
Flare-On 11 Challenge 10: CATBERT Ransomware
By Mark Lechtik (@_marklech_)

Overview
Catbert, the nefarious HR manager, has struck again. This time, he encrypted sensitive files on a disk, leaving 
us with only two clues: a firmware image and a disk image containing samples of encrypted files from the 
victim’s machine. The challenge is clear: we must delve into the firmware to uncover the mechanism that will 
unlock those encrypted files.

The path to decryption is not entirely straightforward though. We'll need to dissect the firmware, understand 
some of its inner workings, locate the decryption logic and hopefully, find some hidden decryption keys for 
the files on disk that Catbert has so cleverly concealed. Fear not, as we’ll see in the upcoming sections, with 
careful analysis and a bit of determination, we'll thwart Catbert's plans and restore those files.

Basic Static Analysis
Let's start by taking a closer look at the files so that we can understand their structure and deduce their 
formats. While automated tools like DiE (Detect it Easy) might not provide immediate results, a bit of manual 
analysis in a hex editor can be insightful.

One of the files, bios.bin, holds some interesting clues. Examining its hexadecimal data reveals the string 
_FVH, which indicates the file uses the FFS (Firmware File System) format (more details can be found in 
https://uefi.org/specs/PI/1.8/V3_Code_Definitions.html). This format is commonly used in UEFI firmware 
images.

Figure 1: bios.bin fragment showing _FVH

To solidify our findings, let's explore the strings within the file. We discover strings like 
c:\users\dilbert\edk2\OvmfPkg\Library\AcpiTimerLib\BaseRomAcpiTimerLib.c and 
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c:\users\dilbert\edk2\UefiCpuPkg\Library\BaseXApicX2ApicLib\BaseXApicX2ApicLib.c. 
These paths reference the OVMF project (https://github.com/tianocore/tianocore.github.io/wiki/OVMF), which 
is a popular open-source implementation of UEFI firmware. This confirms that bios.bin is indeed a UEFI 
firmware volume.

Figure 2: Strings hit for UefiCpuPkg

The other file, disk.img, is more straightforward to identify. Its hexadecimal data reveals the string FAT12 
and the initial bytes EB 3F 90, which are characteristic of a FAT12-formatted disk image 
(https://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html).

Figure 3: Disk image showing FAT12 signature

To verify this, we can open the FAT12 image using a file compression tool like 7-Zip. Inside, we find several 
files:

●​ catmeme1.jpg.c4tb
●​ catmeme2.jpg.c4tb
●​ catmeme3.jpg.c4tb
●​ DilbootApp.efi.enc

All these files appear to be encrypted, as evident from their extensions and their high entropy contents. We 
should also make note of the proprietary format they have which is identified by the magic string C4TB, that is 
part of a header appearing at the beginning of each of the first three files, that is then followed by the 
seemingly encrypted blob.
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Unset

Figure 4: C4TB header example

Basic Dynamic Analysis
Building upon our static analysis, we identified the bios.bin file as an OVMF UEFI firmware image designed 
for QEMU and KVM virtualization environments. For further analysis, we can run this image within QEMU by 
following these instructions: https://github.com/tianocore/tianocore.github.io/wiki/How-to-run-OVMF. 
Remember to mount the disk.img file as the virtual disk during this process. Here's an example command 
for an Ubuntu system with QEMU installed:

qemu-system-x86_64 -drive format=raw,file=disk.img -biosbios.bin

Executing this command launches the virtual machine, presenting a startup logo:
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Figure 5: CATBERT Startup Logo

Following the logo, we encounter a modified EFI shell. This shell displays a ransom message and instructions 
(use PgUp and PgDown to navigate the text):
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Figure 6: CATBERT Ransome Message

Based on the message, we can identify the mounted disk image volume by running map -r. We can then 
enter this volume with a command like fs0:. Listing the files using ls reveals the same files identified 
previously using 7-Zip:
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Figure 8: Running map and ls in CATBERT shell​

To explore available commands further, type help. One intriguing command discovered​
through this exploration is decrypt_file.
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Figure 9: CATBERT help screen
Based on its description, it requires a filename and password (which we currently don't know). Next, let's 
experiment with decrypt_file on an arbitrary file within the shell just to observe the output:
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Figure 10: decrypt_file attempt

UEFI Firmware Image Analysis
Since the password for file decryption remains unknown, we'll delve deeper into the firmware itself. Our tool 
of choice is the freely available UEFITool (download link: https://github.com/LongSoft/UEFITool/releases). 
Leveraging UEFITool's search functionality, we can target a unique string from the ransom message we 
encountered in the EFI shell, such as tuna:
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Figure 11: UEFITool

This search should lead us to the FullShell module. We can then extract this module by right-clicking the 
PE32 Image Section entry and selecting Extract Body. This will yield the underlying Portable Executable 
(PE) file, accessible for analysis in IDA.

Given that the code for the EFI shell is publicly available and our compiled image contains a lot of debug 
strings, we have various paths to further our analysis. For example, we can compile a version of the shell with 
symbols and diff it against our module. Alternatively, we can examine the source code directly and use the 
debug prints to find the associated code lines in the EDKII repository. Namely, we can look at the code for 
ShellPkg ( https://github.com/tianocore/edk2/blob/master/ShellPkg/Application/Shell/Shell.c) and shell 
commands (https://github.com/tianocore/edk2/tree/master/ShellPkg/Library/UefiShellLevel3CommandsLib) 
and try to map functions from it to functions in our modified shell module.

The following function names, identified within the analysis, provide valuable insights into the shell's behavior 
and will help us better understand the code moving forward:

●​ sub_16578 (ShellCommandLineParseEx): Parses command-line arguments, providing information 
about the input commands and their parameters.
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●​ sub_170FC (ShellPrintHiiEx): Handles the printing of messages to the console, potentially displaying 
error messages or status updates.

●​ sub_168D4 (ShellCommandLineGetRawValue): Retrieves raw values from the command line, 
allowing for direct access to user-provided input.

●​ sub_13050 (AllocatePool): Allocates memory for dynamic data structures, such as buffers or strings.
●​ sub_FDDO (StrCpyS): Copies strings, ensuring proper handling of buffer boundaries.
●​ sub_17CC0 (ShellFileExists): Checks for the existence of files on a given volume, used for file-related 

operations.
●​ sub_15038 (ShellOpenFileByName): Opens files based on their names, enabling access to read, 

write or create new files.
●​ sub_170CC (ShellPrintEx): Prints messages to the console, offering flexibility in formatting and 

customization.
●​ sub_F9BC (CopyMem): Copies memory blocks.

In the UEFI environment, several global structures and function tables play crucial roles. These structures are 
typically accessed through the EFI_SYSTEM_TABLE, which is a central data structure providing pointers to 
essential system services. Here is where we can find some of this data types in our shell’s image:

●​ EFI_SYSTEM_TABLE: Located at offset 0xE8460 in our image, this table contains pointers to other 
important structures, including the boot and runtime services tables.

●​ EFI_BOOT_SERVICES: Residing at offset 0xE8470, this table provides functions for interacting with 
the system during the boot process.

●​ EFI_RUNTIME_SERVICES: Found at offset 0xE8490, this table contains functions that can be invoked 
both during the boot process and after the system has started.

Another significant structure, FILE_HANDLE_FUNCTION_MAP, is populated within the sub_14C28 
(ShellLibConstructorWorker) function. This map contains function pointers derived from an 
EFI_SHELL_PROTOCOL instance, providing a mechanism for handling file-related operations within the shell 
environment.
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Figure 12: Population of the FileFunctionMap

File Decryption Logic
To understand the decryption process, we'll focus on the decrypt_file command. This command is 
implemented within the same image as the shell itself. By searching for the string decrypt_file we can 
locate the relevant code, specifically the function sub_31BC4.

This function handles the decryption process, starting by validating the input arguments: a filename to 
decrypt and a password. It then opens the specified file and checks for the magic value C4TB to confirm that 
it's a valid encrypted file. If the file doesn't begin with this magic, a message is displayed to indicate that it's 
not a supported file format.

Figure 13: decrypt_file second attempt

The function then goes on to parse the encrypted file's header. This header comprises 16 bytes, with the first 
4 bytes representing the C4TB magic signature mentioned previously. The subsequent 4 bytes contain a 
little-endian integer, likely denoting the size of the encrypted data that follows. The remaining two 4-byte 
fields appear to function as follows: one is a little-endian integer with an offset pointing to an additional, 
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yet-to-be-determined buffer located after the encrypted blob, while the last one represents the little-endian 
size of this undetermined buffer. The structure of the header can be organized as follows:

typedef struct _encrypted_file_header {
    unsigned char magic[4];
    uint32_t blob_size;
    uint32_t unk_buffer_offset;
    uint32_t unk_buffer_size;
}encrypted_file_header;

In our code, this header structure is nested within a larger structure. This larger structure is allocated at the 
address 0x31E6E and its fields are populated after parsing the aforementioned header. The layout of the 
larger structure can be illustrated as follows:

typedef struct _encrypted_file_data
{​

encrypted_file_header file_hdr;
unsigned char *encrypted_blob;​ // pointer to a buffer that is populated with the 

contents of the encrypted blob from the .c4tb file 
unsigned char *unk_buffer;​ // pointer to a buffer that is populated with the 

undetermined contents that follow the encrypted blob  
}encrypted_file_data;

After parsing the encrypted file, the function verifies the password length, ensuring it contains 16 characters. 
This is a crucial requirement for the decryption process.

