

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

1

Flare-On 7: Challenge 3 – Wednesday
(mydude.exe)
Challenge Author: Blaine Stancill (@MalwareMechanic)

Introduction
The challenge ZIP file (wednesday.zip) contains a folder named wednesday and a file named
README.txt. As seen in Figure 1, README.txt provides a cryptic message "BE THE WEDNESDAY"
followed by a column of single letters, along with the word DUDE, and a few directions to get us started.

Figure 1: README.txt contents

Opening the folder wednesday reveals a folder named data and multiple files. The data folder contains
additional folders with file types such as fonts, graphics, and sounds. Figure 2 displays the contents of the
graphics folder named gfx. Inside this folder are square tile images with letters that match those in the
letter column of README.txt. Additionally, we see a sprite sheet named dude.png with sprites of a frog
who must be the "DUDE" alluded to in README.txt.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

2

Figure 2: gfx folder contents

At first glance the sheer number of files seems intimidating; however, README.txt specified we should
only reverse the file mydude.exe. We can safely conclude that the other files are merely support files for
mydude.exe and ignore them.

Game Overview
Executing mydude.exe opens a window menu, as seen in Figure 3, displaying a bouncing frog, two menu
buttons (DUDE and EXIT), and instructions at the bottom of the window:

• Jump (up arrow)
• Duck (down arrow)
• Quit (ESC)

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

3

Figure 3: Starting menu for mydude.exe

It appears this is a game! Clicking the "DUDE" button begins the game. As we start to test play, we notice
different square tiles, or obstacles, move towards our player character, the "DUDE" frog, as seen in
Figure 4.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

4

Figure 4: Obstacles moving towards the player character

Our player actions are limited to jumping and ducking as described in the initial menu. After trying to
jump/duck the obstacles careening towards our player character, we notice there is a specific way we
must jump/duck. Looking back at README.txt, we were provided a hint on how to play: "BE THE
WEDNESDAY". We were also provided a column of letters with the word "DUDE" embedded in the
middle. Thus, we can hypothesize the obstacle letters represent days of the week (i.e., Sunday through
Saturday) and our player character is the day Wednesday. As such, we must jump/duck to "BE THE
WEDNESDAY". Testing our hypothesis, we jump over the obstacle representing Monday (i.e., M), as
seen in Figure 5, and subsequently fail/die and must start over.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

5

Figure 5: Incorrectly jumping over Monday obstacle

Testing our hypothesis again, we duck under the obstacle representing Sunday and Monday (i.e., S
M

) as
seen in Figure 6. This time we don't die and our score increases to one.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

6

Figure 6: Correctly ducking under Sunday/Monday obstacle

 We can safely assume we need to:

• Duck under tiles labeled: M, S
M

, and M
T

• Jump over tiles labeled: F, T
F
, and F

S

We can strengthen our assumption by looking back at the file names in the gfx folder, seen in Figure 2,
and noticing how the tile image names (i.e., "up", "down") correspond to when our player must jump or
duck.

Solutions
Now that we know how to play the game, the question is: how do we solve it for the Flare-On Challenge?
I've seen three different methods to solve this challenge:

1. Find the challenge flag buffer
2. Patch the file and run
3. Create a bot

The first two methods will be covered below. Creating a bot is out of scope and left as an exercise for the
reader.

Solution 1 – What day is it?

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

7

Before diving into our disassembler of choice (I'll be using IDA Pro), we perform basic static analysis on
mydude.exe to determine points of interest. Figure 7 outlines interesting strings we can pivot on in our
disassembler.

Figure 7: Interesting strings in mydude.exe

Opening mydude.exe in IDA Pro shows it contains DWARF information (i.e., debug information) that IDA
can parse. Contained in the DWARF information are symbol names for both functions and variables
making our disassembly more readable.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

8

Browsing the disassembly and strings, it becomes apparent mydude.exe was created in the Nim
programming language (https://nim-lang.org/). This is a slight challenge as there aren't many reversing
tutorials focused on Nim. However, a good reference on Nim's underlying memory model is
http://zevv.nl/nim-memory/.

