

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 1

Flare-On 5: Challenge 2 Solution - UltimateMinesweeper.exe

Challenge Author: Nick Harbour

Description

You are presented with a Minesweeper game board as shown in Figure 1 below. It is a 30x30 grid

containing 900 total squares. The objective of minesweeper is to left click on every non-mine square.

You can right-click on a square to mark it as a mine. As you can see from the “Mines Remaining”

counter, there are total of 897 mines, leaving only 3 non-mine squares.

Figure 1: Game Board

You could attempt to solve this challenge by systematically clicking each square, but it would be

extremely frustrating and time-consuming. When an incorrect square is clicked, the player is presented

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 2

with the following dialog and the game exits.

Figure 2: Fail Dialog

If you left-click on the three empty squares you will instead be presented with a success dialog screen.

Determining exactly which three squares (they are the same each time) will require reverse

engineering the binary.

Solution

The tool of choice for most .NET reverse engineering tasks is dnSpy. This tool allows decompilation,

debugging and code editing. Loading this program into dnSpy you will see that there are only a few

classes to examine: the MainForm class which represents the base GUI application; a class named

Program which is standard in .NET binaries and is the starting point for execution; a MineField

class which acts as a data model for our virtual mine field; a MineFieldControl class which

contains the functionality for displaying and receiving input; classes named SuccessPopup and

FailurePopup which are dialog windows that are displayed if the player won or lost the game.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 3

Analysis of the Program class shows that it simply loads and displays the MainForm. The decompiled

code is shown in Figure 3 below.

Figure 3: Program.Main()

Turning now to look at the MainForm class. The decompiled code of the initializer function shown in

Figure 4 below. This function provides a good view of how the class functions, it creates a MineField

object, calls the AllocateMemory() function with the minefield as a parameter, then sets a

number of properties on the MainForm class and creates a StopWatch object and a List of revealed

cells.

// UltimateMinesweeper.Program
// Token: 0x06000034 RID: 52 RVA: 0x00003219 File Offset: 0x0000141
9
[STAThread]
private static void Main()
{
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new MainForm());
}

// Token: 0x06000009 RID: 9 RVA: 0x00002204 File Offset: 0x00000404
public MainForm()
{
 this.InitializeComponent();
 this.MineField = new MineField(MainForm.VALLOC_NODE_LIMIT);
 this.AllocateMemory(this.MineField);
 this.mineFieldControl.DataSource = this.MineField;
 this.mineFieldControl.SquareRevealed += this.SquareRevealedCall
back;
 this.mineFieldControl.FirstClick += this.FirstClickCallback;
 this.stopwatch = new Stopwatch();
 this.FlagsRemaining = this.MineField.TotalMines;
 this.mineFieldControl.MineFlagged += this.MineFlaggedCallback;
 this.RevealedCells = new List<uint>();
}

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 4

Figure 4: MainForm()

When a player clicks on a cell the MineFieldControl object calls the callback function supplied

here named SquareRevealedCallback. The decompilation for this function is provided below in

Figure 5.

Figure 5: SquareRevealedCallback

We can see that this callback function checks the value of a Boolean property within the MineField

object named BombRevealed that will be true if any of the revealed squares were a bomb. In

practicality, there could only be one revealed bomb as the game would end as soon as the first bomb is

revealed. You may be tempted to just modify the code at this point to always show the success dialog

or skip the BombRevealed check, but as we will see later on this would lead you to not getting the

// Token: 0x0600000C RID: 12 RVA: 0x00002348 File Offset: 0x0000054
private void SquareRevealedCallback(uint column, uint row)
{
 if (this.MineField.BombRevealed)
 {
 this.stopwatch.Stop();
 Application.DoEvents();
 Thread.Sleep(1000);
 new FailurePopup().ShowDialog();
 Application.Exit();
 }
 this.RevealedCells.Add(row * MainForm.VALLOC_NODE_LIMIT + colum
n);
 if (this.MineField.TotalUnrevealedEmptySquares == 0)
 {
 this.stopwatch.Stop();
 Application.DoEvents();
 Thread.Sleep(1000);
 new SuccessPopup(this.GetKey(this.RevealedCells)).ShowDialog
();
 Application.Exit();
 }
}

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 5

correct key. The BombRevealed property decompilation is provided in Figure 6 below.

Figure 6: BombRevealed Property

It would be possible at this point to inspect the MinesPresent array at runtime to determine which

values in the two-dimensional array were set to false. You could inject code using dnSpy to iterate over

the array and notify you of the free cells with console output or a message box.

The program uses some stealthy function and variable naming to obscure the initial cell population

function and list of free cells. The AllocateMemory() function we saw in the MainForm initializer

in Figure 4 is actually the function responsible for populating the MineField with true and false

values depending on if a mine is in each cell, it does not allocate memory.

