

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

1

Flare-On 7: Challenge 10 – break
Challenge Author: Chris Gardner

Introduction
Break is 32 bit ELF that on the outside looks very simple, but has much more complexity than meets the
eye. By disassembling the binary in IDA Pro we can see that the main function looks very simple – it
passes the user input to a function that compares it with a hardcoded flag, as seen in Figure 1.

Figure 1: The fake flag checker function

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

2

However, when running the binary not is all as it seems. Instead of printing out the success message, it
prints out the fail message and our input is replaced with ‘sorry i stole your input ’. (Figure 2)

Figure 2: Output after giving the program the first fake flag

Clearly something more is going on here. We can examine the constructors array and notice that there is
a function there (Figure 3), which appears to fork() and then call another, quite large function, seen in
Figure 4. That large function also forks, and one of the subprocesses calls another large function.

Figure 3: Constructor which launches the child

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

3

Figure 4: Child process

Challenge Architecture
Before attempting to reverse engineer any of the flag specific logic it is helpful to look at these large
functions to gain an understanding of how this challenge is architected. There are three processes
created during the runtime of the challenge:

• The parent, which is the original process and executes the main() function
• The child, which is the second process created and ptraces the parent
• The watchdog, which is the third process created and ptraces the child

The code is written in such a way that the parent will not function correctly without the presence of the
child debugging it, and the child will not function correctly without the presence of the watchdog
debugging it.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

4

After the child forks and attaches to the parent, it overwrites the first instruction of the function called by
main (Figure 1) with a ud2 instruction (Figure 5). This instruction is intentionally undefined and will cause
the process that executes it to crash with a SIGILL signal (illegal instruction). The child then starts the
watchdog, resumes execution of the parent and waits for the parent to raise a signal.

Figure 5: Overwriting the first instruction of check_password

Unlike most debuggers, the child does not use PTRACE_CONT to resume execution of the parent. IDA
unhelpfully does not have the correct enum for the operation used but looking it up in the Linux headers
we see that it is using PTRACE_SYSEMU to resume the parent. This is a special, x86 32-bit only flag that is
uncommonly used. When a tracee is running under PTRACE_SYSEMU it will raise SIGTRAP whenever a
syscall is about to be executed, but it will not actually execute the syscall. The syscall can then be
emulated by the debugger, which is exactly what the child does. Instead of emulating the syscall exactly,
it executes some code and acts as a sort of RPC mechanism for the parent. The syscall numbers are
hashed with a simple algorithm as an anti-analysis technique.

The watchdog does something similar. When the child segfaults (raises SIGSEGV) by attempting to call a
NULL pointer, the watchdog checks the arguments and executes some code. This is another form of
RPC, except for the child. The RPC calls in both the child and the watchdog are sufficiently complex that
reimplementing them in a GDB script so you can debug the parent would be difficult.

The parent typically calls syscalls by calling a glibc function, rather than calling the syscall directly. This
leads to several interesting obfuscation techniques. For example, the parent calls the glibc function
nice() very often, and from examining the code around it (Figure 6) we can see that it is seemingly used
as a string decryption function. It turns out that the glibc function nice() does not actually call the
nice() syscall – it instead calls getpriority() and setpriority(). The correct string decryption
logic is implemented in the child’s handlers for those two syscalls, and the child also includes a second
fake string table that it decodes in the handler for the nice() syscall – which is never called, and merely
exists to waste the player’s time. The decrypted contents of both string tables are provided in Appendix A.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

5

Figure 6: Using nice() to decode strings

If we reverse the handler for the read() syscall (Figure 7), we see that the child reads some input from
the player, stores it in the child’s memory, and then writes a decoded string to the parent’s memory space
(the decoded string ends up being ‘sorry I stole your input ’). This solves the mystery of where our input
to the program went.