So where to begin our analysis? Well, having played the game repeatedly we may have noticed there are
two obstacles on the screen at a time (obstacle1 and obstacle2 seen in the strings) and the way we have
to jump or duck them forms a pattern. The beginning of the pattern is: down, down, up, up, down, down,
down, up, down, up, etc.

Since there's a pattern, there's likely an algorithm or static buffer used to assign days to each obstacle
before they appear on screen. Let's follow this rabbit hole!

Searching for functions containing the name "Day" turns up the likely candidate function named
@assignDay__cz9bfHkuka9cVFg87ZfWKc8g@8 at virtual address (VA) 0x004317D0. This function is
responsible for assigning a day graphic and collision box to an associated obstacle. The calling
convention for this function is __fastcall which is the standard calling convention for Nim procedures
(see nimcall in https://nim-lang.org/docs/manual.html). The function expects two arguments in the
registers ECX and EDX. In the function's first basic block, we see the lower 8-bits of the register EDX is
compared to the value one determining the branching condition. In either branch location a global pointer
to an array of strings is referenced. Outlined below are the strings and their corresponding global pointer
VA.

• 0x0043E778: down_0, down_1, down_2
• 0x0043E7BC: up_0, up_1, up_2

These strings refer to the filenames referenced in Figure 2 of the day tile images. We now know the
register EDX is responsible for determining if an obstacle is assigned a "down" or "up" day tile image. We
also know from playing the game, the image is important as it also affects what action our player must
take (i.e., jump or duck). Our job now is to trace backwards to determine where the value in EDX came
from.

There are a few paths backward we may take, and I'll describe one of them. Cross-referencing
@assignDay__cz9bfHkuka9cVFg87ZfWKc8g@8 we see the functions below.

• @reset__SAtOZDlchGyR6ynmbkI6aw@24 at VA 0x00431A20
• @init__SAtOZDlchGyR6ynmbkI6aw_2@24 at VA 0x00431AD0

Let's use the function named @reset__SAtOZDlchGyR6ynmbkI6aw@24. Observing the disassembly for
this function, as shown in Figure 8, we see the value assigned to EDX comes from the value at the stack
location [ESP + 0x40]. Adjusting for the return address as well as the initial PUSH and SUB instructions,
this value would have been stored on the stack at location [ESP + 0x10] from the calling function (i.e.,
the parent of @reset__SAtOZDlchGyR6ynmbkI6aw@24).

https://nim-lang.org/
http://zevv.nl/nim-memory/
https://nim-lang.org/docs/manual.html

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

9

Figure 8: Disassembly of function @reset__SAtOZDlchGyR6ynmbkI6aw@24

Cross-referencing @reset__SAtOZDlchGyR6ynmbkI6aw@24 we see the functions below.

• @resetEverything__Q1G0gjmnsnF8mVSgZnKS4w_3@4 at VA 0x00433A50
• @update__Arw3f6ryHvqdibU49aaayOg@12 at VA 0x00433D20

Let's follow the function named @resetEverything__Q1G0gjmnsnF8mVSgZnKS4w_3@4. Observing the
disassembly (Figure 9), we see the value stored at stack location [ESP + 0x10] is determined by two
global variables named _obstacles__Xqz7GG9aS72pTPD9ceUjZPNg and
_day_index__HImZp3MMPNE3pGzeJ4pUlA. Interesting!

