

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
1

Flare-On 5: Challenge 10 Solution – golf.exe

Challenge Author: Ryan Warns

Summary

This challenge leverages the Intel VT-x instruction set to create a very thin hypervisor which interacts with the
usermode binary to implement the algorithm for the challenge. The VT-x (and analogous AMD-V) are Virtual
Machine Extensions VMX), instruction sets that provide a framework that developers can use to monitor hardware
access, allowing a straightforward way to implement a hypervisor. Although not seen in the wild, the idea of using
this instruction set in malware was first published at IEEE Oakland in May 20061 and at BlackHat 20062. This
challenge implements a Type 2 hypervisor which is a hypervisor implemented as a driver running on a host
operating system. Type 1 hypervisors run directly on hardware. As we will see in this challenge, the complexity of
the instruction set and large amount of indirection require background knowledge in order to pinpoint what code to
pay attention to.

Triage

CFF explorer reveals that golf.exe is a 64-bit Windows executable. strings.exe reveals several interesting
strings.

SYSTEM\CurrentControlSet\Control
SystemStartOptions
TESTSIGNING
ZwLoadDriver
ntdll
SeLoadDriverPrivilege
SYSTEM\CurrentControlSet\services\fhv
ErrorControl
Start
Type
\??\%s\fhv.sys
ImagePath
\Registry\Machine\System\CurrentControlSet\Services\fhv
C:\fhv.sys
ZwUnloadDriver
Too bad so saddd %x
%s@flare-on.com
RSDS|78.VR

1 https://ieeexplore.ieee.org/document/1624022

2 https://www.blackhat.com/html/bh-usa-06/bh-usa-06-speakers.html#Rutkowska

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
2

t:\objchk_win7_amd64\amd64\golf.pdb

Figure 1 - Strings found in golf.exe

Several of these strings already give us a clue as to what the binary might do:

 ZwLoadDriver3 is the internal Windows API call that loads a driver specified by the registry

o Note the string SeLoadDriverPrivilege as well

 The \Registry\Machine\... string is the registry key corresponding to Sservices on the system

o \Registy\Machine\ is the naming schemed used in registry paths by kernel code and
corresponds to HKLM

o The CurrentControlSet\Services registry hive lists all installed services on the system. This
key is usually automatically created and populated when you run sc start

 Multiple references to fhv.sys might point us at a driver file that the binary uses

o .sys files are PE files that are meant to be loaded and run in kernel/ring-0 space.

Using these strings as a starting point we can open golf.exe in IDA. Since we already have a hunch that the binary
may be starting a binary we can use cross references to those strings as a place to start looking. The driver-related
strings from Figure 1 are all referenced in the subroutine at address 0x100001700. Looking at the API usage in this
function we can see the following:

 Dynamically resolving ZwLoadDriver

 Making several Registry-related API calls, likely setting up the services key described earlier

 At address 100001A0B we can see a call instruction using the ZwLoadDriver function pointer

 Deleting a file named fhv.sys

Following the cross references to sub_0x100001700 up to the main entry point we can see there are several
branches that the code can take before running this subroutine. If we run procmon we won’t see any events related
to the registry keys or driver file name. If we assume or guess that golf.exe accepts the key on the command line
we will notice different error messages

3 https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/nf-wdm-zwloaddriver

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
3

At this point we are unlikely to get any more information from basic analysis and should start debugging the binary.

Initial Analysis – golf.exe

Since we know just running the executable doesn’t reach the function we believe loads the driver it’s usually a good
idea to step out to the main function to see where our sample is diverging from what we want; there might be an
environment or other check happening that’s causing the binary to run different functionality.

The main function is at address 0x100001C10. The first branch checks to see if argc is greater than two. This
confirms our guess above that the sample is accepting input on the command line. The second branch happens in
response to a strlen call on the second command line argument. If the result of strlen is anything other than 24
the binary exits. We can confirm this on the command line:

Figure 2 - Output when running golf.exe with command line parameters

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
4

Figure 3 - golf.exe run with the correct length input parameter

We now know the sample accepts a string of length 24. The next subroutine called is at address 0x100001A60. We
see this function using the string fhv.sys and a reference to the subroutine at 0x100001700, our potential driver
load function.

