

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 1

FLARE On 5: Challenge 3 Solution – FLEGGO

Challenge Author: Moritz Raabe (@m_r_tz)

Introduction

FLEGGO.zip is a ZIP archive containing 48 32-bit PE binaries. This challenge requires reverse engineers

to identify how the binaries are related, how they work, and what information needs to be extracted

from them to obtain the final flag. Malware analysts encounter this scenario when dealing with many

similar malware samples. After figuring out a malware family’s functioning, writing a program to

automatically extract its interesting data saves a lot of manual analysis work. This LEGO themed

challenge demonstrates that automation of repetitive tasks is an important skill for reverse engineers.

This write-up describes a mixture of static and dynamic analysis methods. We will go beyond the basics

that are necessary to solve the challenge. Hopefully, this provides some helpful tips for other

automation tasks.

This write-up relies mainly on the following tools:

 IDA Pro, https://www.hex-rays.com/products/ida/
 FLARE VM, https://github.com/fireeye/flare-vm
 Python, https://www.python.org

Basic Analysis

Basic Static Analysis

The ZIP archive contains 48 executable files with seemingly random names. Each binary has a file size

of 45,056 bytes. We analyze the basic static features of one of the binaries, namely

1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe. The executable’s imports indicate that the file may

access its resource section and create files. The file’s resource section contains a resource of type

BRICK. The resource data has a size of 0x8150 bytes. It starts with a wide character string, followed by

likely encoded data and many zero bytes.

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 2

We use FLOSS [1] to extract strings from the binary. Figure 1 shows the interesting strings that provide

an idea of the binary’s functionality. FLOSS does not identify any obfuscated strings for this sample.

BRICK
%s\%s
IronManSucks
Oh, hello Batman...
I super hate you right now.
What is the password?
%15ls
Go step on a brick!
Oh look a rainbow.
Everything is awesome!
%s => %s
BRICK
ZImIT7DyCMOeF6
Figure 1: Interesting strings from 1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe

Basic Dynamic Analysis

To get a basic understanding of the program we run 1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe.

Figure 2 shows that the application prompts for a password. After entering an arbitrary string, the

program terminates with the message “Go step on a brick!”. From the extracted strings we

deduce that there is a correct password that results in a different behavior.

Figure 2: Running a binary from FLEGGO.zip

File Comparison

We observe identical static and dynamic features between multiple binaries from the archive. A binary

diffing tool such as VBinDiff [2] identifies the differences between files. Figure 3 shows the differences

between two binaries. The differences start at file offset 0x2AB0 (10,928). After several bytes the files

are identical again. All differences lie in the files’ resource sections.

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 3

Figure 3: Binary difference between two binaries

We suspect that the files only differ in their resource data. We confirm this using the Linux cmp

command and the Bash script shown in Figure 4. The script shows the first byte-wise difference

between the file 1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe and the other binaries. For almost all

files the first difference is encountered within the resource section at byte 10,929. We can use similar

commands to confirm that all files are identical after the resource data.

$ for f in $(ls .); do cmp 1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe $f; done
1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe 1JpPaUMynR9GflWbxfYvZviqiCB59RcI.exe differ: byte 10929, line 23
1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe 2AljFfLleprkThTHuVvg63I7OgjG2LQT.exe differ: byte 10929, line 23
1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe 3Jh0ELkck1MuRvzr8PLIpBNUGlspmGnu.exe differ: byte 10929, line 23
1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe 4ihY3RWK4WYqI4XOXLtAH6XV5lkoIdgv.exe differ: byte 10929, line 23
<snip>
Figure 4: Bash script to identify the first binary difference between files

Although we can solely rely on byte-wise comparisons here, real-world malware may require more

advanced techniques. This includes function comparisons on assembly level using tools like BinDiff [3]

or Diaphora [4].

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 4

Advanced Analysis

We disassemble the executable file 1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe using IDA Pro. The

tool automatically recognizes the main function where we recognize the password prompt, the failure

output “Go step on a brick!” and the suspected success case with output "Everything is

awesome!". Based on our knowledge from executing the binary, we identify the function at offset

0x401510 as wprintf and the function at offset 0x4014C0 as wscanf. Figure 5 shows the disassembled

main function in IDA Pro.

Figure 5: Disassembled main function of 1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 5

The function at offset 0x401050 copies 0x8150 bytes (the size of the resource data) from the BRICK

resource into global memory. We define an array named ResourceData at the respective address in

the file’s .data section (see Figure 6). The cross-references to the copied data then show us where the

program uses it.

Figure 6: Defined array that stores the resource data

If IDA Pro only displays cross-references to the beginning of the data, increase the “Cross reference

depth” via Options – General… – Cross-references (see Figure 7). By default, the value is 16 bytes.

Alternatively, we can use the text search feature to see where the program accesses the data (ALT+T or

Search – text… – search for ResourceData, select Find all occurrences).