00431A20 push esi
00431A21 push ebx
00431A22 mov ebx, ecx
00431A24 sub esp, 24h
00431A27 mov eax, [esp+30h]
00431A2B mov esi, [esp+40h]
00431A2F mov byte ptr [ecx+18h], 0
00431A33 mov [esp+10h], eax
00431A37 mov eax, [esp+34h]
00431A3B mov [esp+14h], eax
00431A3F mov eax, [esp+38h]
00431A43 mov [esp+18h], eax
00431A47 mov eax, [esp+3Ch]
00431A4B mov [esp+1Ch], eax
00431A4F mov eax, [ecx+0F8h]
00431A55 mov byte ptr [eax+18h], 0
00431A59 mov eax, esi
00431A5B movsx edx, al
00431A5E call @assignDay__cz9bfHkuka9cVFg87ZfWKc8g@8

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

10

Figure 9: Disassembly of function @resetEverything__Q1G0gjmnsnF8mVSgZnKS4w_3@4

Based on the byte-pointer deference at VA 0x00433BA6, we can guess the "obstacles" global variable is
likely an array, with 8-bytes of header data, assuming "day_index" is actually an index. Following the
global variable _obstacles__Xqz7GG9aS72pTPD9ceUjZPNg at VA 0x0043A860, we see it points to
_TM__V45tF8B8NBcxFcjfe7lhBw_5 at VA 0x0043EB40. Navigating to VA 0x0043EB40 presents us with
the data shown in Figure 10.

00433CFF mov eax, _obstacles__Xqz7GG9aS72pTPD9ceUjZPNg
00433D04 mov edi, ds:_day_index__HImZp3MMPNE3pGzeJ4pUlA
00433D0A jmp loc_433BA6
[...SNIP...]
00433BA6 movsx eax, byte ptr [eax+edi+8]
00433BAB mov ecx, [ebx+40h]
00433BAE mov [esp+10h], eax
00433BB2 mov eax, ds:_TM__V45tF8B8NBcxFcjfe7lhBw_9
00433BB7 mov [esp], eax
00433BBA mov eax, ds:dword_43EB34
00433BBF mov [esp+4], eax
00433BC3 mov eax, ds:dword_43EB38
00433BC8 mov [esp+8], eax
00433BCC mov eax, ds:dword_43EB3C
00433BD1 mov [esp+0Ch], eax
00433BD5 call @reset__SAtOZDlchGyR6ynmbkI6aw@24

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

11

Figure 10: Raw Nim sequence data

If we look closely, we observe a structure with 8-bytes of header data followed by bytes of ones and
zeros. This is a Nim sequence having the structure below.

Figure 11: Nim sequence structure

Reformatting the data gives us the better visual below.

struct nim_seq {
 DWORD length;
 DWORD reserved;
 BYTE data[];
};

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

12

Figure 12: Reformatted Nim sequence data

In Figure 12, we see the array has a length of 0x128, or 296, representing the number of elements. These
elements are ultimately responsible for determining if a down or up day tile image is assigned to an
obstacle. It also corresponds exactly to the initial pattern from before: down, down, up, up, down, down,
down, up, down, up, etc.

Anytime I see a buffer of ones and zeros I assume it's binary data. Let's convert these bytes of ones and
zeros into actual binary to see if it means anything.

Taking the first eight bytes (the size of an ASCII character) forms the binary value 0b00110001, or 0x31,
which represents the ASCII character '1'. The next eight bytes form 0b01110100, or 0x74, corresponding
to the ASCII character 't'. I think we're on to something! Instead of doing the conversion manually, we'll
use the Python script below.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

13

Figure 13: Python decoding script

Executing the Python script in Figure 13 results in the flag:

1t_i5_wEdn3sd4y_mY_Dud3s@flare-on.com

We've done it! It turns out our player character was jumping and ducking to the bytes representing the
Flare-On Challenge flag!

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

14

Solution 2 – Patch it like it's hot!
Perhaps tracking down a static buffer of memory isn't your thing and that's okay. How else would we
solve this challenge? After playing it for a bit, you may start wondering how the score gets incremented.
Let's track this rabbit down!