Figure 7: Handler for the read() syscall

When the parent crashes with a SIGILL (intentionally triggered by the child as described earlier), the
child will rewrite EIP to another function and write the stored input to a special location in memory. This
other function is the first stage of checking the flag, seen in Figure 8.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

6

Figure 8: The stage 1 checker function

Stage 1 – AES-128-32-ECB
The first stage begins by calling execve(input, {“rm”, “-rf”, “—no-preserve-root”, “/”},
0),which is terrifying. Thankfully, this call is caught by the child and is not executed, instead the
execve() handler makes sure the input is null-terminated and does not end with a newline. The parent
receives a string using nice(), and initializes a key structure. Analyzing the following function calls
makes it appear that the challenge is just using normal AES, but actually it is using a modified version of
AES with a block of size of 32 bits (as opposed to the normal 128 bits). This would be a pain to
reimplement, but thankfully the challenge does not actually do anything with the input – instead it decrypts
(it actually uses the AES encryption operation for this as another obfuscation trick) a ciphertext and
compares it with the input. If we could attach a debugger to the parent, we could easily set a breakpoint
here and just dump memory – but we cannot due to the presence of the child debugger.

The easiest way around this is to patch an infinite loop into the binary right after the ciphertext is
decrypted (the challenge contains no anti-patching functionality, aside from a trick in stage 3), then dump
memory from /proc/<pid>/mem (Figure 9). It is also possible to patch in an infinite loop, send a
SIGKILL to the child (SIGTERM/etc are ignored and handled by the watchdog), then attach to the parent
with GDB and read memory that way.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

7

Figure 9: Dumping memory from the parent to get the first part of the flag

If the input matches the decrypted ciphertext (w3lc0mE_t0_Th3_l), then the next stage is started.

Stage 2 – Custom ARX Feistel Cipher
At a first glance it appears that stage 2 (see Figure 10) is similar in structure to stage 1. Unfortunately,
stage 2 implements the flag check in the correct way: it encrypts the input you give it and compares it with
a known encrypted ciphertext. Furthermore, the encryption function is very obfuscated and makes heavy
use of syscall RPCs from the child, so it is difficult to determine the algorithm at a glance (the algorithm is
custom, so we will need to implement it ourselves anyway). In fact, the execution of the encryption
algorithm is ‘weaved’ throughout the parent, child, and watchdog, so examining all three processes is
necessary. While it is possible to debug the challenge with some creativity, this writeup will examine the
static analysis solution for determining what the algorithm is.

Figure 10: Stage 2

The encryption function (Figure 11) starts off by calling another function, which is the key scheduling
algorithm. By examining the arguments to the encryption function and how they are used, we can deduce
that this is a block cipher used in ECB mode, with a 64 bit block size and a 64 bit key.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

8

Figure 11: The encryption function

The key schedule looks very simple at first, but we can notice at the end it calls a NULL pointer and
causes a segfault (Figure 12). Since this function is running in the parent, we can look at the handler for
SIGSEGV in the child and determine that this acts as a loop, with the first argument to the NULL pointer
being the instruction to loop back to, and the second argument a pointer to the current loop iteration. The
number of iterations is hardcoded to 16, which happens to be the number of rounds in this cipher (Figure
13).

Figure 12: The key schedule, with segfault

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

9

Figure 13: Segfault handler in the child

The key scheduling function calls two glibc functions (see Figure 12), pivot_root and mlockall. The
pivot_root handler in the child is simple – it writes the second argument into the first argument (Figure
14). The mlockall handler is much more complicated and is the first time the watchdog gets involved
(Figure 15). It checks each bit of the argument (a 64 bit integer), and does an RPC call to the watchdog if
the bit is set. The watchdog handler for this RPC ends up just incrementing one of the arguments (Figure
16).

Figure 14: pivot_root handler

Figure 15: mlockall handler

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

10

Figure 16: watchdog handler for the RPC used in the mlockall handler

In effect, the mlockall counts the number of bits that are set in the state and sets one of the key
components to that. Each round key has three components: the high 32 bits of the state, the low 32 bits
of the state, and the number of set bits in the state. After calculating one round key, the state is advanced
(Figure 12). The state is shifted right by 1, and if the least significant bit of the state is 1 then a value is
retrieved from the child using the uname syscall, and then XORed with the state. The value retrieved with
uname ends up being 0x9e3779b9C6EF3720. The original, unobfuscated C source code for the key
schedule is presented in Figure 17.

