
Flare-On 11 Challenge 4: FLARE Meme Maker 3000
By Moritz Raabe (@m_r_tz)

Overview
This FLARE On challenge is an HTML page containing an obfuscated JavaScript script. To solve it, reverse 
engineers need to deobfuscate and understand the embedded script.
This writeup focuses on the challenge key components and does not describe all functionalities in detail. The 
main analysis tools we use are browser Developer tools and CyberChef – both run within FLARE VM.

Basic Analysis
The provided �le contains HTML, CSS, and obfuscated JavaScript code. Opening the page shows the content 
shown in Figure 1 allowing users to create memes.

Figure 1: running the challenge �le in a browser

Page 1 of 3

https://github.com/mandiant/flare-vm


Unset

JavaScript Deobfuscation
The �le’s HTML and CSS code doesn’t provide useful information. So, the �rst order of business is to 
understand the obfuscated JavaScript code. A�er beautifying the code (e.g. using the CyberChef recipe 
JavaScript Beautify), we can make a bit more sense of the script. The experienced eye will also spot that the 
code appears to be the output of JavaScript obfuscator – an open source and commonly used obfuscator.

Luckily for us, there also exists an open source deobfuscator project: Obfuscator.io Deobfuscator (already 
part of FLARE-VM). We extract the obfuscated code into a separate �le and run the deobfuscator tool on it:

obfuscator-io-deobfuscator obfuscated.js -o deobfuscated.js

The tool does a great job of recovering JavaScript code making it much easier to understand. Granted, this 
small challenge can also be analyzed without deobfuscating the entire script. Note that the JavaScript 
contains an irrelevant Base64 encoded binary meant to brie�y distract the overambitious analyst 🙂.

Analyzing the Deobfuscated Code
The deobfuscated code starts with several objects de�ning script data – including the string captions used to 
create memes. The end of the script is where the functions are de�ned. One of them contains a Base64 
encoded string (Q29uZ3JhdHVsYXRpb25zISBIZXJlIHlvdSBnbzog) that decodes to 
“Congratulations! Here you go: “. Just before that, a string is concatenated if certain conditions are 
met (see Figure 2).

Figure 2: Deobfuscated JavaScript code to perform condition check and string concatenation

We use the browser Developer tools to recover the relevant data as shown in Figure 3.
Page 2 of 3

https://github.com/javascript-obfuscator/javascript-obfuscator
http://obfuscator.io


Unset

Figure 3: Using the Developer tools to recover relevant data

Piecing this information together with the HTML de�nitions, we can recreate the expected meme data that 
gets veri�ed here. As shown in Figure 4, a�er selecting the right meme template and entering the recovered 
captions, we see an alert box providing the challenge �ag: 
wh0a_it5_4_cru3l_j4va5cr1p7@flare-on.com.

Figure 4: Alert box with the challenge �ag a�er recreating the expected meme

Final Flag

wh0a_it5_4_cru3l_j4va5cr1p7@flare-on.com

Page 3 of 3


	Flare-On 11 Challenge 4: FLARE Meme Maker 3000
	Overview
	Basic Analysis
	JavaScript Deobfuscation
	Analyzing the Deobfuscated Code
	Final Flag