Subsequently, the password's bytes are copied into specific, predefined locations within the unk_buffer of 
the encrypted_file_data structure. Following this, the sub_31274 function is invoked, operating on a 
global structure residing at address 0xE86C0. The outcome of this function call is then compared to zero. If 
the result is non-zero, the decryption process continues. It is highly likely that the actual password validation 
occurs within this sub_31274 function, which we will explore in greater detail in the following section.
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Figure 14: password copy​

If the result of sub_31274 is non-zero, the CRC32 hash of the password is calculated and compared against a 
predefined list of hashes:

●​ 0x8AE981A5
●​ 0x92918788
●​ 0x80076040

If the computed hash aligns with one of these predefined values, the associated password is stored in a buffer 
referenced by a global variable. Essentially, the code appears to systematically store each successfully 
decrypted password in a designated buffer. These buffers play a role in a subsequent key generation logic, 
which we will delve into later in our analysis.

Assuming the password is correct, it's used as an RC4 key to decrypt the encrypted_blob data within the 
encrypted file. The RC4 decryption function is implemented in sub_31934. After decryption, the decrypted 
data is processed to ensure it's a valid JPEG image by checking for the presence of JFIF magic value. If the 
decryption is successful, the decrypted data is written to a new file without the .c4tb extension, and the 
original encrypted file is deleted.
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Figure 15: JFIF Check

Exploring the Password Validation Logic
Let's take a closer look at the sub_31274 function, which we previously identified as the core component 
responsible for validating the password used to decrypt each .c4tb file. Upon closer inspection, this function 
takes the unk_buffer data located after each encrypted blob in the .c4tb file (once it has been populated 
with the password's bytes) and assigns it to a field within a globally defined structure. It then proceeds to 
evaluate the bytes within this unk_buffer utilizing a switch-case construct to execute specific code 
segments depending on the value of each processed byte from the buffer. Within each case of this switch 
statement, we observe an action being performed, followed by the buffer pointer being incremented by two. 
Starting to sound familiar?

Indeed, we are witnessing a virtual machine implementation here. This implies that the processed 
unk_buffer contains bytecode interpreted by this virtual machine. The buffer pointer essentially serves as 
an instruction pointer, while the structure containing it likely represents the virtual machine's context. The 
switch-case construct houses the opcode handlers responsible for executing each supported opcode.

By delving into these handlers, we can glean some characteristics of both the bytecode and the underlying 
virtual machine:

●​ The instruction pointer (or buffer pointer) is incremented by one before dispatching to the 
corresponding opcode handler. This means that opcode values are of 1 byte length.

●​ In certain handlers, we observe a further increment of the instruction pointer by 2. Subsequently, 
operations are performed on the 2 bytes that were skipped over during this increment, as part of the 
handler's logic. This suggests that bytecode instruction arguments, when present, are 16 bits long.

●​ The argument bytes processed by some opcode handlers are assigned to a pointer that is often 
decremented by one. This pointer also updates a field within the virtual machine's context structure. 
This behavior strongly hints at a stack-based mechanism, where certain operations involve stack pops 
or pushes, and a stack top pointer is maintained within the context structure.

Furthermore, recall that we previously observed a field within the virtual machine's context structure that is 
checked in the sub_31BC4 function. This check determines whether the underlying .c4tb file should be 
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decrypted using the evaluated password. Based on our current understanding, we can confidently conclude 
that this field represents the final outcome or result of the virtual machine's execution.

Building a Bytecode Disassembler
With these insights in hand, we're ready to commence the construction of our bytecode disassembler. It's 
important to acknowledge that the virtual machine we're dealing with in this challenge is rooted in a publicly 
available implementation known as PigletVM 
(https://github.com/vkazanov/bytecode-interpreters-post/blob/master/pigletvm.c). However, it's evident that 
this implementation has undergone several modifications, necessitating careful attention as we develop our 
disassembler.

As our initial step, let's formally define the structure of the virtual machine context located at address 
0xE86C0. This structure largely aligns with the one found in the PigletVM repository, with the primary 
difference being adjustments to the sizes of the stack and memory buffers.

typedef struct _vm_context{
    /* instruction pointer */
    uint8_t *ip;

    /* stack */
    uint64_t stack[256];
    uint64_t *stack_top;

    uint64_t memory[65536];

    /* the VM execution result */
    uint64_t result;
} vm_context;

Now, let's examine all available opcodes by analyzing their respective handlers within the switch-case 
construct. Again, these handlers largely mirror those found in the PigletVM repository, albeit with some 
notable additions. These additions primarily encompass opcodes related to arithmetic and logical operations, 
along with those responsible for displaying values on the screen:

Data Manipulation and Memory Operations
●​ OP_PUSHI (0x1): Pushes an immediate argument (a constant value embedded in the instruction) onto 

the stack.
●​ OP_LOADI (0x2): Loads a value from a memory cell addressed by an immediate argument onto the 

stack.
●​ OP_LOADADDI (0x3): Loads a value from a memory cell addressed by an immediate argument, then 

adds it to the value at the top of the stack.
Page 15 of 54

https://github.com/vkazanov/bytecode-interpreters-post/blob/master/pigletvm.c


●​ OP_STOREI (0x4): Pops a value from the stack and stores it into a memory cell addressed by an 
immediate argument.

●​ OP_LOAD (0x5): Pops an address from the stack and uses it to retrieve a value from the corresponding 
memory cell, pushing the retrieved value onto the stack.

●​ OP_STORE (0x6): Pops an address from the stack, then pops a value from the stack, and stores this 
value into the memory cell at the popped address.

●​ OP_DUP (0x7): Duplicates the value at the top of the stack, effectively creating a copy and pushing it 
onto the stack.

Arithmetic and Logical Operations
●​ OP_ADD (0x9): Pops two values from the stack, adds them together, and pushes the result back onto 

the stack.
●​ OP_ADDI (0xA): Adds an immediate value to the value at the top of the stack.
●​ OP_SUB (0xB): Pops two values from the stack, subtracts the second value from the first, and pushes 

the result onto the stack.
●​ OP_DIV (0xC): Pops two values from the stack, divides the first value by the second, and pushes the 

result onto the stack.
●​ OP_MUL (0xD): Pops two values from the stack, multiplies them together, and pushes the result onto 

the stack.
●​ OP_XOR (0x1A): Pops two values from the stack, performs a bitwise XOR operation on them, and 

pushes the result back onto the stack.
●​ OP_OR (0x1B): Pops two values from the stack, performs a bitwise OR operation on them, and pushes 

the result back onto the stack.
●​ OP_AND (0x1C): Pops two values from the stack, performs a bitwise AND operation on them, and 

pushes the result back onto the stack.
●​ OP_MOD (0x1D): Pops two values from the stack, performs a modulo operation (first value modulo 

second value), and pushes the result back onto the stack.
●​ OP_SHFTL (0x1E): Pops two values from the stack, performs a left shift operation on the first value by 

the number of bits specified in the second value, and pushes the result back onto the stack.
●​ OP_SHFTR (0x1F): Pops two values from the stack, performs a right shift operation on the first value 

by the number of bits specified in the second value, and pushes the result back onto the stack.
●​ OP_ROTL32 (0x20), OP_ROTR32 (0x21), OP_ROTL16 (0x22), OP_ROTR16 (0x23), OP_ROTL8 (0x24), 

OP_ROTR8 (0x25): Perform left and right rotations on 32-bit, 16-bit, and 8-bit values, respectively. The 
first value popped from the stack is the value to be rotated, and the second value specifies the 
number of bits to rotate.

Control Flow
●​ OP_JUMP (0xE): Unconditionally jumps to an absolute bytecode address specified by the immediate 

argument.
●​ OP_JUMP_IF_TRUE (0xF): Pops the top value from the stack. If it evaluates to true (non-zero), jumps 

to an absolute bytecode address specified by the immediate argument.
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●​ OP_JUMP_IF_FALSE (0x10): Pops the top value from the stack. If it evaluates to false (zero), jumps to 
an absolute bytecode address specified by the immediate argument.

Comparison Operations
●​ OP_EQUAL (0x11), OP_LESS (0x12), OP_LESS_OR_EQUAL (0x13), OP_GREATER (0x14), 

OP_GREATER_OR_EQUAL (0x15), OP_GREATER_OR_EQUALI (0x16): Pop two values from the stack, 
compare them according to the specific operator, and push the result (1 for true, 0 for false) back onto 
the stack.

Miscellaneous
●​ OP_POP_RES (0x17) & OP_SET_RES (0x19): Pop the top value from the stack and set it as the 

execution result in the VM context.
●​ OP_DONE (0x18): Terminates the execution of the virtual machine.
●​ OP_PRINTC (0x26): Pops a value from the stack and prints it as an ASCII character.
●​ OP_DISCARD (0x8): Pops two values from the stack and discards them - this operation seems to have 

no effect other than adjusting the stack.