The first branch happens in response to sub_100001680. This function is relatively small, executing the cpuid
instruction before calling sub_1000014C0 and comparing the result to 0x5C139D95. The cpuid instruction is used

to query information about processor and what functionality it supports. The documentation4 for this instruction says
that the information being queried is indicated by the value in the EAX register (also called a leaf in some

documentation). This function sets eax to 0x40000001 before executing the cpuid instruction. Some light googling5
will reveal that the leaves between 0x40000000 and 0x400000FF are reserved for hypervisor software use and
have no defined meaning to the processor.

The result of this function is passed to sub_0x1000014C0. This routine also takes a global buffer at 0x10004B140
and runs an unknown algorithm on the input. In cases like this the first place we should usually consult is PEiD’s
KANAL plugin, or a similar automated cryptography scanner. Doing so will reveal that this algorithm looks like a
CRC32 calculation.

4 https://c9x.me/x86/html/file_module_x86_id_45.html

5 https://lwn.net/Articles/301888/

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
5

Figure 4 - CRC32 confirmation on the result of CPUID

The CRC of the result from CPUID 0x40000001 should be 0x5C139D95. During analysis this is not the case, but
luckily for us the binary will continue if the CRC does not match.

The next subroutine only performs a registry query to check the contents of
HKLM\\SYSTEM\\CurrentControlSet\\Control\\SystemStartOptions. If this registry key contains the string
TESTSIGNINGON then this function returns true.

Per MSDN6, TESTSIGNING is a boot option that can be set to loosen the signature requirements for kernel code.
Normally .sys binaries are required to be signed using a certificate signed or validated by Microsoft. If the .sys file
is not signed or the signature is invalid the user will be prompted with an error message and the binary will not load.

We can set the signature policy using the bcdedit command and rebooting:

bcdedit -set TESTSIGNING ON

Figure 5 - bcdedit command to enable test signing

Unfortunately, running golf.exe after enabling test-signing results in the same error shown in Figure 3. The last
function to analyze before the driver loading functionality is the subroutine at address 0x1000021C0. This function
is incredibly large and may break IDA’s graph functionality. Fortunately, we can still see the WriteFile API call in
the graph and cross references from this function; we can assume this function drops the .sys file to disk as
C:\fhv.sys before trying to load it. Because we already saw a call to delete the .sys file from disk, stepping over
this function but not running the rest of the binary allows us to pull fhv.sys from the system.

6 https://docs.microsoft.com/en-us/windows-hardware/drivers/install/the-testsigning-boot-configuration-option

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
6

Figure 6 - Function to write fhv.sys to disk

Stepping through our driver-related subroutine at address 0x100001700 allows us to confirm our earlier assumption
that this function is manually creating a services registry key before calling ZwLoadDriver. We can set a breakpoint
directly on this call to learn that the driver is failing to load. If we’re using windbg we can use the !error command
to get a description of the return value.

Figure 7 - Error returned from ZwLoadDriver

Based on the error code, namely that the error message doesn’t say anything along the lines of “file not found”, we
can assume that the driver successfully loaded but its entry point failed.

At this point we need to analyze the driver to see why our binary doesn’t continue running, but it would be a good
idea to finish analyzing golf.exe in case it reveals anything we should be on the lookout for when triaging the
driver.

Returning the main function, the sample allocates a buffer of RWX data before copying the byte sequence at
address 0x10004B120. This new buffer is used as a parameter to the subroutines at 0x100001E40, 0x100001F20,

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
7

0x100002000, and 0x1000020E0. Because the buffer is allocated as PAGE_EXECUTE_READWRITE (0x40) we can
disassemble this data as code:

Figure 8 - vmcall code copied to a new buffer

vmcall is not a common instruction because it is part of the Intel VT-x instruction set. The documentation for this
instruction reveals that this it is used to make an unspecified request to a Virtual Machine Monitor (VMM). We will
see later that a VMM is functionally synonymous with a hypervisor. In this scenario this is likely implemented in the
fhv.sys driver.

The functions that take this vmcall pointer all function similarly: after allocating memory: the function allocates RWX
memory, makes several calls using vmcall buffer, and executes the newly allocated buffer.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
8

Figure 9 - Decompilation of sub_100001E40

Because there is no other functionality in golf.exe, the majority of the logic for this challenge must be in fhv.sys,
including an implementation of a some form of hypervisor.

Intel VT-x Instruction Set

Summary

The Intel VT-x instruction set is a set of instructions that enable to processor to be configured to cause traps (referred
to as VM exits in the documentation) on certain events, usually related to accessing hardware. These VM exits
redirect execution to a hypervisor component which can virtualize and manage this hardware. The full instruction

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
9

set is documented in Chapter 24 of Volume 3a in the Intel Software Developer’s Manual7 but there are multiple8

open9 source10 implementations11 of hypervisors of varying complexity to give source code examples.