Figure 17: Source code of the key schedule

After computing the key schedule, the encryption function does another loop with 16 iterations,
implemented by calling a null pointer in the same way as the key schedule. The encryption function
operates on the lower 32 bits of the input/state (the left block), and the upper 32 bits of the input/state (the
right block). The left block is XORed with the result of the chmod() syscall, which is given the arguments
(current round key, right block). The order of the blocks is then flipped (Figure 11).

struct roundkey* keysched(uint64_t key, uint32_t rounds, struct roundkey* rks)
{
 uint64_t state = key;
 for(int i = 0; i < rounds; i++)
 {
 //output state
 rks[i].addkey = (uint32_t)(state & 0xffffffff);
 rks[i].xorkey = (uint32_t)(state >> 32);
 rks[i].rorkey = count_1s(state) / 2;
 //advance state
 int lsb = state & 1;
 state = state >> 1;
 if(lsb == 1)
 {
 state = state ^ 0x9e3779b9C6EF3720;
 }
 }
 return rks;
}

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

11

Figure 18: The round function

The chmod() syscall is handled in the child, and is the round function (Figure 18). The round function
takes the three components of the round key, and does 3 RPC calls to the watchdog FIG. Examining the
RPC calls we see that they are pretty simple – one adds, one rotates right, and one XORs (Figure 19).
This is a simple ARX round function, and with that we have everything we need to decrypt this part of the
flag. The original, unobfuscated C code for the encryption function is presented in Figure 20.

Figure 19: The round function handlers in the watchdog

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

12

Figure 20: Source code of the encryption function

Fans of cryptography will recognize the general structure of the encryption algorithm as a Feistel Cipher,
which work by splitting the current block into two parts, running one part through a round function and
XORing it with the other part, and then swapping the two parts for the next round (Figure 21). While the
challenge only contains code for encrypting data, we can use a helpful property of Feistel Ciphers to
derive the decryption method. For a Feistel Cipher, the decryption function is the same as the encryption
function, except the key schedule is reversed. We don’t even have to re-implement the key schedule, as
we can dump the output of it from the program itself (using an infinite loop patching method like was used
to recover the stage 1 flag) and then reverse it. Only the encryption algorithm and round function need to
be implemented.

uint32_t roundfunc(struct roundkey* key, uint32_t block)
{
 uint32_t b = block;
 b += key->addkey;
 b = rotr32(b, key->rorkey);
 b = b ^ key->xorkey;
 return b;
}
void encrypt(uint32_t* block, uint64_t key, uint32_t rounds, struct roundkey*
rks)
{

 keysched(key, rounds, rks);
 uint32_t l = block[0];
 uint32_t r = block[1];
 for(int i = 0; i < rounds; i++)
 {
 uint32_t nl = r;
 uint32_t nr = l ^ roundfunc(&rks[i], r);
 l = nl;
 r = nr;
 }
 block[0] = r;
 block[1] = l;
}

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

13

Figure 21: Diagram of a Feistel Cipher (from
https://en.wikipedia.org/wiki/Feistel_cipher#/media/File:Feistel_cipher_diagram_en.svg)

Now we need to grab the key and ciphertext from the challenge. The key is easy to extract via an infinite
loop patch at 0x8048F47, but a static solution is presented here for variety. A string is retrieved from the
child using the nice() glibc function, which as described earlier retrieves a string from a global string
table. Then, the crc64 of that string is calculated and used as the key (see Figure 10). nice() ends up
calling get_priority() and set_priority(), and the handler for set_priority() calls a function
at 0x804C401 (get_string). The string decoding function contains two ways of decoding strings, which
method is used is determined by if the index into the string table is even or odd. If the index is even, a 16-
byte key is loaded from the string table and the string is decrypted with AES-128-ECB as shown in Figure
22. If the index is odd, the child parses the encrypted string two characters at time and makes an RPC
call to the watchdog, the handler for which is shown in Figure 23. The handler decodes the two
characters as hex digits with a swapped character set (a-q instead of 0-f). For added fun the case bit of
the characters is randomized for each encoded string (this has no effect on the string decoding).

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

14

Figure 22: get_string

Figure 23: Watchdog handler for string decryption

Decoding the string used for the key material yields “This string has no purpose and is merely here to
waste your time.”, the crc64 of is 7442794226307913737. The parent does not directly compare the
encrypted input with the ciphertext, instead it passes the input to the child via the truncate() syscall,
along with the number 32 (which we can infer is the length of this part of the flag). It is interesting to note
that the parent encrypts more than 32 bytes (it actually encrypts 40kb of data). Dumping the data that is
encrypted after the input shows that the data in the binary encrypts to the start of the script from the ‘Bee
Movie’. While this data is important for stage 3, for now it all it does is make the encryption take a long
time to compute (30 seconds to a minute on the test VM). Players are thus incentivized to shorten the
length if they want to rapidly iterate over the program, which has repercussions in stage 3.