There are two paths we can take from here. If you are already aware that the code utilizes a modified 
PigletVM, you could extend the original PigletVM with the additional opcodes, compile it, and then leverage its 
built-in disassembler, which can be found here: 
https://github.com/vkazanov/bytecode-interpreters-post/blob/master/pigletvm-exec.c#L127

Alternatively, let's assume no prior knowledge of PigletVM and develop our own disassembler from scratch 
using Python. Although our approach will share similarities with the logic employed in the PigletVM repository, 
the resulting code turns out to be quite simple:

# The dictionary maps an opcode value to a tuple of the format (ins_name, has_arg)
opcode_dict = {0x1: ("PUSHI", 1), 0x2: ("LOADI", 1), 0x3: ("LOADADDI", 1), 0x4: ("SOTREI", 
1), 0x5: ("LOAD", 0), 0x6: ("STORE", 0), 0x7: ("DUP", 0), 0x8: ("DISCARD", 0), 0x9: ("ADD", 
0), 0xA: ("ADDI", 1), 0xB: ("SUB",0 ), 0xC: ("DIV", 0), 0xD: ("MUL", 0), 0xE: ("JUMP", 1), 
0xF: ("JUMP_IF_TRUE", 1), 0x10: ("JUMP_IF_FALSE", 1) , 0x11: ("EQUAL", 0), 0x12: ("LESS", 0), 
0x13: ("LESS_OR_EQUAL", 0), 0x14: ("GREATER", 0),0x15: ("GREATER_OR_EQUAL", 0), 0x16: 
("GERATER_OR_EQUALI", 1),0x17: ("POP_RES", 0), 0x18: ("DONE", 0), 0x19: ("SET_RES", 0), 0x1A: 
("XOR", 0), 0x1B: ("OR", 0), 0x1C: ("AND",0), 0x1D: ("MOD", 0), 0x1E: ("SHFTL", 0), 0x1F: 
("SHFTR", 0), 0x20: ("ROTL32", 0), 0x21: ("ROTR32", 0), 0x22: ("ROTL16", 0), 0x23: ("ROTR16", 
0), 0x24: ("ROTL8", 0), 0x25: ("ROTR8", 0), 0x26: ("PRINTC", 0)}

# This function disassembles bytecode, iterating over each instruction. It prints the 
corresponding human-readable opcode and any arguments associated with the instruction. 
# The instruction pointer is advanced based on the size of the current instruction and its 
arguments, ensuring accurate tracking of the bytecode's execution flow.
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def disassemble(bytecode, len):
ip = 0
disassembly = []
while (ip < len):

ins_ip = ip 
ins = opcode_dict[bytecode[ip]][0]
# check if the instruction has an argument or not
if (opcode_dict[bytecode[ip]][1]):

arg_int =  ( bytecode[ip + 1] << 8 ) | (bytecode[ip + 2])
arg = "0x%x" % arg_int
ip += 3

else: 
ip += 1
arg = ""

disassembly += ["0x%x: %s %s" % (ins_ip,ins,arg)]
return "\n".join(disassembly)

Now, we have the ability to extract the bytecode from each encrypted .c4tb file and disassemble it to examine 
the inner workings of its password verification mechanism. To facilitate this analysis, we can employ a 
straightforward script, such as the following:

for i in range(1,4):
with open("catmeme%d.jpg.c4tb" % i, "rb") as f:

file_data = f.read()
bytecode_offset = int.from_bytes(file_data[8:12], "little")
bytecode_len = int.from_bytes(file_data[12:16], "little")
bytecode = file_data[bytecode_offset:]
with open("catmeme%d_dissasembly.txt" % i, "wb") as fd:

fd.write(bytes(disassemble(bytecode, bytecode_len), "UTF-8"))

Bytecode 1: Byte Rotation & Comparison
First, let's analyze the bytecode extracted from catmeme1.jpg.c4tb. The initial segment of the bytecode 
can be dissected into distinct fragments. It commences with two sequences of STORE operations, where 
hardcoded values are placed into consecutive indices. This pattern aligns with the initialization of two arrays:

0x0: PUSHI 0x0
0x3: PUSHI 0xbbaa
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0x6: STORE 
0x7: PUSHI 0x1
0xa: PUSHI 0xddcc
0xd: STORE 
0xe: PUSHI 0x2
0x11: PUSHI 0xffee
0x14: STORE 
0x15: PUSHI 0x3
0x18: PUSHI 0xadde
0x1b: STORE 
0x1c: PUSHI 0x4
0x1f: PUSHI 0xefbe
0x22: STORE 
0x23: PUSHI 0x5
0x26: PUSHI 0xfeca
0x29: STORE 
0x2a: PUSHI 0x6
0x2d: PUSHI 0xbeba
0x30: STORE 
0x31: PUSHI 0x7
0x34: PUSHI 0xcdab
0x37: STORE 
0x38: PUSHI 0xa
0x3b: PUSHI 0x6144
0x3e: STORE 
0x3f: PUSHI 0xb
0x42: PUSHI 0x7534
0x45: STORE 
0x46: PUSHI 0xc
0x49: PUSHI 0x6962
0x4c: STORE 
0x4d: PUSHI 0xd
0x50: PUSHI 0x6c63
0x53: STORE 
0x54: PUSHI 0xe
0x57: PUSHI 0x3165
0x5a: STORE 
0x5b: PUSHI 0xf
0x5e: PUSHI 0x6669
0x61: STORE 
0x62: PUSHI 0x10
0x65: PUSHI 0x6265
0x68: STORE 
0x69: PUSHI 0x11
0x6c: PUSHI 0x6230
0x6f: STORE 

Page 19 of 54



C/C++

C/C++

Upon closer inspection of the bytecode buffer initialization code within sub_31274 that we pointed out 
earlier, we observe a revealing detail: the bytes of the validated user password (expected to be 16 bytes in 
length) are assigned in specific indices so as to replace the placeholder values 0xbbaa, 0xddcc, 0xffee, 
0xadde, 0xefbe, 0xfeca, 0xbeba, and 0xcdab. In other words, we see logic that is used to integrate user 
input into the bytecode's data structures. The second initialization sequence seemingly constructs another 
array populated with predefined hard-coded values. We can provide a rough outline of both initialization 
processes using C-like pseudocode for clarity:

wchar_t userInputArr[8];
wchar_t hardcodedBuffer[8];

userInputArr[0] = 0xbbaa;
userInputArr[1] = 0xddcc;
userInputArr[2] = 0xffee;
userInputArr[3] = 0xadde;
userInputArr[4] = 0xefbe;
userInputArr[5] = 0xfeca;
userInputArr[6] = 0xbeba;
userInputArr[7] = 0xcdab;

hardcodedBuffer[0] = 0x6144; // "aD"
hardcodedBuffer[1] = 0x7534; // "u4"
hardcodedBuffer[2] = 0x6962; // "ib"
hardcodedBuffer[3] = 0x6c63; // "lc"
hardcodedBuffer[4] = 0x3165; // "le"
hardcodedBuffer[5] = 0x6669; // "fi"
hardcodedBuffer[6] = 0x6265; // "be"
hardcodedBuffer[7] = 0x6230; // "b0"

Analyzing the second buffer, we find the string Da4ubiclelifeb0b initialized within it in reverse. However, 
attempts to decrypt catmeme1.jpg.c4tb with this string are unsuccessful, suggesting it's not the correct 
password.

Proceeding with our bytecode analysis, we uncover a recurring pattern repeated four times. This pattern 
involves a series of logical operations performed on bytes from each of the previously mentioned buffers. The 
pattern concludes with a STORE instruction, saving the result of these operations in memory:

// First sequence of operations on userInputArr elements at indices 3,2,1,0, result is stored 
in memory index 8
0x70: PUSHI 0x8     // Memory index in which the result of the actions below is saved 
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0x73: PUSHI 0x3 ​ // Load the value of userInputBuffer[3]
0x76: LOAD 
0x77: PUSHI 0x30
0x7a: SHFTL ​ // userInputBuffer[3] << 0x30
0x7b: PUSHI 0x2     // Load the value of userInputBuffer[2]
0x7e: LOAD 
0x7f: PUSHI 0x20  
0x82: SHFTL ​ // userInputBuffer[2] << 0x20
0x83: OR ​ // (userInputBuffer[3] << 0x30) | (userInputBuffer[2] << 0x20)
0x84: PUSHI 0x1     // Load the value of userInputerBuffer[1]
0x87: LOAD 
0x88: PUSHI 0x10
0x8b: SHFTL         // userInputBuffer[1] << 0x10
0x8c: OR            // (userInputBuffer[3] << 0x30) | (userInputBuffer[2] << 0x20) | 
(userInputBuffer[1] << 0x10)
0x8d: PUSHI 0x0     // Load the value of userInputBuffer[0]
0x90: LOAD 
0x91: OR            // (userInputBuffer[3] << 0x30) | (userInputBuffer[2] << 0x20) | 
(userInputBuffer[1] << 0x10) | userInputBuffer[0]
0x92: STORE ​ // Store the result of the previous instruction into memory index 8

// Second sequence of operations on userInputArr elements at indices 7,6,5,4, result is 
stored in memory index 9. 
0x93: PUSHI 0x9
0x96: PUSHI 0x7
0x99: LOAD 
0x9a: PUSHI 0x30
0x9d: SHFTL 
0x9e: PUSHI 0x6
0xa1: LOAD 
0xa2: PUSHI 0x20
0xa5: SHFTL 
0xa6: OR 
0xa7: PUSHI 0x5
0xaa: LOAD 
0xab: PUSHI 0x10
0xae: SHFTL 
0xaf: OR 
0xb0: PUSHI 0x4
0xb3: LOAD 
0xb4: OR 
0xb5: STORE 