Hopping into our favorite disassembler, I'll use IDA Pro, we again utilize the DWARF debug information to
our advantage. Searching across all symbol names for the keyword "score" finds the results in Table 1
below.

Symbol Name Virtual Address Type
szScoretext 0x0043EAB7 String
szHighscoretext 0x0043EAC1 String
_high_score__zZRxWe9cBeocEphfWmZaLtA 0x00443D60 Data
_prev_score__55xT1lC51wWU8x2SoheEqg 0x00443D64 Data
_score__h34o6jaI3AO6iOQqLKaqhw 0x0044DDB0 Data

Table 1: Symbol names containing the keyword "score"

Based on these names, it appears the current score global variable is stored at VA 0x0044DDB0 with
name _score__h34o6jaI3AO6iOQqLKaqhw (denoted _score for the remainder of this walkthrough).
Cross-referencing the global variable _score, we see it's used in multiple locations as outlined in Table 2
below.

Address Reference Instruction
@onCollide__9byAjE9cSmbSbow3F9cTFQfLg@8:loc_432261 mov ebx, ds:_score
@onCollide__9byAjE9cSmbSbow3F9cTFQfLg@8+159 mov ds:_score, ebx
@show__Q1G0gjmnsnF8mVSgZnKS4w@4 mov ds:_score, 0
@resetEverything__Q1G0gjmnsnF8mVSgZnKS4w_3@4+3D mov ds:_score, 0
@update__Arw3f6ryHvqdibU49aaayOg@12:loc_433E79 mov ecx, ds:_score
@update__Arw3f6ryHvqdibU49aaayOg@12+1DC mov ecx, ds:_score

Table 2: Cross references to _score global variable

The second entry in Table 2 is the only entry in which _score is assigned a value. Navigating to VA
0x00432279 within the function named @onCollide__9byAjE9cSmbSbow3F9cTFQfLg@8, we see a
distinct path that must be taken in order for global variable _score to be incremented. Figure 14 below
highlights this path.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

15

Figure 14: Path to increment the global variable _score

The function named @onCollide__9byAjE9cSmbSbow3F9cTFQfLg@8 first determines if the player
character has collided with one of the obstacles. If not colliding, it checks if the player performed the
correct action (jumping or ducking) for the associated obstacle at VA 0x00432358. This action check is
specifically what Figure 14 outlines. If the player performed the correct action, the global variable _score
is incremented. Otherwise, a sound is played and the game resets.

So, how can we bypass this action check and beat the game? We can patch it! Modifying the jump-if-zero
(JZ) instruction at VA 0x00432358 to an unconditional jump (JMP) should work for our needs as shown in
Figure 15 below.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

16

Figure 15: Patched action check

With this patch in place, we have two options for beating the game:

1. Find and patch the collision check
2. Hold the down arrow and duck under all 296 obstacles

For simplicity, I'll go with option #2. Running the patched game executable while holding the down arrow,
we easily duck under all the obstacles. After about 10 minutes of game play, we beat the game and are
presented with the win screen as seen in Figure 16 below.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

17

Figure 16: Ducking under the final obstacle

The win screen presents us with the flag:

1t_i5_wEdn3sd4y_mY_Dud3s@flare-on.com

Miscellany
It's likely many attempted to jump straight to the win screen. However, this would prove unfruitful as the
text displayed on the win screen is created as the game is played.

As discussed in the two solutions above, each player action is checked for correctness against the
corresponding obstacle. Not only is each obstacle assigned a day tile image, but also a one or zero byte
indicating which action needs to be taken by the player. If the correct action is taken, the corresponding
one or zero byte is appended to a Nim sequence encapsulated within the player object.

The win screen generates the text displayed by calling the function named
@getPlayerText__Uox5Ls3Q9bP7F7vcih9ag2vQ@4 at VA 0x00434880. This function iterates the player's
sequence and converts it into an ASCII string similar to the Python script in Figure 13. The resulting string
is then displayed.

