justConvertQRSymbolToBitmapPixels atline 356 of the function areialbhuyt.
Therefore, we assume that the encrypted data at index four of the structure variable $f1luelrpeax stores
QR code-related data containing the challenge flag.

UNDERSTANDING THE AES256 KEY GENERATION

Tracing uses of the structure variable $f1nttmjfea we find the data stored at index four is derived from
calls to the Windows functions CryptCreateHash, CryptHashData, and CryptGetHashParam at lines
254, 256, and 258. The second argument to the Windows function CryptCreateHash, 32780 or
CALG_SHA256, tells us that the call at line 256 generates a SHA256 hash and the call at line 258 stores
the resulting hash value at index four of the structure variable $f1nttmjfea. The second argument to
CryptHashData reveals that the SHA256 hash is generated from data stored in the structure variable
$flisilaylnraw.

We see that the structure variable $f1lisilaylnraw is initialized at line 248 to binary data returned from
the call at line 244 and the call at line 244 is a simple wrapper function that executes the Windows
function GetComputerNameA. Based on these findings we determine that the AES256 key is derived from
the SHA256 hash of our system's computer name.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com
11

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptcreatehash
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-crypthashdata
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptgethashparam
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getcomputernamea

{)FIREEYE

We see the structure variable $f1isilaylnraw containing our system's computer name is passed to the
function aregtfdcyni at line 249. The code found in the function aregtfdcyni appears to use an
unrecognized algorithm to transform the computer name.

UNDERSTANDING THE TRANSFORM FUNCTION

Based on our analysis so far, the function aregtfdcyni is passed our system's computer name and
returns a transformation of the value. The SHA256 hash of the transformed string is used as the AES256
key to decrypt what we assume is QR code-related data containing the challenge flag.

Figure 20 shows the code found in the function aregtfdcyni.

215 Func aregtfdcyni (ByRef $flkgaovzec

2186 aregfmwbsqgd (14

G} arerujpvsfp (§flgvizhezm

218 1 Then

219 arenwrbskll ($fl1fwezdbyc

220 1 AND DllStructGetSiz lkgaovzec 54 Then

221 v DllStructCreate ("struct;b ' "]:endstruct™

222 areml fozynu ($flfwezdbyc, Sflnfufvect

223 =] 1 Then

224 d DllStructCreate ("struct:;byte[54] ;byte[" $flvburiuyd 54 "]:endstruct”, DllStructGetPtr($flnfufvect
225 c 1

226] nn

227 = ¢flterg 1 Io DllStructGetSize ($flkgaovzec

228 E Local s$f tvgpnc Number (D11StructGetData ($flkgaovzec, 1, $fltergxskh

229 = 1 6 To 0 Step -1

230 BitShift (BitAND{Number (D11StructGetData ($flxmdchrgd, 2, $flggwnzjzc 1 1 $fltajbykxrx
231 1

232 r Hext

233 $floctxzpggh Chr (BitShift (§flydtvgpne, 1 BitShift (BitAND($flydtvgpne, 1 7
234 - Next

235 DllStructSetData (§flkgaovzec, 1, Sfloctxpgah

238 r EndIf

237 r EndIf

258 arevtgkzjhu ($flfwezdbyc

239 I EndTf

240 arebbytwcoi ($flgvizhezm

241 - EndFunc

Figure 20: Code found in function aregtfdcyni

The call at line 216 installs a file named sprite.bmp and the calls at lines 217, 219, and 222 read its
contents into memory. We see that the data read from sprite.bmp is assigned to the structure variable
$f1lxmdchrqd at line 224. The structure variable $f1xmdchrqd splits the data between two arrays: the first
array at index one stores 54 bytes and the second array at index two stores the remaining bytes.

The real magic happens at lines 227 through 234. Multiple bitwise operations are executed using bytes
read from index two of the structure $f1xmdchrqd. Because the structure $f1xmdchrqd is mapped to the
data read from sprite.bmp we know that index two stores data starting at offset 54 of sprite.bmp. We
look at sprite.bmp in a hex editor and immediately notice irregularities in the data starting at offset 54 as
shown in Figure 21.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks 12
or service marks of their respective owners. WRD.EN-US.032019

{)FIREEYE

Figure 21: Viewing sprite.bmp in hex editor

Lines 228 through 232 can be translated to the Python code shown in Figure 22.

c = ord("a")
for bidex in reversed(range(7)):
c += ((ord(f.read(1)) & 0x1) << bidex)

Figure 22: Lines 228 through 232 translated to Python

These lines sum each character of the original filename with seven, 7-bit numbers calculated from the least
significant bits (LSB) of seven bytes read from sprite.bmp. An example of this calculation is shown in
Figure 23.