// First sequence of operations on hardcodedBuffer elements at inidices 3,2,1,0 (correspond 
to memory indices 0xd,0xc,0xb,0xa), result is stored in memory index 0x12.
0xb6: PUSHI 0x12
0xb9: PUSHI 0xd
0xbc: LOAD 
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0xbd: PUSHI 0x30
0xc0: SHFTL 
0xc1: PUSHI 0xc
0xc4: LOAD 
0xc5: PUSHI 0x20
0xc8: SHFTL 
0xc9: OR 
0xca: PUSHI 0xb
0xcd: LOAD 
0xce: PUSHI 0x10
0xd1: SHFTL 
0xd2: OR 
0xd3: PUSHI 0xa
0xd6: LOAD 
0xd7: OR 
0xd8: STORE 

// Second sequence of operations on hardcodedBuffer at indices 7,6,5,4 (correspond to memory 
indices 0x11,0x10,0xf,0xe), result is stored in memory index 0x13.
0xd9: PUSHI 0x13
0xdc: PUSHI 0x11
0xdf: LOAD 
0xe0: PUSHI 0x30
0xe3: SHFTL 
0xe4: PUSHI 0x10
0xe7: LOAD 
0xe8: PUSHI 0x20
0xeb: SHFTL 
0xec: OR 
0xed: PUSHI 0xf
0xf0: LOAD 
0xf1: PUSHI 0x10
0xf4: SHFTL 
0xf5: OR 
0xf6: PUSHI 0xe
0xf9: LOAD 
0xfa: OR 
0xfb: STORE 

These operations seem to be transforming the buffers initialized at the start of the bytecode into four 64-bit 
integers, as illustrated in the following pseudocode:

uint64_t userInputInt1;
uint64_t userInputInt2;
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uint64_t hardcodedBufferInt1;
uint64_t hardcodedBufferInt2;

userInputInt1 = (userInputBuffer[3] << 0x30) |  (userInputBuffer[2] << 0x20) | 
(userInputBuffer[1] << 0x10) | userInputBuffer[0]; // userInput1 = 0xaddeffeeddccbbaa   
userInputInt2 = (userInputBuffer[7] << 0x30) |  (userInputBuffer[6] << 0x20) | 
(userInputBuffer[5] << 0x10) | userInputBuffer[4]; // userInput1 = 0xcdabbebafecafebe

hardcodedBufferInt1 = (hardcodedBuffer[3] << 0x30) |  (hardcodedBuffer[2] << 0x20) | 
(hardcodedBuffer[1] << 0x10) | hardcodedBuffer[0]; // hardcodedBufferInt1 = "lcibu4aD"   
hardcodedBufferInt2 = (hardcodedBuffer[7] << 0x30) |  (hardcodedBuffer[6] << 0x20) | 
(hardcodedBuffer[5] << 0x10) | hardcodedBuffer[4]; // hardcodedBufferInt2 = "b0befile"   

This is followed by several memory initializations of what could be later used as variables:

0xfc: PUSHI 0x14    // memory index 0x14 (we'll refer to it as variable 'i')
0xff: PUSHI 0x0 ​ // value 0
0x102: STORE ​ // i = 0
0x103: PUSHI 0x18   // memory index 0x18 (we'll refer to it as variable 'boolFlag')
0x106: PUSHI 0x1    // value 1
0x109: STORE ​ // boolFlag = 1
0x10a: PUSHI 0x17   // memory index 0x17 (we'll refer to it as variable 'j')
0x10d: PUSHI 0x0    // value 0 
0x110: STORE        // j = 0
0x111: PUSHI 0x19   // memory index 0x19 (we'll refer to it as variable 'k')
0x114: PUSHI 0x0    // value 0 
0x117: STORE        // k = 0

The following bytecode utilizes these initialized variables to extract individual characters from 
userInputInt1 or userInputInt2, and hardcodedBufferInt1 or hardcodedBufferInt2. It employs 
the variable i as an incrementing index, shifting each of these integers right by multiples of 8 bits (depending 
on the processed character's index), and then performing a logical AND operation with 0xFF. In addition, it 
appears to perform this code only if boolFlag variable is set:

// Check if boolFlag is true
0x118: PUSHI 0x18
0x11b: LOAD ​ // Load the value of 'boolFlag' from memory 
0x11c: PUSHI 0x1
0x11f: EQUAL
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0x120: JUMP_IF_FALSE 0x241 ​ // Skip the following block if boolFlag is false

// Check if i is less than 8
0x123: PUSHI 0x14 
0x126: LOAD
0x127: PUSHI 0x8
0x12a: LESS
0x12b: JUMP_IF_FALSE 0x150  // Skip the following block if i is not less than 8

// If i < 8, extract a character from userInputInt1
0x12e: PUSHI 0x15 ​ // We'll treat the memory at index 0x15 as inputChr
0x131: PUSHI 0x8
0x134: LOAD ​ // Load userInputInt1 
0x135: PUSHI 0x8​
0x138: PUSHI 0x14
0x13b: LOAD ​ // Load the value of 'i'
0x13c: MUL ​
0x13d: SHFTR ​ // The extracted character is obtained via userInputInt1 >> 
(8 * i)
0x13e: STORE ​ // Store the extracted character in inputChr

// If i < 8, extract a character from hardcodedBufferInt1
0x13f: PUSHI 0x16 ​ // We'll treat the memory at index 0x15 as hardcodedChr
0x142: PUSHI 0x12
0x145: LOAD ​ // Load hardcodedBufferInt1
0x146: PUSHI 0x8
0x149: PUSHI 0x14
0x14c: LOAD ​ // Load the value of 'i'
0x14d: MUL
0x14e: SHFTR ​ // The extracted character is obtained via 
hardcodedBufferInt1 >> (8 * i)
0x14f: STORE ​ // Store the extracted character in hardcodedChr 

// If i >= 8, extract a character from userInputInt2
0x150: PUSHI 0x14
0x153: LOAD ​ // Load the value of 'i'
0x154: PUSHI 0x7
0x157: GREATER
0x158: JUMP_IF_FALSE 0x17d ​ // Skip the following block if i is not greater than or 
equal to 8

0x15b: PUSHI 0x15 ​
0x15e: PUSHI 0x9
0x161: LOAD ​ // Load userInputInt2
0x162: PUSHI 0x8
0x165: PUSHI 0x14
0x168: LOAD ​ // Load the value of 'i'
0x169: MUL
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0x16a: SHFTR ​ // The extracted character is obtained via userInputInt2 >> 
(8 * i)
0x16b: STORE ​ // Store the extracted character in inputChr

// If i >= 8, extract a character from hardcodedBufferInt2
0x16c: PUSHI 0x16 ​
0x16f: PUSHI 0x13
0x172: LOAD ​ // Load hardcodedBufferInt2
0x173: PUSHI 0x8
0x176: PUSHI 0x14
0x179: LOAD ​ // Load the value of 'i'
0x17a: MUL
0x17b: SHFTR​ // The extracted character is obtained via 
hardcodedBufferInt2 >> (8 * i)
0x17c: STORE ​ // Store the extracted character in hardcodedChr

// // Mask the lower 8 bits of inputChr
0x17d: PUSHI 0x15  ​
0x180: PUSHI 0x15
0x183: LOAD ​ // Load inputChr
0x184: PUSHI 0xff
0x187: AND ​ // InputChr & 0xff
0x188: STORE ​ // Store the result back in inputChr

// Mask the lower 8 bits of hardcodedChr
0x189: PUSHI 0x16 ​
0x18c: PUSHI 0x16
0x18f: LOAD ​ // Load hardcodedChr 
0x190: PUSHI 0xff
0x193: AND ​ // hardcodedChr & 0xff
0x194: STORE ​ // Store the result back in hardcodedChr

After extracting characters from both the password and hardcoded buffers, the bytecode proceeds to check 
specific indices within the hardcoded buffer. For each of these indices, there's logic in place to modify the 
corresponding character within the hardcoded buffer itself:

// Go to the next block if i == 2
0x195: PUSHI 0x14
0x198: LOAD ​ // Load the value of 'i'
0x199: PUSHI 0x2
0x19c: EQUAL 
0x19d: JUMP_IF_FALSE 0x1ac
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// If i == 2, rotate the corresponding hardcodedChr byte left by 4 bits  
0x1a0: PUSHI 0x16
0x1a3: PUSHI 0x16
0x1a6: LOAD ​ // Load hardcodedChr
0x1a7: PUSHI 0x4
0x1aa: ROTL8 ​ // Bitwise rotation left of hardcodedChr as a byte by 4 
bits 
0x1ab: STORE ​ // Store the result back in hardcodedChr

// Go to the next block if i == 9
0x1ac: PUSHI 0x14
0x1af: LOAD 
0x1b0: PUSHI 0x9
0x1b3: EQUAL 
0x1b4: JUMP_IF_FALSE 0x1c3

// If i == 9, rotate the corresponding hardcodedChr byte right by 2 bits  
0x1b7: PUSHI 0x16
0x1ba: PUSHI 0x16
0x1bd: LOAD ​ // Load hardcodedChr
0x1be: PUSHI 0x2
0x1c1: ROTR8 ​ // Bitwise rotation right of hardcodedChr as a byte by 2 
bits
0x1c2: STORE ​ // Store the result back in hardcodedChr

// Go to the next block if i == 0xd
0x1c3: PUSHI 0x14
0x1c6: LOAD 
0x1c7: PUSHI 0xd
0x1ca: EQUAL 
0x1cb: JUMP_IF_FALSE 0x1da