// Token: 0x17000009 RID: 9
// (get) Token: 0x0600001E RID: 30 RVA: 0x00002BBC File Offset: 0x0
0000DBC
public bool BombRevealed
{
 get
 {
 int num = 0;
 while ((long)num < (long)((ulong)this.Size))
 {
 int num2 = 0;
 while ((long)num2 < (long)((ulong)this.Size))
 {
 if (this.MinesPresent[num2, num] && this.MinesVisib
le[num2, num])
 {
 return true;
 }
 num2++;
 }
 num++;
 }
 return false;
 }
}

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 6

Figure 7: AllocateMemory()

We can see here that this function iterates twice over a value named VALLOC_NODE_LIMIT, which

you can see in dnSpy is just the number 30 (remember that our minefield is 30x30). Each time through

the loop it will set a bool value in an array named GarbageCollect, within the MineField object,

at the current cell coordinates to true unless the list object named VALLOC_TYPES contains the value

returned by the function DeriveVallocType(), which is given the current coordinates to

compute. The GarbageCollect array is property that simply obfuscates access to the MineField

array. The VALLOC_TYPES array and related constants are shown in the decompilation fragment in

// Token: 0x0600000A RID: 10 RVA: 0x000022DC File Offset: 0x000004D
C
private void AllocateMemory(MineField mf)
{
 for (uint num = 0u; num < MainForm.VALLOC_NODE_LIMIT; num += 1u
)
 {
 for (uint num2 = 0u; num2 < MainForm.VALLOC_NODE_LIMIT; num
2 += 1u)
 {
 bool flag = true;
 uint r = num + 1u;
 uint c = num2 + 1u;
 if (this.VALLOC_TYPES.Contains(this.DeriveVallocType(r,
 c)))
 {
 flag = false;
 }
 mf.GarbageCollect[(int)num2, (int)num] = flag;
 }
 }
}

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 7

Figure 8 below.

Figure 8: VALLOC_TYPES Array

The VALLOC_TYPES array contains three values that are named constants defined in the code above

the array. These three values are shown in dnSpy as decimal values but correspond to the hex values

0xFFFFFC80, 0xFFFFFD81, and 0xFFFFFEF2. In order for the AllocateMemory() function to

set a given cell to be clear of a mine, the value computed by the DeriveVallocType() function

must match one of these three values. Let’s now examine the DeriveVallocType() function as

shown in Figure 9 below.

 Figure 9: DeriveVallocType()

This function takes the row and column values (r and c) and forms them into an absolute cell index

// Token: 0x04000007 RID: 7
private static uint VALLOC_TYPE_HEADER_PAGE = 4294966400u;

// Token: 0x04000008 RID: 8
private static uint VALLOC_TYPE_HEADER_POOL = 4294966657u;

// Token: 0x04000009 RID: 9
private static uint VALLOC_TYPE_HEADER_RESERVED = 4294967026u;

// Token: 0x0400000A RID: 10
private uint[] VALLOC_TYPES = new uint[]
{
 MainForm.VALLOC_TYPE_HEADER_PAGE,
 MainForm.VALLOC_TYPE_HEADER_POOL,
 MainForm.VALLOC_TYPE_HEADER_RESERVED
};

// Token: 0x0600000B RID: 11 RVA: 0x0000233A File Offset: 0x0000053
A
private uint DeriveVallocType(uint r, uint c)
{
 return ~(r * MainForm.VALLOC_NODE_LIMIT + c);
}

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 8

value by multiplying the row by the number of cells per row (VALLOC_NODE_LIMIT, 30) and then

adding the column number to it. This function then returns the bitwise inverse of that value. The

bitwise inverses of the three VALLOC_TYPE values described before are as follows:

 ~(0xFFFFFD81) = 0x27E = 638 = (21 * 30) + 8 = Row 21 Column 8

 ~(0xFFFFFC80) = 0x37F = 895 = (29 * 30) + 25 = Row 29 Column 25

 ~(0xFFFFFEF2) = 0x10D = 269 = (8 * 30) + 29 = Row 8 Column 29

You may have noticed that the SuccessDialog constructor takes a string argument. This argument

is a key that will be displayed as the actual flag for the challenge. The key is derived from the

GetKey() function which takes as input the list of revealed cells. The construction of this function

does not need to be examined here but its values are set such that only a list of revealed cell values

that exactly matches the above listed cells will properly produce a key value in the proper format

(ending with “@flare-on.com”). If you had reverse engineered the binary to figure out which were

the empty cells and revealed all three empty cells then this function would produce the key properly

for it to be displayed in the success screen. If you modified the code or the minefield and got to the

success screen without exactly these three cells then the value in your key field would be incorrect and

most likely illegible garbage.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 9

Figure 10: Final Winning Minefield

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 10

Figure 11: Victory Screen and Final Key