This section of the manual is meant to serve as a high-level summary of how a Type 2 hypervisor works to give
clarity when analyzing fhv.sys.

Figure 10 - Hypervisor diagram from https://blogs.technet.microsoft.com/chenley/2011/02/09/hypervisors/

The purpose of the VT-x instruction set is to provide a (relatively) easy-to-use framework to instruct the processor
what resources are being virtualized. As an example of a normal use case of where this is needed let’s review how
virtual memory works:

7 https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-
developer-vol-3a-part-1-manual.pdf

8 https://github.com/Bareflank/hypervisor

9 https://github.com/ionescu007/SimpleVisor

10 https://github.com/airbus-seclab/ramooflax

11 https://github.com/tandasat/HyperPlatform

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
10

 Virtual Memory is a set of structures managed by the Operating System and CPU that maps virtual
addresses, the addresses generally used while programming, to physical addresses resident in RAM

 Each process has its own memory map for virtual addresses, so address 0x200000 in calc.exe is different
than address 0x200000 in notepad.exe

 When notepad.exe tries to copy data to virtual address 0x200000 its page table structures dictate that in
RAM this buffer is at physical address 0xd0000

 When calc.exe is executing, it has its own page table structures managed by the control register cr3. When
calc.exe context switches and begins executing on the processor, the value in cr3 is swapped out from the
notepad structures to the calc structures

 Any physical memory used by notepad can be paged out (flushed to disk) while other processes are
executing

 Virtual address 0x200000 for calc.exe maps to physical address 0xea0000

Now consider this scenario with two Virtual Machines running under VMWare Workstation. Basic security principles
dictate that if two virtual machines are running on the system they should be unaware of each other (minus through
networking or other normal system functionality). Each operating system is going to perform the same Virtual-To-
Physical address translation described above. What happens if both operating systems think that they have data at
physical address 0xd0000? There’s only one set of RAM on the system and neither VM would function correctly if
the other could overwrite its data.

This is where the VT-x instruction set comes in. A hypervisor can be instructed to manage access to physical
memory and keep a master record of memory maps of both virtual machines. Effectively this means that when VM
1 accesses what it thinks is physical address 0xd0000 the hypervisor can silently redirect this operation to a virtual
address it has allocated for that VM, and likewise for VM 2.

On modern processors this process is probably implemented via Second Layer Address Translation (SLAT) which
we will explore later in this manual.

Intel VT-x Instruction Set Implementation

Mechanically in a Type 2 hypervisor scenario the instruction set works on a first-come first-served basis. Once VMM
mode has been activated (using the vmlaunch instruction) the hypervisor has complete control over the system,
even superseding the host operating system.

To initialize hypervisor code the following steps are required:

1. Check that a hypervisor isn’t already running (optional)

2. Check that the Hardware and Firmware support VT-x

3. Allocate space for the VMCS (described later)

4. Capture register contexts (needed to support de-virtualizing safely)

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
11

5. Read and initialize multiple MSRs

6. Initialize and allocate EPT structures (if using)

7. Execute a vmxon instruction to enter VMX root mode

8. Set fields in the VMCS to dictate how the hypervisor should function and what conditions should cause VM
exits

9. Execute a vmlaunch command to virtualize a processor

Note that the above steps need to be run for each processor on the system to prevent instability. Also note that the
virtualization instructions are privileged and can only be executed in ring 0.

Recall that earlier we learned that a vmcall instruction causes a VM exit. A VM exit is an event that causes the
CPU to transition from the Virtual Machine (VM) mode, where access to resources are controlled by the hypervisor,
to Virtual Machine Monitor (VMM) mode, where the code executing has full control over the host operating system.
The VMM is the heart of the hypervisor since it implements all the logic on how to manage resources on the system.
The two terms will be used interchangeably for the remainder of this document.

The most crucial data structure when implementing a hypervisor is the Virtual Machine Control Structure (VMCS).
This structure is treated as an opaque blob of memory accessed via the vmwrite and vmread instructions.

Consulting the documentation12 for one of these instructions shows that they take two operands: a field id and a
value.