// If i == 0xd, rotate the corresponding hardcodedChr byte left by 7 bits  
0x1ce: PUSHI 0x16
0x1d1: PUSHI 0x16
0x1d4: LOAD ​ // Load hardcodedChr
0x1d5: PUSHI 0x7
0x1d8: ROTL8 ​ // Bitwise rotation left of hardcodedChr as a byte by 7 bits 
0x1d9: STORE ​ // Store the result back in hardcodedChr

// Go to the next block if i == 0xf
0x1da: PUSHI 0x14
0x1dd: LOAD 
0x1de: PUSHI 0xf
0x1e1: EQUAL 
0x1e2: JUMP_IF_FALSE 0x1f1

// If i == 0xf, rotate the corresponding hardcodedChr byte left by 7 bits  
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0x1e5: PUSHI 0x16
0x1e8: PUSHI 0x16
0x1eb: LOAD ​ // Load hardcodedChr
0x1ec: PUSHI 0x7
0x1ef: ROTL8 ​ // Bitwise rotation left of hardcodedChr as a byte by 7 bits 
0x1f0: STORE ​ // Store the result back in hardcodedChr

Once certain characters in the hardcoded buffer have been modified, the bytecode compares the input 
characters against their corresponding counterparts in the hardcoded buffer.  If any mismatch is detected, 
the boolFlag is set to 0:

0x1f1: PUSHI 0x15
0x1f4: LOAD ​ // Load inputChr
0x1f5: PUSHI 0x16
0x1f8: LOAD ​ // Load hardcodedChr
0x1f9: EQUAL 
0x1fa: PUSHI 0x0  ​
0x1fd: EQUAL 
0x1fe: JUMP_IF_FALSE 0x208  // Skip the next block if inputChr == hardcodedChr 

0x201: PUSHI 0x18 ​ // Load boolFlag
0x204: PUSHI 0x0
0x207: STORE ​ // boolFlag = 0

The subsequent code reveals that the entire logic described above constitutes the body of a loop, iterating 16 
times (corresponding to the number of characters in the input buffer). The earlier check at address 0x11f 
confirms that the loop's body executes only if boolFlag is set to 1. Consequently, if the count index i 
reaches 16 or higher, boolFlag is set to 0, terminating the loop.

Furthermore, the initial block of the following bytecode includes a check to see if inputChr matches 
hardcodedChr. The variable j is incremented solely when these two characters are equal, suggesting that j 
likely serves as a counter for matching characters:

// Check again if the input character matches the corresponding hardcoded buffer character
0x208: PUSHI 0x15 ​ // Load inputChr
0x20b: LOAD 
0x20c: PUSHI 0x16 ​ // Load hardcodedChr
0x20f: LOAD 
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0x210: EQUAL 
0x211: JUMP_IF_FALSE 0x220​// Skip the next block if inputChr != hardcodedChr 

// j++
0x214: PUSHI 0x17
0x217: PUSHI 0x17 ​ // Load 'j'
0x21a: LOAD 
0x21b: PUSHI 0x1
0x21e: ADD ​
0x21f: STORE 

// i++
0x220: PUSHI 0x14
0x223: PUSHI 0x14
0x226: LOAD ​ // Load 'i'
0x227: PUSHI 0x1
0x22a: ADD 
0x22b: STORE 

// Check if i > 0xf
0x22c: PUSHI 0x14
0x22f: LOAD ​ // Load 'i'
0x230: PUSHI 0xf
0x233: GREATER 
0x234: JUMP_IF_FALSE 0x23e​// if i >= 16 

0x237: PUSHI 0x18
0x23a: PUSHI 0x0
0x23d: STORE 

// Next iteration of the loop 
0x23e: JUMP 0x118

In conclusion, the bytecode verifies to check if there are precisely 16 matching characters. If this condition is 
met, it sets the virtual machine's execution result to 1 using the SET_RES instruction. This instruction will 
return the value of the variable k, which is initially set to 0 and only changed to 1 if a perfect match of 16 
characters occurs:

// Check if 'j' indicates that 16 characters are matching
0x241: PUSHI 0x17 ​ // Load 'j'
0x244: LOAD 
0x245: PUSHI 0x10
0x248: EQUAL 
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0x249: JUMP_IF_FALSE 0x253 

// If j == 16, Set variable 'k' to 1
0x24c: PUSHI 0x19
0x24f: PUSHI 0x1
0x252: STORE 

// Load the variable 'k' (which is 0 by default, unless set in the previous block) 
// and use it as the virtual machine's execution result 
0x253: PUSHI 0x19 ​
0x256: LOAD ​ // Load 'k'
0x257: SET_RES ​ // Set 'k' as the VM's execution result
0x258: DONE 

From the analysis and the specific character modifications at indices 2 (`4` -> 'C'), 9 ('l' -> 'L'), 13 ('b' -> '1'), and 
15 ('b' -> '1') of the hardcoded buffer (via bitwise rotation), we can deduce that the correct password is 
DaCubicleLife101.

Entering this password into the shell using the decrypt_file command successfully decrypts the file.

Figure 16: first successful decrypt_file

Finally, we can extract the decrypted JPG image using 7z and reveal the first part of the final flag - 
th3_r04d_:
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Figure 17: catmeme1.jpg

For reference, we can represent the entire bytecode using the following refined pseudocode, where variable 
i is renamed to index, j to matchCount, boolFlag to loopFlag and k to finalFlag:

bool bytecodeCheck1()
{

// ================== Init input ===================
wchar_t userInputArr[8];
wchar_t hardcodedBuffer[8];

uint64_t userInputInt1;
uint64_t userInputInt2;
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uint64_t hardcodedBufferInt1;
uint64_t hardcodedBufferInt2;

bool finalFlag = 0;​ // formerly denoted 'k'
bool loopFlag = 1;​ // formerly denoted 'boolFlag'
uint64_t index = 0;​ // formerly denoted 'i'
uint64_t matchCount; ​ // formerly denoted 'j'
uint64_t inputChr;
uint64_t hardcodedChr; 

// Placeholder for user input, modified by the native code calling the bytecode
userInputArr[0] = 0xbbaa;
userInputArr[1] = 0xddcc;
userInputArr[2] = 0xffee;
userInputArr[3] = 0xadde;
userInputArr[4] = 0xefbe;
userInputArr[5] = 0xfeca;
userInputArr[6] = 0xbeba;
userInputArr[7] = 0xcdab;

hardcodedBuffer[0] = 0x6144; // "aD"
hardcodedBuffer[1] = 0x7534; // "u4"
hardcodedBuffer[2] = 0x6962; // "ib"
hardcodedBuffer[3] = 0x6c63; // "lc"
hardcodedBuffer[4] = 0x3165; // "le"
hardcodedBuffer[5] = 0x6669; // "fi"
hardcodedBuffer[6] = 0x6265; // "be"
hardcodedBuffer[7] = 0x6230; // "b0"

userInputInt1 = (userInputBuffer[3] << 0x30) |  (userInputBuffer[2] << 0x20) | 
(userInputBuffer[1] << 0x10) | userInputBuffer[0]; // userInput1 = 0xaddeffeeddccbbaa   

userInputInt2 = (userInputBuffer[7] << 0x30) |  (userInputBuffer[6] << 0x20) | 
(userInputBuffer[5] << 0x10) | userInputBuffer[4]; // userInput2 = 0xcdabbebafecafebe

hardcodedBufferInt1 = (hardcodedBuffer[3] << 0x30) |  (hardcodedBuffer[2] << 0x20) | 
(hardcodedBuffer[1] << 0x10) | hardcodedBuffer[0]; // hardcodedBufferInt1 = "lcibu4aD"   

hardcodedBufferInt2 = (hardcodedBuffer[7] << 0x30) |  (hardcodedBuffer[6] << 0x20) | 
(hardcodedBuffer[5] << 0x10) | hardcodedBuffer[4]; // hardcodedBufferInt2 = "b0befile"   

// ================= Compare loop ================

while(loopFlag == 1)
{

if (index < 8)
{

inputChr = userInputInt1 >> (8 * index); 
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harcodedChr = hardcodedBufferInt1 >> (8 * index); 

}
if (index >= 8) 
{

inputChr = userInputInt2 >> (8 * (index % 8)); 
harcodedChr = hardcodedBufferInt2 >> (8 * (index % 8)); 

}

inputChr = inputChr & 255; 
harcodedChr = harcodedChr & 255; 

if (index == 2)
{

harcodedChr = ROTL8(harcodedChr, 4);​
}

if (index == 9)
{

harcodedChr = ROTR8(harcodedChr, 2);​
}

if (index == 13)
{

harcodedChr = ROTL8(harcodedChr, 7);​
}

if (index == 15)
{

harcodedChr = ROTL8(harcodedChr, 7);
}

if (inputChr != harcodedChr)
{

loopFlag = 0;
}

if (inputChr == harcodedChr)
{​

matchCount = matchCount + 1;
}

index = index + 1;

if (index >= 16)
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{
loopFlag = 0;

}
}

// ================= Final test ===============

if(matchCount == 16)
{

finalFlag = 1; 
}

return finalFlag;

Bytecode 2: Enter RNG
Let's proceed to examine the bytecode extracted from catmeme2.jpg.c4tb. Although the previous analysis 
might have seemed laborious, it has significantly aided our understanding of this bytecode as well. This new 
bytecode shares a substantial amount of boilerplate code with the first one.