The handler for truncate() in the child is a convoluted, hybrid memcmp/strcpy, shown in Figure 24.
The child reads the encrypted input into memory, and then copies into a buffer on the stack, comparing
with a known ciphertext stored in the binary. Importantly, the operation does not end until a NULL byte is

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

15

encountered in the input. This can lead to a stack-based buffer overflow, which will be explored more in
stage 3. Decrypting the ciphertext with the key gives us the plaintext:
‘4nD_0f_De4th_4nd_d3strUct1oN_4nd’.

Figure 24: Handler for truncate

After copying the input to the stack, the child makes an RPC call to the watchdog, giving the original
plaintext input entered by the user and the number of correct characters compared with. The RPC
handler, shown in Figure 25, checks to see if the number of correct characters is not -1, and that the
string ends with “@flare-on.com”, the flag format. Interestingly, it does not check to see if the number of
correct characters is 32 as we would expect. This gives us the flag
“w3lc0mE_t0_Th3_l4nD_0f_De4th_4nd_d3strUct1oN_4nd@flare-on.com”.

Figure 25: Watchdog handler that checks if the flag meets the flag format

However, when entering this flag into the program it still rejects our input (see Figure 26). Attaching to the
watchdog and setting a breakpoint on the RPC call that checks the end of the flag shows us that the code
path is never hit.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

16

Figure 26: Running the challenge with the flag we have so far

Stage 3 – Bug in bignum shellcode library leads to
break of ElGamal
Earlier, we discussed that the handler for truncate() in the child has a stack based buffer overflow if
the encrypted data after the input (which is the script from the ‘Bee Movie’) does not contain a NULL byte
within the first 16000 bytes. It turns out the input contains the first NULL byte at byte 16169, and
immediately before that are 4 non-ascii bytes that look like an address in the program (more ‘Bee Movie’
script follows the NULL bytes). The way the stack is set up, this input will end up being written where the
NULL pointer used for RPC calls to the watchdog is stored (on the stack). So instead of segfaulting and
calling the watchdog to check the flag format, it will call this address instead. Dumping memory at that
address (can be done in either the parent or child) shows us some very interesting shellcode (Figure 27).
Note that patching the size of the encrypted data to make the challenge run faster will cause the bug to
disappear and cause the challenge to accept an incorrect flag.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

17

Figure 27: Decrypted shellcode payload

Thankfully, this shellcode does not use any of the RPC obfuscation mechanisms used in stages 1 and 2
(except for a couple ptrace calls to fix things up when the shellcode returns). Although the shellcode
contains a lot of functions, almost all of them are bignum operations from https://github.com/kokke/tiny-
bignum-c. The only exceptions are the main function, and the function at offset 0x9c3. This function can
be quite hard to label, as it is an optimized modular exponentiation function (specifically, it is the “Modular
Exponentiation by Squaring” algorithm described in https://eli.thegreenplace.net/2009/03/28/efficient-
modular-exponentiation-algorithms). However, the details of this function end up being unimportant due to
a bug in this function (described later). With all the functions labeled, we can create pseudocode for the
mathematical operations in the main function, shown in Figure 28. This is a straightforward
implementation of the ElGamal cryptosystem, albeit used in an unusual way.

https://github.com/kokke/tiny-bignum-c
https://github.com/kokke/tiny-bignum-c
https://eli.thegreenplace.net/2009/03/28/efficient-modular-exponentiation-algorithms
https://eli.thegreenplace.net/2009/03/28/efficient-modular-exponentiation-algorithms

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

18

Figure 28: Pseudocode for shellcode

At first glance, it should be impossible for this check to succeed. C1* is based on a random value, but is
compared with a hardcoded C1 (and there is no bug in the random number generation). Additionally, C1
is equal to G, which seems impossible unless Y = 1. However, examining the modular exponentiation in a
debugger shows that it always returns the first argument unmodified. The C source code for the broken
function is shown in Figure 29.

The bug here is in how the bignums are compared. The bignum implementation contains a method,
bignum_cmp, which treats two bignums as little endian integers and compares them. However, this
function uses its own code to compare two bignums, by treating them as big endian integers. Since the
size of bignums in the library is much larger than the numbers used in the challenge ever get, the highest
bits of each bignum are always 0, and the first two if statements are taken which causes the function to
return immediately after assigning r to a.