VMCS fields describe most aspects of the hypervisor including function pointers to call under different
circumstances, conditions on when the CPU should exit to VMM mode, and metadata about the hypervisor. There
are references online13 for the full list of defined constants in the VMCS but the most important fields are:

1. HOST_RIP (0x6C16) – the address that should execute in VMM mode when a VM exit occurs

2. HOST_RSP (0x6C14) – the address of the VMM mode’s RSP, set by the CPU when a VM exit occurs

3. GUEST_RIP (0x681E) – the address the guest (in VM mode) was executing when a VM exit occurred, and
the address that should be executed when the CPU returns from VMM to VM mode

4. GUEST_RSP (0x681C) – the stack address of the guest (in VM mode) when a VM exit occurred, and the RSP
address that should be set when the CPU returns from VMM to VM mode

5. VM_EXIT_REASON (0x4402) – allows the VMM to query why a VM exit occurred

6. VM_EXIT_INSTRUCTION_LEN (0x440C) – the length of the instruction that caused the VM exit

12 https://www.felixcloutier.com/x86/VMWRITE.html

13 https://developer.apple.com/documentation/hypervisor/1469436-
virtual_machine_control_structur?language=objc

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
12

7. EPT_POINTER (0x201A) – a pointer that accepts a data structure describing the EPT structure for this
hypervisor

a. Fully documented in section 24.6.11 of Volume 3c of the Intel manual

This information gives us enough context to continue analyzing the challenge binary.

Analysis of fhv.sys

fhv.sys is a driver loaded into ring 0, meaning we need to set up kernel debugging. Kernel debugging on windows
is done using windbg. A full guide is not included with this walkthrough, but there are two main ways to connect a
kernel debugger:

 Follow the steps outlined on MSDN14 to debug over a (virtual) serial cable

 Use VirtualKD15 which handles the debugger communication using custom binaries

Once our kernel debugger is connected we can use the sxe command to break when images (PE files) are loaded:
the OS will break into the debugger when the image is loaded into memory. We can then rebase our IDA IDB and
take a VM snapshot before continuing our analysis.

14 https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/attaching-to-a-virtual-machine--kernel-
mode-

15 http://virtualkd.sysprogs.org/tutorials/install/

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
13

Figure 11 - Using the sxe command to start debugging a driver

DriverEntry is the main entry point for .sys files. For this binary DriverEntry is at offset 0x1060. This binary is
large and based on the amount of logic that needs to run to virtualize a CPU, likely implements a lot of logic that is
unlikely to be useful to analyze. Based on our earlier analysis we know that the entry point for the driver failed with
status code 0xC035001E. Searching for as an immediate value will show us where the driver sets this return code.

Figure 12 - Search results for our error code

sub_14000B73C performs several checks can result in returning this error code. This function is performing the
initialization checks detailed from steps 1 and 2 from the Intel VT-x Instruction Set Implementation section
above. Debugging this function will reveal that the check that’s failing due to the result of a cpuid instruction at offset
0xB777. The driver tests if bit 5 in ECX is set, which consulting the documentation is checking if VMX is supported.
In a default configuration of VMWare Workstation this bit is unset and the driver exits because VMWare is already
virtualizing this system.

VMWare supports nested virtualization, which can be enabled by adding the following lines to your VMX file:

hypervisor.cpuid.v0 = "FALSE"
mce.enable = "TRUE"
vhv.enable = "TRUE"

Figure 13 - Options to enable nested virtualization

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
14

Restarting our VM after this allows us to load the driver successfully, which we can verify by rerunning golf.exe
and checking the error code.

Figure 14 - A new error code from running the executable

Now that the challenge is running correctly we can revisit how the key is verified. Because most of the code is going
to be standard hypervisor initialization code it is not beneficial for us to analyze it. However, since we know that the
VMCS is crucial to VMM operation it may be useful to know what values are set so we know how the hypervisor is
configured. Using the search function of IDA we can see that there are only two subroutines that use the vmwrite
instruction, one of which looks like a utility function.