In fact, the code up until address 0x103, which primarily handles buffer initialization, is identical in both 
bytecodes. The sole difference lies in the contents of hardcodedBuffer, which are initialized with distinct 
values, as shown in the following pseudo-code pertaining to the bytecode of catmeme2.jpg.c4tb:

hardcodedBuffer[0] = 0xa059; 
hardcodedBuffer[1] = 0x6a4d; 
hardcodedBuffer[2] = 0xde23; 
hardcodedBuffer[3] = 0x24c0; 
hardcodedBuffer[4] = 0x64e2; 
hardcodedBuffer[5] = 0x59b1; 
hardcodedBuffer[6] = 0x7207; 
hardcodedBuffer[7] = 0x7f5c; 

Upon closer inspection of this bytecode, we see that the loop structure and most of its associated variables 
are consistent with the previous bytecode. The primary distinction lies within the body of the comparison loop 
itself. Let's begin by examining the initialization of the variables used in the loop, which serve the same 
purpose but have slightly different memory indices:
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// index = 0
0xfc: PUSHI 0x14
0xff: PUSHI 0x0
0x102: STORE 

// loopFlag = 1
0x103: PUSHI 0x15
0x106: PUSHI 0x1
0x109: STORE

// matchCount = 0
0x10a: PUSHI 0x16
0x10d: PUSHI 0x0
0x110: STORE

// finalFlag
0x111: PUSHI 0x17
0x114: PUSHI 0x0
0x117: STORE 

If you follow the code after this you'll also note that inputChr is stored in memory index 0x18 and 
hardcodedChr is stored in memory index 0x19. Following that, we observe the calculation of several 
constants and their subsequent storage in new variables:

// Calculation and storage of 17405 | (3 << 16), which is the constant 214013 (0x343fd)
0x118: PUSHI 0x1c ​ // STORE index, we'll denote the underlying variable const1
0x11b: PUSHI 0x43fd
0x11e: PUSHI 0x3
0x121: PUSHI 0x10
0x124: SHFTL 
0x125: OR 
0x126: STORE 

// Calculation and storage of 40643 | (38 << 16), which is the constant 2531011 (0x269ec3)
0x127: PUSHI 0x1d ​ // STORE index, we'll denote the underlying variable const2
0x12a: PUSHI 0x9ec3
0x12d: PUSHI 0x26
0x130: PUSHI 0x10
0x133: SHFTL 
0x134: OR 
0x135: STORE 

// Calculation and storage of 1 << 31, which is the constant 2147483648 (0x80000000)
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0x136: PUSHI 0x1b  ​ // STORE index, we'll denote the underlying variable const3
0x139: PUSHI 0x1
0x13c: PUSHI 0x1f
0x13f: SHFTL 
0x140: STORE 

// Storage of 0x1337 
0x141: PUSHI 0x1e ​ // STORE index, we'll denote the underlying variable 'lcgVal'
0x144: PUSHI 0x1337
0x147: STORE 

These constants should be familiar to you (or readily discoverable via a quick search) as components used 
within an LCG algorithm. Specifically, 0x343fd serves as the multiplier, 0x269ec3 functions as the increment, 
and 0x80000000 acts as a modulus. Based on these observations, we can hypothesize that 0x1337 likely 
serves as an initial seed, provided to an LCG based random number generator during the bytecode's 
execution.

The bytecode spanning addresses 0x148 to 0x1c4 functions similarly to the previous code, extracting 
individual bytes (characters) from the runtime-generated 64-bit integers: userInputInt1, userInputInt2, 
hardcodedBufferInt1, and hardcodedBufferInt2. The first significant difference between this 
bytecode and the earlier one appears at address 0x1c5. Here, we observe an explicit LCG round, confirming 
our suspicion that 0x1337 is indeed the seed for the LCG random number generator:

...
// LCG round:  (seed * 214013 + 2531011) % 0x80000000
// Result is stored back to 'lcgVal'
0x1c5: PUSHI 0x1e ​ // STORE arg ('lcgVal') 
0x1c8: PUSHI 0x1c
0x1cb: LOAD ​ // Load const1 (214013)
0x1cc: PUSHI 0x1e
0x1cf: LOAD ​ // Load lcgVal (initially, 0x1337)
0x1d0: MUL ​
0x1d1: PUSHI 0x1d ​
0x1d4: LOAD ​ // Load const2 (2531011)
0x1d5: ADD 
0x1d6: PUSHI 0x1b ​ // Load const3 (0x80000000)
0x1d9: LOAD 
0x1da: MOD 
0x1db: STORE 
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The heart of the password verification lies in a byte-by-byte comparison, wherein the LCG generated integers 
are used to generate a stream of XOR key bytes.​
Here's how it works - for each character in the provided password:

●​ A new random number is produced using the Linear Congruential Generator (LCG).
●​ A corresponding byte from the LCG-generated sequence is extracted. The index for this extraction is 

calculated as the password byte's position modulo 4. The LCG-generated value is then bitwise shifted 
right by this index times 8 (i.e., by the number of bytes specified in this index).

●​ The extracted byte is masked with 0xff to retain only the least significant 8 bits. Finally, this masked 
byte is XORed with the original password byte.

●​ The resulting byte from the XOR is compared against the corresponding byte in the hardcodedBuffer.

...
// Extracts an LCG generated byte from a corresponding index
// shiftedLcg = lcgVal >> (8 * (index % 4))
0x1e4: PUSHI 0x1a ​ // STORE arg ('shiftedLcg')
0x1e7: PUSHI 0x1e
0x1ea: LOAD ​ // Load 'lcgVal'
0x1eb: PUSHI 0x8
0x1ee: PUSHI 0x14
0x1f1: LOAD ​ // Load 'index'
0x1f2: PUSHI 0x4
0x1f5: MOD ​
0x1f6: MUL 
0x1f7: SHFTR 
0x1f8: STORE 

// keyChr = shiftedLcg & 0xff
0x1f9: PUSHI 0x1f ​ // STORE arg, we'll denote it 'keyChr'
0x1fc: PUSHI 0x1a
0x1ff: LOAD ​ // Load 'shiftedLcg'
0x200: PUSHI 0xff
0x203: AND ​
0x204: STORE 

// xorRes = keyChr ^ inputChr
0x205: PUSHI 0x20  ​// STORE arg, we'll denote it 'xorRes'
0x208: PUSHI 0x18  
0x20b: LOAD ​ // Load 'inputChr'
0x20c: PUSHI 0x1f
0x20f: LOAD ​ // Load 'keyChr'
0x210: XOR 
0x211: STORE 

// Compare xorRes to hardcodedChr
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0x212: PUSHI 0x20
0x215: LOAD ​ // Load 'xorRes'
0x216: PUSHI 0x19
0x219: LOAD ​ // Load 'hardcodedChr'
0x21a: EQUAL 
0x21b: PUSHI 0x0
0x21e: EQUAL 
0x21f: JUMP_IF_FALSE 0x229
...

Armed with this knowledge, we can craft a straightforward Python script. This script will XOR the bytes of the 
hardcodedBuffer with the bytes generated from 4 consecutive rounds of the LCG, revealing the password:

def lcg(seed):
    i = 0
    xorKey = []
    hardcodedBuffer = [0x59, 0xa0, 0x4d, 0x6a, 0x23, 0xde, 0xc0, 0x24, 0xe2, 0x64, 0xb1, 
0x59, 0x07, 0x72, 0x5c, 0x7f]
    flag = []

    while i < 16:
        seed = (214013 * seed  + 2531011) % 2147483648
        keyChr = (seed >> (8 * (i % 4))) & 0xff
        flag += [keyChr ^ hardcodedBuffer[i]] 
        i += 1
    return "".join([chr(c) for c in flag])

print(lcg(0x1337))

With the password G3tDaJ0bD0neM4te in hand, we can proceed to decrypt the catmeme2.jpg.c4tb file. 
Let's use the decrypt_shell command and provide the password as an argument, this should successfully 
decrypt the file and reveal the second part of the flag - t0_succ3ss:
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Figure 18: catmeme2.jpg

Bytecode 3: Hash Function Cocktail
The bytecode for catmeme3.jpg.c4tb appears to follow a familiar pattern. We can anticipate input 
processing and initialization routines, coupled with validation checks likely embedded within a loop structure - 
reminiscent of the bytecodes we've previously encountered. However, a key distinction is apparent: this 
bytecode doesn't seem to contain a hardcodedBuffer with predefined values.

