
Flare-On 11 Challenge 2: checksum
By Chuong Dong (@cPeterr)

Overview
The file checksum.exe is a 64-bit Windows executable. When executed, the sample prompts the user for 
an answer to a random number of math problems.

Figure 1: Program initial execution

If the user answers the question correctly, the program moves on to the next. If the answer is incorrect, the 
program simply terminates.

Page 1 of 13



Figure 2: Program terminating when incorrect input is provided

However, if the user gets through enough questions, the program will display a new prompt asking for a 
checksum input.

Page 2 of 13



Figure 3: Program prompting for a “checksum” input

Nothing is provided to the user at this stage beside the checksum prompt, which might indicate that the 
program is expecting a specific hash/checksum. With this, we can safely assume that this is a crackme 
challenge that requires the user to reverse engineer the binary to find the correct answer to retrieve the 
flag.

Challenge Static Analysis
Upon opening the program in a binary analysis tool such as IDA Pro, we can quickly tell that the program is 
written in Golang and compiled with full debug symbols. We can also see that the program only contains 3 
non-library functions: main, a, and b. This tells us that the main functionality of the program will be inside 
of these three functions, and that the program itself might not be too large or complicated.

Figure 4: IDA Functions subview showing the program’s Go symbols

Examining the decompiled code of the program’s entrypoint main function, we can see the functionality to 
prompt the user to answer a series of math questions.

Page 3 of 13



Figure 5: Generating random summation questions

Here, a random number between 0 and 5 is generated, and the number of questions is derived by adding 3 
to that. As a result, there will be randomly 3 to 8 math questions every time the program is run. 

The program also generates 2 random numbers between 0 and 10000, prompts the user for an integer 
input, and compares the input with the sum of the two generated numbers. This also confirms what we have 
seen when running the program in the earlier stage.

After all the math questions are answered correctly, the program moves to prompting the user for a 
“checksum” string. It uses the Golang API hex.Decode to decode the input string, which tells us that the 
program only accepts a valid hex string for this prompt.

Page 4 of 13

https://pkg.go.dev/encoding/hex#Decode


Figure 6: Prompting for a “Checksum” input hex string

We also see the program’s b function is called with what appears to be a debug string as a parameter. 
Upon examining the subroutine closer in IDA, it can be confirmed that this b function simply prints the 
debug string before exiting with the status code 0xDEADBEEF.

Figure 7: Printing error message

In the next part of the code in main, we can see that the program allocates a slice buffer of 24 bytes in 
memory and copies the first 24 bytes of the hex-decoded input into it.

Page 5 of 13



Figure 8: Populating a 24-byte buffer with the hex-decoded user input

Next, the program checks if the length of the decoded input is 32 bytes and throws the error 
“chacha20poly1305: bad key length” if the check fails. 

This part of code appears to be from the Golang chacha20poly1305 library. It indicates that the 
“checksum” input is a 32-byte hex string that will be used as a ChaCha20-Poly1305 key.

Figure 9: Decompiled code setting up ChaCha20-Poly1305 context

Looking a bit deeper into the library’s documentation, we see that the crypto algorithm’s key size must be 
32-bytes with 2 different nonce sizes. The 12-byte nonce is used for the standard ChaCha20-Poly1305 
variant, while the 24-byte nonce is used for the XChaCha20-Poly1305 algorithm. 

From this, it is a valid assumption that the 24-byte slice buffer allocated in Figure 8 will be used as the 
nonce for the program to encrypt/decrypt with XChaCha20-Poly1305.

Page 6 of 13

https://pkg.go.dev/golang.org/x/crypto/chacha20poly1305


Figure 10: Nonce sizes in ChaCha20-Poly1305 library documentation

In the next part, we see that the program is calling a function in the chacha20poly1305 library, passing in 
a data buffer with the name main_encryptedFlagData along with its size of 181548 bytes. This size is 
stored in memory at address 0x59A4F8. The 24-byte nonce buffer is also passed as a parameter. 

Without doing more digging, we can make another educated guess that the program is calling a function to 
decrypt the encrypted flag data using XChaCha20-Poly1305 with the key and nonce from the checksum 
input.