Figure 15 - Text search for the vmwrite instruction

The bp command in windbg can accept a series of commands to run when a breakpoint is hit. We can use this
command to output all fields set in the VMCS. At a minimum, we want to record the value for HOST_RIP (0x6C16),
which is the address where VMM execution begins when a VM exit happens. The HOST_RIP value for this binary
is set to is 0x1400013E6.

bp <vmwrite address> “r rcx; r rdx; g”

Figure 16 - Breakpoint command to dump operands for vmwrite and continue

Since the only code we haven’t fully analyzed in golf.exe is the functions performing vmcall instructions we
should start with how the driver handles VM exits. Recall from the last section that the VM_EXIT_REASON VMCS field
is used for the hypervisor to query why the CPU entered VMM mode. Repeating the immediate value search trick
from Figure 15 shows us only one reference to that constant, which is passed into sub_14000E7CA. This function
performs a vmread and returns the result.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
15

Figure 17 - Decompilation of the VM_EXIT_REASON function

This function looks like the function that handles all supported VM exits. Since we’ve already crawled through
enough documentation we can go back to golf.exe and set a breakpoint at the point that the vmcall instructions
are executed. Since the usermode code looks like the vmcall instructions do something to populate the buffer that
we end up executing, we can dump this data after the first vmcall (from the first of the four functions):

Figure 18 - Dump of the data returned from the first vmcall

… which doesn’t look like code, so we can dump the data after the second vmcall:

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
16

Figure 19 - Dump of the data returned from the second vmcall

… which still doesn’t look like code. Your analysis machine may perform slightly differently and show that the
memory is inaccessible (all bytes show as ??). Note that dumping the same address in the kernel debugger will
show all zeroed data. Despite all of this, we can step over the call to execute this address without throwing any
exceptions or crashing. While we’re here, we can also verify that each of the four functions using the vmcall
instruction accepts a position in the input string as a parameter:

 sub_100001E40 accepts the command line string starting at position 0

 sub_100001F20 accepts the command line string starting at position 5

 sub_100002000 accepts the command line string starting at position 14

 sub_1000020E0 accepts the command line string starting at position 19

It seems likely that these four subroutines run the algorithm to verify our key, but we need to understand the format
of the data in this buffer to confirm.

The full list of VM exit reasons are listed in Appendix C of Volume 3D of the Intel Manual16. The vmcall instruction
corresponds to exit reason 0x18 which in this driver calls sub_140003810. Consulting golf.exe we can see that:

 The second vmcall always uses the constant 0x13687451 as a parameter

 The third vmcall always uses the constant 0x13687453 as a parameter

 The first vmcall, which we saw returned unknown data to us, changes for each of the four functions

16 https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-
developer-vol-3d-part-4-manual.pdf

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
17

Each of our four vmcall functions uses a different constant as a parameter: 0x13687060, 0x13687061,
0x13687062, 0x13687063. Analyzing the vmcall handler shows a case statement switching on these constants,
causing the hypervisor to copy one of four large buffers to a usermode address and XOR it with 0xE2. The data
post-XOR matches what was shown in the usermode debugger in Figure 18.

For vmcalls 0x13687451 and 0x13687453 the hypervisor resolves a physical address and calls the subroutine at
address 0x1400026B0. It is nonobvious what this routine does, performing some bit shifts and masks before
returning a pointer to an unknown data structure.

We don’t have any context for knowing what this function is doing. Based on other information we know, there are
a few ways we can proceed with our analysis:

 We can trace all VM exits using the windbg command described in Figure 16 to see what happens during
the rest of the execution

 We know that the buffer from golf.exe is executed somehow. There is a GUEST_RIP VMCS field that
contains the instruction pointer when the VM exits or resumes execution. The hypervisor can update this
field when handling and exit to skip over the instruction which caused the fault

o We can use the VMCS field GUEST_RIP (0x681E) as a search term for a clue on where to look

 If we logged the vmwrite instructions earlier, we might notice that the parameter to sub_1400042C8
matches what is written to the EPT_POINTER (0x201A) VMCS field

 Reverse where this data comes from. After tracing back to the HOST_RIP address (detailed below) we’ll
discover that this structure comes from the stack when a VM exit occurs.

These methods will eventually lead us to the subroutine at address 0x1400023AC, which is a large switch statement.
Each function in the switch statement sets data in an unknown data structure before adjusting the instruction pointer
using a vmwrite. To understand what this function is doing we need to understand the structure being modified.

 sub_1400023AC is eventually called from sub_1400013E6. There is another switch statement implemented in
sub_140004528 which switches on the result of a vmread from VMCS field 0x4402, VM_EXIT_REASON. That
means that sub_140004528 contains all the logic for how this hypervisor should handle any VM exit.

