
Flare-On 11 Challenge 5: sshd
By Christopher Gardner (@t00manybananas)

Overview
sshd is distributed as a tar archive that is clearly a dump of an entire Linux �lesystem (speci�cally a Docker 
container as evidenced by the presence of the .dockerenv �le but that’s irrelevant to the challenge). As the 
challenge description mentions that the ssh server has crashed, it’s logical to begin looking for coredumps on 
the system. There’s one at /var/lib/systemd/coredump/sshd.core.93794.0.0.11.1725917676, 
which is the default folder for SSHD coredumps on Linux. To examine this coredump, it’s best to use gdb, 
which is thankfully included in the container dump. We can chroot into the container dump and then debug 
the coredump:
gdb sshd /var/lib/systemd/coredump/core.93794.0.0.11.1725917676

Page 1 of 4



Figure 1: Debugging the coredump 

Note that it is possible to examine the coredump outside of a chroot, but this will lead to incorrect memory 
addresses and make the challenge more di�cult (this is because GDB will load shared library segments from 
the libraries present on disk, as the coredump does not actually contain the contents of the libraries).

Apparently the program has crashed by jumping to a null pointer, which most commonly happens a�er 
executing a call or jmp to a NULL function pointer. Indeed, examining info frame shows that the saved 
rip is 0x7f4a18c8f88f, and that the instruction right before it is a call to rax (which is NULL).

Page 2 of 4



Figure 2: info frame dump and disassembly at rip

From here, the next goal is to �nd out what module 0x7f4a18c8f88f belongs to. GDB makes this very 
annoying to do, but scrolling through info files shows that this address appears in the .text section of 
/lib/x86_64-linux-gnu/liblzma.so.5. We can then look through info proc mappings to 
determine that the base address of this �le is 0x7f4a18c86000 (interestingly, the name of this is (deleted) 
in info proc mappings). We can then grab this �le from the archive and load it into IDA.

Part 2: The Library
Once we rebase the program to the base address in memory we can begin statically analyzing the crash in 
IDA. Our crashing instruction is contained within the function sub_7F4A18C8F820, and the crash is due to 
the program a�empting to resolve and call the symbol RSA_public_decrypt (with a space at the end), 
which is invalid. Only sub_7F4A18C8ADD0 references this function indirectly. This function calls 
sub_7F4A18C8F1B0 with the arguments RSA_public_decrypt and the address of our crashing function. 
It’s easy to guess here that this function is hooking RSA_public_decrypt, and examining 
sub_7F4A18C8F1B0 yields some strings that lead us to the open source plthook library, available at 
h�ps://github.com/kubo/plthook. 

The hook function is relatively simple, it �rst checks that the current process is running as root, and that the 
�rst integer of the second argument is equal to 0xC5407A48. If that succeeds it uses parts of the second 
argument as the ChaCha20 key (a2 + 4) and nonce (a2 + 36) to decrypt a blob, and then executes that blob as 
shellcode.

For this part of the challenge, it’s quite easy to extract the key and nonce from the coredump since the 
address of the second argument is stored in rbp and le� intact at the time of the crash. This provides the key 
943df638a81813e2de6318a507f9a0ba2dbb8a7ba63666d08d11a65ec914d66f and nonce 
f236839f4dcd711a52862955 for us to decrypt the shellcode o�ine.

Page 3 of 4

https://github.com/kubo/plthook


Unset

Part 3: The Shellcode
If we analyze the shellcode in IDA, we can see that it is quite simple. It establishes a connection to 
10.0.2.15:1337, receives a key, nonce, and �lename, then encrypts the contents of that �le and sends that 
to the server. The encryption algorithm here is extremely similar to ChaCha20, the only di�erence is that the 
constant used to initialize the cipher state is changed from expand 32-byte k to expand 32-byte K 
(note the capitalized K at the end). Possible strategies to deal with this include emulation or just having a sharp 
eye.

From here, all that’s le� is to extract the ciphertext, key, and nonce, and then decrypt them. It’s possible to 
manually calculate all the o�sets from the value of rsp at the time of the crash, but the easiest way is to �nd 
something that looks like a �lename (in this case /root/certificate_authority_signing_key.txt) 
and calculate relative o�sets from that. Extracting these o�sets gives us the following data:

ChaCha20 key: 8d ec 91 12 eb 76 0e da 7c 7d 87 a4 43 27 1c 35 d9 e0 cb 87 89 93 b4 
d9 04 ae f9 34 fa 21 66 d7

ChaCha20 nonce: 11 11 11 11 11 11 11 11 11 11 11 11

Ciphertext: A9 F6 34 08 42 2A 9E 1C 0C 03 A8 08 94 70 BB 8D AA DC 6D 7B 24 FF 7F 24 
7C DA 83 9E 92 F7 07 1D 02 63 90 2E C1 58

Decrypting this with the custom ChaCha20 implementation gives us the �nal �ag.

Final Flag

supp1y_cha1n_sund4y@flare-on.com

Page 4 of 4


	Flare-On 11 Challenge 5: sshd
	Overview
	Part 2: The Library
	Part 3: The Shellcode
	Final Flag