Page 7 of 13



Figure 11: Decrypting flag data with XChaCha20-Poly1305

After the decryption finishes successfully, the program calculates the SHA256 checksum of the decrypted 
data.

Figure 12: Generating the SHA256 hash of the decrypted data

Finally, the program compares the user’s input for the “checksum” prompt with the SHA256 checksum of 
the decrypted flag data.

If they do not match, the program prints “Maybe it’s time to analyze the binary! ;)” and 
terminates.

Figure 13: Checking if the user’s input is the SHA256 hash of the decrypted flag

This tells us that the user’s input must be the SHA256 hash of the decrypted flag data, and that the SHA256 
checksum is used as the 32-byte XChaCha20-Poly1305 key to decrypt the flag. We should also note that the 
first 24 bytes of the SHA256 checksum is also used as the nonce in the algorithm.

Page 8 of 13



However, knowing this is not enough to recover and decrypt the flag. We would need the decrypted data to 
get its SHA256 hash, but we can not get the decrypted data without having the checksum to use as the key. 

Fortunately, there is also a second condition where the program is calling the function a and checking for 
the return value. When calling the function below, the program passes in the decrypted data’s SHA256 
checksum with its length as the parameters.

Figure 14: XOR-ing the SHA256 hash with “FlareOn2024”

In this subroutine a, the program compares the SHA256 checksum to ensure that the data is decrypted 
properly. First, it converts the SHA256 checksum string into a slice of bytes and XOR-encodes that with the 
XOR key “FlareOn2024”. 

Then, the XOR-encoded result is Base64-encoded and compared to the string 
“cQoFRQErX1YAVw1zVQdFUSxfAQNRBXUNAxBSe15QCVRVJ1pQEwd/WFBUAlElCFBFUnlaB1ULByRdBEFd
fVtWVA==”.

Page 9 of 13



Figure 15: Checking the SHA256 hash to make sure the flag is decrypted properly

Since both Base64 and XOR encodings are reversible, the correct SHA256 hash can be derived by 
Base64-decoding the string 
“cQoFRQErX1YAVw1zVQdFUSxfAQNRBXUNAxBSe15QCVRVJ1pQEwd/WFBUAlElCFBFUnlaB1ULByRdBEFd
fVtWVA==” and XOR-decoding the result with the key “FlareOn2024”. 

This can quickly be done in CyberChef, which results in the original SHA256 hash 
“7fd7dd1d0e959f74c133c13abb740b9faa61ab06bd0ecd177645e93b1e3825dd”.

Figure 16: Retrieving the correct SHA256 hash using CyberChef

Page 10 of 13



Retrieving the Flag
As the correct checksum has been recovered through static analysis in our binary analysis tool, we can 
provide the correct hash when prompted.

Figure 17: Providing the correct checksum input to the program

When the correct input is provided, nothing much happens. The program simply prints the message 
“Noice!!” before terminating. With this, additional analysis must be performed to find the challenge flag.

In the final part of the program’s main function, the malware calls the API os.UserCacheDir to retrieve the 
default root directory that stores user-specific cached data. On Windows, this path is the 
%LocalAppData% path. The program then proceeds to write the decrypted data content to the file 
REAL_FLAREON_FLAG.JPG in the %LocalAppData% folder.

Page 11 of 13

https://pkg.go.dev/os#UserCacheDir


Figure 18: Writing the flag file to disk

Beside reading the decompiled Golang code , the flag’s location can also be retrieved by setting up 
ProcMon and monitoring the program’s file operations.

Figure 19: ProcMon filter to find the flag’s destination

Page 12 of 13



Unset

Figure 20: ProcMon view showing where the flag is written

Below is the image REAL_FLAREON_FLAG.JPG in the %LocalAppData% directory, which gives us the flag 
of Th3_M4tH_Do_b3_mAth1ng@flare-on.com.

Figure 21: The challenge’s flag

Final Flag

Th3_M4tH_Do_b3_mAth1ng@flare-on.com

Page 13 of 13


	Flare-On 11 Challenge 2: checksum
	Overview
	Challenge Static Analysis
	Retrieving the Flag
	Final Flag