The case statement that results in calling sub_1400023AC stems from a VM exit reason 0x30, which is an EPT
violation.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
18

Figure 20 - VM Exit handler function

Extended Page Tables (EPT) is Intel’s implementation of Second Level Address Translation17 (SLAT). SLAT allows
the hypervisor to allocate segments of virtual memory that pretend to be the physical addresses for a guest which
is running in VM mode. EPT is supported in the hardware; when a guest accesses something it thinks is a physical
address a VM exit automatically occurs and the hypervisor can work with the EPT structures to emulate the
operation.

Because we know something is unusual with the memory in this buffer (not showing up as code after the first
vmcall, not showing up as code or not at all after the second vmcall) and because we know the EPT_POINTER
value is being used before the bitmask in sub_0x1400026B0, we can deduce that this routine is updating the page
contents and permissions in the EPT structures. In the case of this binary this is modifying the permissions of this
memory to be nonreadable, nonwritable, and nonexecutable. Because EPT, like the rest of a hypervisor’s
implementation, is meant to be invisible to the guest operating system, the guest can mark this page however it
wants, but accessing the memory in a way that is noncompliant with the EPT permissions causes a VM exit with
code EPT_VIOLATION (0x30). The hypervisor can then handle or modify the memory access according to its
memory permissions.

The structure modified in sub_1400023AC is passed as a parameter starting with sub_14000302C. This subroutine
is called by sub_1400013E6 which was set as the HOST_RIP VMCS field. This function appears to be inline assembly
which pushes all general-purpose registers and uses the stack location of these pushes as a parameter.

17 https://en.wikipedia.org/wiki/Second_Level_Address_Translation

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
19

Figure 21 - HOST_RIP entry point saving GP registers

When a VM exit happens the only thing that the CPU does is redirect execution to the value of the HOST_RIP
VMCS field and set the stack to the value of the HOST_RSP VMCS field. Everything else, including saving and
restoring the guest context, is the hypervisor’s responsibility. The parameter to sub_14000302C is a stack structure
of the form:

typedef struct _GUEST_REGISTERS
{
 ULONG_PTR r15;
 ULONG_PTR r14;
 ULONG_PTR r13;
 ULONG_PTR r12;
 ULONG_PTR r11;
 ULONG_PTR r10;
 ULONG_PTR r9;
 ULONG_PTR r8;
 ULONG_PTR rdi;
 ULONG_PTR rsi;
 ULONG_PTR rbp;
 ULONG_PTR rsp;
 ULONG_PTR rbx;
 ULONG_PTR rdx;

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
20

 ULONG_PTR rcx;
 ULONG_PTR rax;
} GUEST_REGISTERS, *PGUEST_REGISTERS;

Figure 22 - Saved guest register state on vm exit

After returning from sub_14000302C the registers are popped before a vmresume instruction is executed, returning
to VM mode. The code in sub_14000302C uses a pointer to this structure and builds a new structure, which is
passed down through the VM exit handling subroutines:

typedef struct _GUEST_CONTEXT
{
 GUEST_REGISTERS *gpRegs;
 PVOID guestFlags; // from vmread of GUEST_RFLAGS
(0x6820)
 PVOID guestRip; // from vmread of GUEST_RIP
(0x681E)
 PVOID currentIrql;
 PVOID currentIrql2;
 bool unknown;
} GUEST_CONTEXT, *PGUEST_CONTEXT;

Figure 23 - Saved guest context on vm exit

Returning to the vmcall handling function you might notice that the pointer being passed to the unknown parsing
function is at offset 0x88 in the GUEST_REGISTERS structure, which is beyond the end of the data (and thus farther
down the VMM stack) than we’ve reversed so far. To understand what’s on the stack before saving the guest
register state we would need to reverse how the HOST_RSP is set, which happens in the subroutine at address
0x14000BBCC. Because we’ve already figured out that this structure is related to EPT data this is left as an exercise
to the reader.

Now that we know the data being passed through the VM exit handling code we can return to the large switch
statement from before. Note that if you found this function earlier in your analysis you could skip/ignore most of the
machinations of how the instruction set works and only focus on the code path leading here.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
21

Figure 24 - Decompilation of sub_1400023AC

This subroutine reads one byte from the address causing the EPT violation and performs different functionality
depending on its values. Recall from Figure 18 the first byte we know was returned to golf.exe and executed is
0xC8, which results in calling sub_1400020CC.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
22

Figure 25 - Function handling byte 0xC8

This subroutine:

1. Reads the instruction pointer which caused the EPT violation

2. Takes the second byte at this address and passes it as a parameter to sub_140001608

3. Dereferences the return from this function and stores the value at GUEST_RSP plus the DWORD value
starting at byte 3 from the violation address

4. Increments the GUEST_RIP VMCS field by 6

o This means when we re-enter VM mode RIP is 6 bytes forward

sub_140001608 is called by most of the functions in the EPT switch routine; this implementation is the last piece of
information we need to know to solve the challenge. This function takes the GUEST_CONTEXT structure and the
second byte from the violation address as parameters. Based on the value of this byte, the subroutine returns the
address of a field in the GUEST_REGISTERS structure.