First we'll see an initialization of the constant 0xffffffff which will likely be used as a bitmask later on:

// mask = 0xffff
0x7e: PUSHI 0x1e ​ // 'mask' at index 0x1e
0x81: PUSHI 0xffff
0x84: STORE 

0x85: PUSHI 0x1d ​
0x88: PUSHI 0x1e
0x8b: LOAD 
0x8c: STORE 
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mask = (mask << 16) | mask
0x8d: PUSHI 0x1e
0x90: PUSHI 0x1e
0x93: LOAD ​
0x94: PUSHI 0x10
0x97: SHFTL ​
0x98: PUSHI 0x1d
0x9b: LOAD 
0x9c: OR 
0x9d: STORE 

Next we find the following interesting piece of code:

// hashVal = 0x1505
0xb3: PUSHI 0x13  ​
0xb6: PUSHI 0x1505
0xb9: STORE ​ // 'hashVal' at index 0x13 is initialized with 0x1505

// Check if i < 4
0xba: PUSHI 0x1b ​
0xbd: LOAD ​ // Load 'i' from index 0x1b in memory 
0xbe: PUSHI 0x4
0xc1: LESS 
0xc2: JUMP_IF_FALSE 0x10f

// If i < 4, extract signle character from 'userInputInt1'
0xc5: PUSHI 0x1c 
0xc8: PUSHI 0x8 ​
0xcb: LOAD ​ // Load 'userInputInt1' from index 0x8 in memory
0xcc: PUSHI 0x8
0xcf: PUSHI 0x1b
0xd2: LOAD ​ // Load 'i'
0xd3: MUL 
0xd4: SHFTR 
0xd5: STORE ​ // Store the extracted 'inputChr' in index 0x1c

// inputChr = inputChr & 0xff
0xd6: PUSHI 0x1c
0xd9: PUSHI 0x1c
0xdc: LOAD 
0xdd: PUSHI 0xff
0xe0: AND 
0xe1: STORE 
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// hashValCopy = hashVal
0xe2: PUSHI 0x1d
0xe5: PUSHI 0x13
0xe8: LOAD 
0xe9: STORE ​ // 'tempVal' at index 0x1d in memory

// hashValCopy = (hashValCopy << 5) + hashVal + inputChr
0xea: PUSHI 0x13
0xed: PUSHI 0x13
0xf0: LOAD ​ // Load 'hashVal'
0xf1: PUSHI 0x5
0xf4: SHFTL 
0xf5: PUSHI 0x1d
0xf8: LOAD 
0xf9: ADD 
0xfa: PUSHI 0x1c
0xfd: LOAD 
0xfe: ADD 
0xff: STORE 

// Increment i
0x100: PUSHI 0x1b
0x103: PUSHI 0x1b
0x106: LOAD 
0x107: PUSHI 0x1
0x10a: ADD 
0x10b: STORE 

// Next loop iteration
0x10c: JUMP 0xba

// After loop ends: hashValCopy = hashValCopy & 0xffffffff
0x10f: PUSHI 0x13
0x112: PUSHI 0x13
0x115: LOAD 
0x116: PUSHI 0x1e
0x119: LOAD 
0x11a: AND 
0x11b: STORE 

This code can be rewritten as the following pseudocode, revealing that we are looking at a djb2 hash 
algorithm that operates on the first 4 bytes of the input:
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uint64_t hashVal = 5381;

while (i < 4)
{

inputChr = (userInputInt1 >> (8 * i)) & 0xff;
hashVal = (hashVal >> 5) + hashVal + inputChr; 
i++;

} 

hashVal &= 0xffffffff;

The next snippet that follows this calculation appears to generate the hash constant 0x7c8df4cb and 
compare our calculated input hash against it:

// hardcodedHash1 = (0x7c8d << 16) | 0xf4cb
// Or 0x7c8df4cb
0x11c: PUSHI 0x14  ​ // 'hardcodedHash1' at index 0x14
0x11f: PUSHI 0x7c8d
0x122: PUSHI 0x10
0x125: SHFTL 
0x126: PUSHI 0xf4cb
0x129: OR 
0x12a: STORE 

// Compare hardcodedHash1 with the formerly caluclated hashValCopy
0x12b: PUSHI 0x14
0x12e: LOAD 
0x12f: PUSHI 0x13
0x132: LOAD 
0x133: EQUAL 
0x134: JUMP_IF_FALSE 0x143

// If a match found, hashMatchCount++
0x137: PUSHI 0x1f ​ // 'hashMatchCount' at index 0x1f
0x13a: PUSHI 0x1f
0x13d: LOAD 
0x13e: PUSHI 0x1
0x141: ADD 
0x142: STORE 

Next, if this check passes successfully, we see another hash calculation:
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// Check if i < 8
0x155: PUSHI 0x1b
0x158: LOAD 
0x159: PUSHI 0x8
0x15c: LESS 
0x15d: JUMP_IF_FALSE 0x1a5

// If i < 8, extract the processed character from userInputInt1 to inputChr
0x160: PUSHI 0x1c
0x163: PUSHI 0x8
0x166: LOAD 
0x167: PUSHI 0x8
0x16a: PUSHI 0x1b
0x16d: LOAD 
0x16e: MUL 
0x16f: SHFTR 
0x170: STORE 
0x171: PUSHI 0x1c
0x174: PUSHI 0x1c
0x177: LOAD 
0x178: PUSHI 0xff
0x17b: AND 
0x17c: STORE 

// hashVal2 = ROTR32(hashVal2, 13)
0x17d: PUSHI 0x15 ​ // 'hashVal2' at index 0x15 
0x180: PUSHI 0x15
0x183: LOAD 
0x184: PUSHI 0xd
0x187: ROTR32 
0x188: STORE 

// hashVal2 += inputChr
0x189: PUSHI 0x15
0x18c: PUSHI 0x15
0x18f: LOAD 
0x190: PUSHI 0x1c
0x193: LOAD 
0x194: ADD 
0x195: STORE 

// i++
0x196: PUSHI 0x1b
0x199: PUSHI 0x1b
0x19c: LOAD 
0x19d: PUSHI 0x1
0x1a0: ADD 
0x1a1: STORE 
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// Next loop iteration 
0x1a2: JUMP 0x155

// After loop ends, hashVal2 &= 0xffffffff
0x1a5: PUSHI 0x15
0x1a8: PUSHI 0x15
0x1ab: LOAD 
0x1ac: PUSHI 0x1e
0x1af: LOAD 
0x1b0: AND 
0x1b1: STORE 

This translates to the following pseudocode, which implements a ROT13-based hashing algorithm applied to 
the input characters specifically at positions 4 through 7 (inclusive):

uint64_t hashVal2 = 0;

while (i < 8)
{

inputChr = (userInputInt1 >> (8 * i)) & 0xff;
hashVal2 = ROTR32(hashVal2) + inputChr;
i++;

}

hashVal2 &= 0xffffffff;

Once again, the calculated hash is compared against a constant, in this case 0x8b681d82:

// hardcodedHash2 = (0x8b68 << 0x10) | 0x1d82
// Or 0x8b681d82
0x1b2: PUSHI 0x16
0x1b5: PUSHI 0x8b68
0x1b8: PUSHI 0x10
0x1bb: SHFTL 
0x1bc: PUSHI 0x1d82
0x1bf: OR 
0x1c0: STORE 

// Check if equal to calculated hash
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0x1c1: PUSHI 0x16
0x1c4: LOAD 
0x1c5: PUSHI 0x15
0x1c8: LOAD 
0x1c9: EQUAL 
0x1ca: JUMP_IF_FALSE 0x1d9

// If euqal, hashMatchCount++
0x1cd: PUSHI 0x1f
0x1d0: PUSHI 0x1f
0x1d3: LOAD 
0x1d4: PUSHI 0x1
0x1d7: ADD 
0x1d8: STORE 

Moving on to the hash calculation for indices 8 through 15, the underlying algorithm appears to be adler32. 
While a deeper dive into the bytecode can confirm this, let's skip ahead to the calculation of the constant hash 
value used for comparison:

// hardcodedHash3 = (0xf91 << 0x10) | 0x374
// Or 0x0f910374
0x277: PUSHI 0x18
0x27a: PUSHI 0xf91
0x27d: PUSHI 0x10
0x280: SHFTL 
0x281: PUSHI 0x374
0x284: OR 
0x285: STORE 

0x286: PUSHI 0x18
0x289: LOAD 
0x28a: PUSHI 0x17
0x28d: LOAD 
0x28e: EQUAL 
0x28f: JUMP_IF_FALSE 0x29e

0x292: PUSHI 0x1f
0x295: PUSHI 0x1f
0x298: LOAD 
0x299: PUSHI 0x1
0x29c: ADD 
0x29d: STORE 
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A quick Google search for the value 0f910374 reveals its the adler32 hash of the commonly used keyword 
password.

Finally, let’s look at the last hashing logic in this bytecode. First we’ll note the calculation of some constants:

// prime1 = 403
0x2a9: PUSHI 0xa
0x2ac: PUSHI 0x193
0x2af: STORE 

// prime2 = 256
0x2b0: PUSHI 0xb
0x2b3: PUSHI 0x100
0x2b6: STORE 

// prime = (prime2 << 16) | prime1
// Or 0x1000193
0x2b7: PUSHI 0xc
0x2ba: PUSHI 0xb
0x2bd: LOAD 
0x2be: PUSHI 0x10
0x2c1: SHFTL 
0x2c2: PUSHI 0xa
0x2c5: LOAD 
0x2c6: OR 
0x2c7: STORE 
// hvalInit1 = 40389
0x2c8: PUSHI 0xd
0x2cb: PUSHI 0x9dc5
0x2ce: STORE 

// hvalInit2 = 33052
0x2cf: PUSHI 0xe
0x2d2: PUSHI 0x811c
0x2d5: STORE 

// hvalInit = (hvalInit2 << 16) | hvalInit1
// Or 0x811c9dc5
0x2d6: PUSHI 0xf
0x2d9: PUSHI 0xe
0x2dc: LOAD 
0x2dd: PUSHI 0x10
0x2e0: SHFTL 
0x2e1: PUSHI 0xd
0x2e4: LOAD 
0x2e5: OR 
0x2e6: STORE 
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// fnvsize = 1 << 32 
0x2e7: PUSHI 0x10
0x2ea: PUSHI 0x1
0x2ed: PUSHI 0x20
0x2f0: SHFTL 
0x2f1: STORE 