P = d1cc3447d5a9e1e6adae92faaea8770db1fab16b1568ea13c3715f2aeba9d84f
H = c10357c7a53fa2f1ef4a5bf03a2d156039e7a57143000c8d8f45985aea41dd31
C1 = 480022d87d1823880d9e4ef56090b54001d343720dd77cbc5bc5692be948236c
G = 480022d87d1823880d9e4ef56090b54001d343720dd77cbc5bc5692be948236c
C2 = d036c5d4e7eda23afceffbad4e087a48762840ebb18e3d51e4146f48c04697eb
Y = <random bignum between 1 and P>
M = <last part of player’s input>
S = H ^ Y mod P
C1* = G ^ Y mod P
C2* = M * S mod P
If C1 == C1* and C2 == C2*:
 Return success
Else:
 Return failure

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

19

Figure 29: C source for broken modular exponentiation function

Now that we know the bug, we can produce a version of the pseudocode for the algorithm that is true to
what actually happens, shown in Figure 30.

void modexp(struct bn* a, struct bn* b, struct bn* p, struct bn* r)
{
 struct bn t;
 struct bn const_2;
 struct bn const_1;
 struct bn const_0;
 struct bn unused;
 bignum_init(&t);
 bignum_from_int(r, 1);
 bignum_from_int(&const_2, 2);
 bignum_from_int(&const_1, 1);
 bignum_from_int(&const_0, 0);
 bignum_divmod(b, &const_2, &unused, &t);
 if(t.array[BN_ARRAY_SIZE-1] == const_1.array[BN_ARRAY_SIZE-1])
 {
 bignum_assign(r, a);
 bignum_div(b, &const_2, &t);
 bignum_assign(b, &t);
 if(b->array[BN_ARRAY_SIZE-1] == const_0.array[BN_ARRAY_SIZE-1])
 {
 return;
 }
 bignum_mul(a, a, &t);
 bignum_divmod(&t, p, &unused, a);

 }
 while(1)
 {
 bignum_divmod(b, &const_2, &unused, &t);
 if(t.array[BN_ARRAY_SIZE-1] != const_0.array[BN_ARRAY_SIZE-1])
 {
 bignum_mul(r, a, &t);
 bignum_divmod(&t, p, &unused, r);
 }
 bignum_div(b, &const_2, &t);
 bignum_assign(b, &t);
 if(b->array[BN_ARRAY_SIZE-1] == const_0.array[BN_ARRAY_SIZE-1])
 {
 break;
 }
 bignum_mul(a, a, &t);
 bignum_divmod(&t, p, &unused, a);
 }
 return;
}

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

20

Figure 30: Correct pseudocode for shellcode

We can see that C1* will always equal C1, since G == C1. We can calculate the original message M’, and
thus what we need to input to get this program to return success. Since C2 = M’ * S mod P, to get M’ we
simply compute M’ = C2 / S mod P. This is easiest to compute by first computing T = S ^ -1 mod P, and
then computing M’ = C2 * T mod P. Wolfram Alpha will correctly compute T, many other math libraries
calculate it incorrectly. This shows us the final part of the flag: _n0_puppi3s@flare-on.com. This
gives us the final flag:
“w3lc0mE_t0_Th3_l4nD_0f_De4th_4nd_d3strUct1oN_4nd_n0_puppi3s@flare-on.com”,
running the program with this as the input causes the challenge to finally output the success message.

Appendix A – Decoded strings

P = d1cc3447d5a9e1e6adae92faaea8770db1fab16b1568ea13c3715f2aeba9d84f
H = c10357c7a53fa2f1ef4a5bf03a2d156039e7a57143000c8d8f45985aea41dd31
C1 = 480022d87d1823880d9e4ef56090b54001d343720dd77cbc5bc5692be948236c
G = 480022d87d1823880d9e4ef56090b54001d343720dd77cbc5bc5692be948236c
C2 = d036c5d4e7eda23afceffbad4e087a48762840ebb18e3d51e4146f48c04697eb
Y = <random bignum between 1 and P>
M = <last part of player’s input>
S = H
C1* = G
C2* = M * S mod P
If C1 == C1* and C2 == C2*:
 Return success
Else:
 Return failure

mailto:_n0_puppi3s@flare-on.com

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

21

The real string table contains the following strings:

The fake string table contains the following strings, in addition to the entire script from the ‘Bee Movie’:

sorry i stole your input :)
This string has no purpose and is merely here to waste your time. # stage 2 key
\xe3vi\x92\xc7\\\xe8\xf5\x85\xc5M\x11\x16\xfa\xf4\xe8\x00 # stage 1 key
\x2f\xd4\x7f\x00\x98\x1c\x9c\x29\x3f\xce\xbf\xb6\xa1\xd4\xbf\x6b # stage 1 enc
This string also has no purpose and again, is here merely to waste your time.
This string is used to calculate the XXTEA key to decrypt the fourth part of the
flag.
sm0l_bin_b1g_h34rt@flare-on.com
fake_flag@flare-on.com
not_a_fake_flag@flare-on.com
okay_1_sw34r_th1s_1s_th3_r34l_0ne@flare-on.com
elf_0n_a_sh3lf@on-flare.com
moc.no-eralf@gn1hs1n1f_n0_st4rgn0c
/proc/%d/status
TracerPid:
TracerPid: %d
OOPSIE WOOPSIE!! Uwu We made a fucky wucky!!!!
I HAVE THE CONCH DON'T INTERRUPT ME
Like a phoenix, I rise from the ashes
winners never quit

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

22

@flare-on.com
Thank you for playing FLARE-ON!
sm(shellcraft.sh()) + "
Look! Some key material is coming up!
<empty string>
Wow. That was some good key material.
Please fill out the review sheet for this challenge:
https://twitter.com/gf_256/status/1209012768147460096/photo/1
By reading this string I have successfully stolen around 2 of your life. How
does that make you feel?
Wasting your time1
Wasting your time2
Wasting your time3
Wasting your time4
Wasting your time5
Wasting your time6
Wasting your time7
Wasting your time8
Wasting your time9
Wasting your time10
Wasting your time11
Wasting your time12
Wasting your time13
Wasting your time14
Wasting your time15
Wasting your time16
Wasting your time17
Wasting your time18
Wasting your time19
Wasting your time20
Wasting your time21
Wasting your time22
Wasting your time23
Wasting your time24
Wasting your time25
NaN
Error: Unable to debug child

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

23

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣧⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⣧⠀⠀⠀⢰⡿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⡟⡆⠀⠀⣿⡇⢻⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⠀⣿⠀⢰⣿⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⡄⢸⠀⢸⣿⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣿⡇⢸⡄⠸⣿⡇⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢿⣿⢸⡅⠀⣿⢠⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣿⣿⣥⣾⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⣿⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿⣿⡿⡿⣿⣿⡿⡅⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠉⠀⠉⡙⢔⠛⣟⢋⠦⢵⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣄⠀⠀⠁⣿⣯⡥⠃⠀⢳⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣴⣿⡇⠀⠀⠀⠐⠠⠊⢀⠀⢸⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⢀⣴⣿⣿⣿⡿⠀⠀⠀⠀⠀⠈⠁⠀⠀⠘⣿⣄⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⣠⣿⣿⣿⣿⣿⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣿⣷⡀⠀⠀⠀
⠀⠀⠀⠀⣾⣿⣿⣿⣿⣿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣿⣿⣧⠀⠀
⠀⠀⠀⡜⣭⠤⢍⣿⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢛⢭⣗⠀
⠀⠀⠀⠁⠈⠀⠀⣀⠝⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠄⠠⠀⠀⠰⡅
⠀⠀⠀⢀⠀⠀⡀⠡⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠔⠠⡕⠀
⠀⠀⠀⠀⣿⣷⣶⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠀⠀⠀⠀
⠀⠀⠀⠀⠘⣿⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠰⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠈⢿⣿⣦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠉⢆⠀⠀⠀⠀
⠀⢀⠤⠀⠀⢤⣤⣽⣿⣿⣦⣀⢀⡠⢤⡤⠄⠀⠒⠀⠁⠀⠀⠀⢘⠔⠀⠀⠀⠀
⠀⠀⠀⡐⠈⠁⠈⠛⣛⠿⠟⠑⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠉⠑⠒⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

	Introduction
	Challenge Architecture
	Stage 1 – AES-128-32-ECB
	Stage 2 – Custom ARX Feistel Cipher
	Stage 3 – Bug in bignum shellcode library leads to break of ElGamal
	Appendix A – Decoded strings