The first 6 bytes from Figure 6 are: 0xC8 0xF0 0x08 0x00 0x00 0x00. Based on the previous two subroutines
these bytes are interpreted by the hypervisor as:

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
23

1. 0xC8 – call sub_1400020CC which stores some value at some offset from GUEST_REGISTERS->rsp

2. 0xF0 – used as an index by sub_140001608 to return the address of GUEST_REGISTERS->rcx

3. 0x08 0x00 0x00 0x00 – treated as a DWORD (8) and added to GUEST_RSP->rsp to determine the
address to store the data

This means that to the hypervisor the byte sequence 0xC8 0xF0 0x08 0x00 0x00 0x00 is equivalent in the guest
VM to mov [rsp+8], rcx !

The subroutine at address 0x1400023AC implements a virtual instruction set. The first byte at the guest’s instruction
pointer designates a different translation of an x86 opcode. The data buffers returned from vmcalls 0x13687060,
0x13687061, 0x13687062, and 0x13687063 return sequences of these virtual opcodes and these opcodes
implement four different algorithms which verify the key passed on the command line. In order to solve the challenge
we need to reverse the virtual opcodes, convert them to x86, and then solve each of the four subroutines validating
the key.

We now understand the pieces necessary to solve this challenge. To recap:

 golf.exe accepts a 24-character key on the command line and drops and loads fhv.sys

 fhv.sys (if the system supports it) virtualizes the operating system

 golf.exe runs four subroutines to verify different parts of the key. Each subroutine

o Calls vmcall with a different constant to get a buffer of virtualized opcodes

o Uses vmcall with constant 0x13687451 to tell the hypervisor to mark the buffer from the previous
vmcall as EPT non-executable

o Executes the virtual opcodes

 When golf.exe attempts to execute an EPT-protected page the hypervisor takes over

o A VM exit is cause with VM_EXIT_REASON EPT_VIOLATION

o This results in calling the subroutine at address 0x1400023AC in fhv.sys

o This subroutine reads the violation address, treats the first byte as a virtual opcode, and processes
the virtual instruction by modifying fields in the GUEST_REGISTERS structure and updating the
GUEST_RIP VMCS field

o After handling the exit, the modified registers are restored and vmresume is called to return to the
next virtual instruction

 Note that some opcodes that modify the stack or instruction pointer use vmwrites to
change the guest state

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
24

The Appendices give the full list of virtual opcodes supported by fhv.sys, along with the original source code for
the four algorithms validating the key. Once the opcodes are known the algorithms are simple and reversing them
will yield the key: We4r_ur_v1s0r_w1th_Fl4R3@flare-on.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
25