The presence of the constants 0x1000193 and 0x811c9dc5 strongly suggest using the FNV1 hash 
algorithm. Let's examine the subsequent code to confirm this hypothesis:

// fnvHash = hvalInit
0x2f2: PUSHI 0x19
0x2f5: PUSHI 0xf
0x2f8: LOAD 
0x2f9: STORE 

// index = 0
0x2fa: PUSHI 0x1b
0x2fd: PUSHI 0x0
0x300: STORE 

// Check if index < 16
0x301: PUSHI 0x1b
0x304: LOAD 
0x305: PUSHI 0x10
0x308: LESS 
0x309: JUMP_IF_FALSE 0x37e

// Check if index < 8
0x30c: PUSHI 0x1b
0x30f: LOAD 
0x310: PUSHI 0x8
0x313: LESS 
0x314: JUMP_IF_FALSE 0x328

// If index < 8, extract a character corresponding to it from userInputChr1
// Store it in inputChr 
0x317: PUSHI 0x1c
0x31a: PUSHI 0x8
0x31d: LOAD 
0x31e: PUSHI 0x8
0x321: PUSHI 0x1b
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0x324: LOAD 
0x325: MUL 
0x326: SHFTR 
0x327: STORE 

// else check if index >= 8
0x328: PUSHI 0x1b
0x32b: LOAD 
0x32c: PUSHI 0x7
0x32f: GREATER 
0x330: JUMP_IF_FALSE 0x344

// If index >= 8, extract a character corresponding to it from userInputChr2
// Store it in inputChr
0x333: PUSHI 0x1c
0x336: PUSHI 0x9
0x339: LOAD 
0x33a: PUSHI 0x8
0x33d: PUSHI 0x1b
0x340: LOAD 
0x341: MUL 
0x342: SHFTR 
0x343: STORE 

// inputChr = inputChr & 0xff
0x344: PUSHI 0x1c
0x347: PUSHI 0x1c
0x34a: LOAD 
0x34b: PUSHI 0xff
0x34e: AND 
0x34f: STORE 

// fnvHash = (fnvHash * prime) % fnvsize 
0x350: PUSHI 0x19
0x353: PUSHI 0x19
0x356: LOAD 
0x357: PUSHI 0xc
0x35a: LOAD 
0x35b: MUL 
0x35c: PUSHI 0x10
0x35f: LOAD 
0x360: MOD 
0x361: STORE 

// fnvHash = fnvHash ^ inputChr
0x362: PUSHI 0x19
0x365: PUSHI 0x19
0x368: LOAD 
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0x369: PUSHI 0x1c
0x36c: LOAD 
0x36d: XOR 
0x36e: STORE 

// index++
0x36f: PUSHI 0x1b
0x372: PUSHI 0x1b
0x375: LOAD 
0x376: PUSHI 0x1
0x379: ADD 
0x37a: STORE 

// Next loop iteration 
0x37b: JUMP 0x301
// After loop ends, fnvHash &= 0xffffffff
0x37e: PUSHI 0x19
0x381: PUSHI 0x19
0x384: LOAD 
0x385: PUSHI 0x1e
0x388: LOAD 
0x389: AND 
0x38a: STORE 

The bytecode clearly indicates the calculation of an FNV1-32 hash for the entire password. We can deduce 
this from the index range, which spans from 0 to 15, encompassing the full length of the password.

Now, let's identify the hash constant used for comparison with the calculated hash.

// hardcodedHash4 = (0x31f0 << 16) | 0x9d2
// Or 0x31f009d2
0x38b: PUSHI 0x1a
0x38e: PUSHI 0x31f0
0x391: PUSHI 0x10
0x394: SHFTL 
0x395: PUSHI 0x9d2
0x398: OR 
0x399: STORE 

Just as before, we observe a comparison between our calculated hash and the aforementioned constant. If 
they match, the matchCount is incremented.
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// Compare fnvHash with hardcodedHash4 
0x39a: PUSHI 0x1a
0x39d: LOAD 
0x39e: PUSHI 0x19
0x3a1: LOAD
0x3a2: EQUAL 
0x3a3: JUMP_IF_FALSE 0x3b2

// If they match, matchCount++
0x3a6: PUSHI 0x1f
0x3a9: PUSHI 0x1f
0x3ac: LOAD 
0x3ad: PUSHI 0x1
0x3b0: ADD 
0x3b1: STORE 

In essence, this bytecode processes the input password in distinct chunks:

●​ Indices 0 to 3: djb2 hash, compared against 0x7c8df4cb
●​ Indices 4 to 7: ROT13-based hash, compared against 0x8b681d82
●​ Indices 8 to 15: Adler32 hash, compared against 0x0f910374 (corresponding to the input keyword 

password, as evident in e.g., https://md5calc.com/hash/adler32/password)
●​ Entire password: FNV1-32 hash, compared against 0x31f009d2​

The bytecode systematically hashes each password chunk and compares it against a hardcoded value. 
A successful match increments an internal counter, matchCount. Crucially, subsequent chunk hashes 
are only calculated if the previous one matched. Finally, the bytecode compares the entire input with 
the above fnv1-32 hash and evaluates matchCount against 3. If all hash matches were successful, the 
execution result is set to 1, signifying a valid password.​
Armed with the knowledge that the initial two hash algorithms operate on 4-byte inputs, and knowing 
the expected hash results for the correct ones, we can employ a simple brute-force approach. Keep in 
mind that djb2 and ROT13 hashes can produce collisions—multiple inputs resulting in the same hash 
value. Therefore, we'll need to verify potential password candidates by calculating the full FNV1-32 
hash and comparing it against the constant extracted from the bytecode.​
Here's a naive Python implementation for brute-forcing the password. Despite its simplicity, this code 
effectively cracks the password in under a minute, demonstrating the feasibility of the brute-force 
approach in this scenario:

import string
import itertools
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djb2_candidates = []
rot13_candidates = []
combinations = []

FNV_32_PRIME = 0x01000193
FNV1_32_INIT = 0x811c9dc5

def fnv(data, hval_init, fnv_prime, fnv_size):
    hval = hval_init
    for byte in data:
        hval = (hval * fnv_prime) % fnv_size
        hval = hval ^ ord(byte)
    return hval

def hash_fnv1_32_test(data, hval_init=FNV1_32_INIT):
    return fnv(data, hval_init, FNV_32_PRIME, 2**32) == 0x31f009d2

def ror(dword, bits):
    return (dword >> bits | dword << (32 - bits)) & 0xFFFFFFFF

def hash_rot13_test(s):
    hash = 0
    for c in s:
        hash = ror(hash, 13)
        hash += ord(c)
    return hash == 0x8b681d82 

def hash_djb2_test(s):                                                                                  
    hash = 5381
    for x in s:
        hash = (( hash << 5) + hash) + ord(x)

    return (hash & 0xFFFFFFFF) == 0x7c8df4cb 

def generate_strings(length=4):
    chars = string.printable
    for item in itertools.product(chars, repeat=length):
        yield "".join(item)

for s in generate_strings():
    if hash_djb2_test(s) == True:
        djb2_candidates.append(s)

for s in generate_strings():
    if hash_rot13_test(s) == True:
        rot13_candidates.append(s)
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for i in range(len(djb2_candidates)):
    for j in range(len(rot13_candidates)):
        combinations.append((djb2_candidates[i],rot13_candidates[j]))

for comb in combinations: 
    if (hash_fnv1_32_test(("%s%spassword") % (comb[0], comb[1]))):
        print(("%s%spassword") % (comb[0], comb[1]))

From executing the above code, we get the password VerYDumBpassword. Entering this password into the 
shell yields the third part of the flag - _1s_alw4ys_:

Figure 19: catmeme3.jpg

Final Round: DilbootApp.efi
As observed earlier in the FullShell module, each entered password is validated against a pre-computed 
CRC32 checksum. Successful matches are stored in memory. Once all three passwords are correctly 
provided, the RC4 encryption key for DilbertApp.efi.enc is derived from their combined bytes. 
Interestingly, this key is BureaucracY4Life although we don't need to explicitly know it. The code 
seamlessly constructs and utilizes this key to automatically decrypt the file.
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Figure 20: Combining all three passwords to form RC4 key

We're almost there. Now, we’ll simply run the decrypted DilbootApp.efi file from the shell and follow 
Catbert's on-screen instructions. It seems he's left us one last challenge—another encrypted file on the disk. 
Thankfully, he's also provided the password: BrainNumbFromVm!.

Figure 21: Executed DilbootApp.efi

As expected, a new file, your_mind.jpg.c4tb awaits us on the disk (after being written to it by 
DilbootApp.efi). Let's run the decrypt_file command against it with the provided password, and 
witness the last part of the flag, und3r_c0nstructi0n, displayed triumphantly on our screen:

Page 52 of 54



Figure 22: Decrypting your_mind

The message unveiling the flag is embedded within more bytecode. It decodes and prints each character 
individually using the PRINTC instruction. While we won't delve into the intricacies of this bytecode here, 
consider it an exercise for the curious reader.

Additionally, a closer look at the disk reveals the decrypted your_mind.jpg file. Opening it unveils the final 
piece of the flag, embedded within a meme: @flare-on.com.
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Figure 23: your_mind.jpg

Bringing together all the flag parts we've gathered thus far, we can now construct the complete flag:

Final Flag

th3_r04d_t0_succ3ss_1s_alw4ys_und3r_c0nstructi0n@flare-on.com
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