Byte Index | Calculated Number

Figure 23: Summing a 7-bit number extracted from sprite.bmp

The LSB of each of the seven bytes stores one bit of the 7-bit number where the LSB of the first byte stores
the most significant bit (MSB) of the 7-bit number and the LSB of the last byte stores the LSB of the 7-bit
number. Figure 24 shows an example of using this logic to convert the byte sequence
FFFFFEFEFEFEFFFFFFFFFEFFFEFF back to its original two numbers.

FFFFFEFEFEFEFF=11000061= 97 = 'a'
FFFFFFFEFFFEFF=1110101=117 = 'u’'

Figure 24: Converting byte sequence FFFFFEFEFEFEFFFFFFFFFEFFFEFF

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks 13
or service marks of their respective owners. WRD.EN-US.032019

{)FIREEYE

We can see from the example in Figure 24 that the calculations executed at lines 228 through 232 are used
to decode characters hidden in sprite.bmp. Based on our analysis each character of the original computer
name is summed with an encoded character read from sprite.bmp. The resulting sum is used for one last
calculation at line 233.

Line 233 can be translated to the Python code shown in Figure 25.

chr((val // 2) + ((val & ox1) << 7))

Figure 25: Line 233 translated to Python

Taking a closer look at line 233 we realize that the transformation algorithm used by the function
aregtfdcyni is simple. Each character of the original computer name is summed with a character hidden
in sprite.bmp. The final transformed character is the result of dividing that sum by two. Figure 26 shows
two examples of this transformation.

(‘a" + 'a') / 2 ="a'
('a' ‘e') / 2

Figure 26: Example transformations

We can see that the final transformed character is equal to the original character if the original character
and the encoded character are equal. But how does adding the result of ((val & @x1) << 7) to the sum
affect this calculation?

Short answer: it doesn't when we care.

Long answer: When the sum is even, meaning the two characters are the same, ((val & 0x1) << 7)
equals zero and the final result is not changed.

From what we have learned the original computer name is not modified if each character matches the
corresponding character hidden in sprite.bmp. That means the value hidden in sprite.bmp is probably
the computer name that we need to correctly decrypt the QR code-related data.

We can use Python to extract the computer name hidden in sprite.bmp. Figure 27 shows one possible
example of this solution.

encoded = []

with open("sprite.bmp", "rb") as f:
f.seek(54, 0) # starting offset is 54
for fidx in range(13):

c=20

for bidex in reversed(range(7)):
c += ((ord(f.read(1)) & Ox1) << bidex)
encoded.append(chr(c))

print(f'Key: {"".join(encoded)}")

Figure 27: Code to extract string hidden in sprite.bmp

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

14

{)FIREEYE

The computer name hidden in sprite.bmp is aut@1tfan1999.

SOLVING THE CHALLENGE

Based on our analysis we determine that the QR code-related data found in the function areyzotafnf is
successfully decrypted and displayed if our system's computer name is aut@1tfan1999.

To confirm this, we set our system's computer name to aut@1tfan1999, reboot, and re-run the program.
After changing our system's computer name codeit.exe displays the same QR code regardless of the
text entered as shown in Figure 28.

m°] Codelt Plus! =1 >
Help

Hello World!

Can haz code?

Figure 28: QR code displayed by codeit.exe after changing computer name
The QR code stores the challenge flag:

LeOks _L1k3_YOu_Dldnt_Run_Aut@_Tim3_©n_Thls_@ne!@flare-on.com

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks 15
or service marks of their respective owners. WRD.EN-US.032019

	Introduction
	Initial Dynamic Analysis
	Initial Static Analysis
	understanding the Obfuscation
	control flow
	Number constants
	String constants

	Understanding the Code
	Understanding the decryption
	Understanding the AES256 Key Generation
	Understanding the Transform Function
	solving the challenge