Appendix 1: Full Virtual Opcode List

Virtual Opcode x86 Equivalent Virtual Opcode Size

0 mov <reg64>, <reg64> 3

1 ret 1

2 mov <reg32>, <reg32> 3

0x17 mov [rsp+<offset>], al 5

0x19 mov <reg32>, [rsp+<offset>] 6

0x1A mov <reg64>, [rsp+<offset>] 6

0x1B mov al, [rsp+<offset>] 5

0x1C movzx <reg32>, [rsp+<reg>…+<offset>] varies

0x1D movsxd rax, [rsp+<reg64>…+<offset>] varies

0x1E movsx <reg32>, [rsp+<reg>…+<offset>] varies

0x1F movsx <reg32>, [<reg64>+<reg64>] varies

0x20 movzxd <reg64>, [<reg64>+<reg64>...] varies

0x30 rep stosb 1

0x40 cmp <reg32>, <reg32> 3

0x41 cmp <reg32>, <val> 6

0x42 cmp [<reg32>+<offset>], <val> 9

0x43 test <reg64>, <reg64> 3

0x44 test <reg32>, <reg32> 3

0x4A lea <reg64>, [rsp+<offset>] 6

0x4B lea <reg64>, [rsp+<offset>] 6

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
26

0x50 jmp 3

0x51 jnz 3

0x52 jz 3

0x53 jbe 3

0x54 jge 3

0xAA push <reg> 2

0xB9 shl <reg64>, <val> 3

0xBA shl <reg32>, <val> 3

0xBB pop <reg> 2

0xBC shr <reg32>, <val> 3

0xBD and <reg64>, <val> 10

0xBE and <reg32>, <val> 6

0xBF xor <reg64>, <val> 10

0xC0 xor <reg32>, <val> 6

0xC1 add <reg64>, <val> 6

0xC2 add <reg64>, reg64> 6

0xC3 sub <reg64>, <val> 6

0xC4 sub <reg64>, reg64> 6

0xC5 xor <reg64>, <reg64> 6

0xC6 mov <reg64>, <val> 10

0xC7 mov [<reg64>], <reg64> 3

0xC8 mov [rsp+<offset>], <reg> 6

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
27

0xC9 mov [rsp+<offset>, <val> 13

0x1D movsxd <reg64>, [rsp+<offset>] Varies

0xD1 add <reg32>, <val> 6

0xD2 add <reg32>, <reg32> 6

0xD3 sub <reg32>, <val> 6

0xD4 sub <reg32>, <reg32> 6

0xD5 xor <reg32>, <reg32> 3

0xD6 mov <reg32>, <val> 6

0xD7 xor <reg32>, [rsp+<offset>] 6

0xD8 mov [rsp+<offset>], <reg32> 6

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
28

Appendix 2: Source code for key algorithm 1

//part 1 - static string cmp "We4r_"

BOOLEAN crackmePart0(char *password)
{
 BOOLEAN retVal = TRUE;
 if(password[0] != 0x57)
 {
 retVal = FALSE;
 }
 if(password[1] != 0x65)
 {
 retVal = FALSE;
 }
 if(password[2] != 0x34)
 {
 retVal = FALSE;
 }
 if(password[3] != 0x72)
 {
 retVal = FALSE;
 }
 if(password[4] != 0x5f)
 {
 retVal = FALSE;
 }
 return retVal;
}

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
29

Appendix 3: Source code for key algorithm 2

//part 2 - XOR match "ur_v1s0r_"
BOOLEAN crackmePart1(char *password)
{
 BOOLEAN retVal = TRUE;
 char keyBuf[9];
 keyBuf[0] = '\x0';
 keyBuf[1] = '\x7';
 keyBuf[2] = '\x2a';
 keyBuf[3] = '\x3';
 keyBuf[4] = '\x44';
 keyBuf[5] = '\x6';
 keyBuf[6] = '\x45';
 keyBuf[7] = '\x7';
 keyBuf[8] = '\x2a';
 unsigned char xorKey = '\x75';

 for(int i = 0; i < 9; i++)
 {
 if((password[i] ^ xorKey) != keyBuf[i])
 {
 retVal = FALSE;
 }
 }

 return retVal;
}

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
30

Appendix 4: Source code for key algorithm 3

// part 2 – “w1th_” rolling XOR
BOOLEAN crackmePart2(char * password)
{
 BOOLEAN retVal = TRUE;
 char key = '\x80';
 //char modifier = '\x52';
 char keyBuf[5];
 keyBuf[0] = '\xa5';
 keyBuf[1] = '\xb1';
 keyBuf[2] = '\x02';
 keyBuf[3] = '\x4c';
 keyBuf[4] = '\xc5';

 for(int i = 0; i < 5; i++)
 {
 char tmpVal = (password[i] ^ key) ^ 0x52;
 if(tmpVal != keyBuf[i])
 {
 retVal = FALSE;
 }
 key = key + 0x52;
 }

 return retVal;
}

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
31

Appendix 5: Source code for key algorithm 4

// part 4 - "CRC" brute force Fl4R3
BOOLEAN crackmePart3(char * password)
{
 BOOLEAN retVal = TRUE;
 ULONG sum = 0;
 int i = 0;

 sum = sum + password[0] + password[1] + password[2] + password[3] + password[4];

 retVal = TRUE;

 if(password[0] != 0x46)
 {
 retVal = FALSE;
 }

 if(password[4] != 0x33)
 {
 retVal = FALSE;
 }

 if(0x16b != sum)
 {
 retVal = FALSE;
 }

 if((password[2] + password[3]) != 0x86)
 {
 retVal = FALSE;
 }

 if((password[1] + password[2]) != 0xa0)
 {
 retVal = FALSE;
 }
 return retVal;
}

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
32