Figure 7: Modifying IDA Pro's cross reference depth

The program references ResourceData in the function at offset 0x4012D0. This is the first function

called by main. Here the program initializes parts of the ResourceData to zero. The data appears to

contain multiple fields that we are going to analyze in more detail later.

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 6

After the call to wscanf at offset 0x40135C, the program passes the user input as a wide character

string to the function at offset 0x401240. Based on the function’s return value, the program either

prints the friendly recommendation to step on a brick and terminates (return value 0) or continues its

execution (all other return values).

The function at offset 0x401240 performs an inlined wide character string comparison between the

string IronManSucks and the user input. If the strings are equal, the program prints "Oh, hello

Batman..." and returns 0 (error case). Otherwise, the program compares the user input to the

beginning of the copied resource data. If both strings are equal, the function returns 1 and program

execution continues. For this binary the resource data starts with the string ZImIT7DyCMOeF6.

Figure 8 shows the program’s output when provided the correct password. In addition, the application

creates an image file in the executable’s current directory. Figure 9 displays the created PNG image.

Performing the same steps for other binaries provides identical results. Each binary creates a different

image file and provides output that associates the file name to a letter.

Figure 8: Executing the binary with the correct password

Figure 9: Created PNG image file 65141174.png

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 7

The program implements the file creation in the function at offset 0x401100. The disassembly in Figure

10 shows that the program prints two strings after the image file has been created. The association

between filename and letter uses fields from the resource data. Lastly, the program returns a WORD

from ResourceData offset 0x4A.

Figure 10: References to ResourceData offsets at the end of the program’s main function

Challenge Solutions

Executing a binary with the correct password provides us an image file and an association between the

file name and a letter. Each image includes a number that indicates the letter’s position in the

challenge’s flag. Now we could solve the remaining binaries and recover the solution by hand. We

could also write a script that runs each program with the correct password and processes their

outputs. Both solutions then require us to manually associate the letters and their respective offsets.

The following sections describe an in-depth program analysis including details on how to recover the

resource data structure, and the usage of a script to automatically extract the final flag.

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 8

In-depth Analysis

We analyze the few functions that have not been already identified. The function at offset 0x4010B0

references multiple ResourceData offsets and calls two functions. The first function (0x401080)

contains a small loop with a non-zeroing XOR instruction at offset 0x401097. This function performs a

NULL-preserving byte-wise XOR using three arguments that are passed to it using Microsoft’s

__fastcall calling convention: a pointer to a buffer (ecx), a length (edx), and the key byte (on the

stack). This function is used to XOR decode 32 bytes at resource data offset 0x20 using key byte 0x85

and 10 bytes at resource data offset 0x40 using key byte 0x1A.

The second function (0x401660) takes four arguments: the user input (the correct password); a pointer

to ResourceData offset 0x50; a DWORD from ResourceData offset 0x4C; and, again, a pointer to

ResourceData offset 0x50. The function makes two interesting calls. The function at offset 0x401540

contains several small loops and uses the constant 0x100 while it modifies a buffer. The function at

offset 0x4015D0 uses the generated buffer and performs various data moves and a non-zeroing XOR

instruction. These are good indicators for the RC4 algorithm. The first function performs the key-

scheduling algorithm (KSA) followed by the pseudo-random generation algorithm (PRGA). Hence, the

function at offset 0x401660 RC4 encrypts/decrypts data with a provided password.

Table 1 shows the identified fields from the resource data given our current analysis results.

Offset Description Length in bytes

0x0 Password 0x20 (32)

0x20 Unknown (XOR encoded) 0x20 (32)

0x40 Unknown (XOR encoded) 0xA (10)

0x4C Length RC4 encrypted data 4

0x50 RC4 encrypted data Variable
Table 1: Identified ResourceData fields

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 9

The cross-references to ResourceData help us to recover the remaining data elements. In the function

at offset 0x401100 we see that ResourceData offset 0x20 is used to create the file path of the

dropped file, offset 0x50 is the start of the data buffer, and offset 0x4C stores the buffer length.

In the main function, ResourceData offsets 0x20 and 0x40 are used to format the output “%s => %s”.

Offset 0x20 is the filename and offset 0x40 is the letter (part of the final flag). ResourceData offset

0x4A stores a WORD that the program returns when terminating successfully. Figure 11 shows the

recovered ResourceData structure.

struct _ResourceData {
 WCHAR Password[0x10];
 WCHAR EncodedFilename[0x10]; // XOR encoded, key 0x85
 WCHAR EncodedLetter[0x5]; // XOR encoded, key 0x1A
 WORD ReturnValue;
 DWORD DataSize;
 BYTE Data[DataSize]; // RC4 encrypted using Password
};
Figure 11: ResourceData structure

Table 2 shows the recovered values for the file 1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe.

Offset Description (Decoded) value for
1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe

0x0 Password ZImIT7DyCMOeF6

0x20 Filename (XOR encoded) 65141174.png

0x40 Letter (XOR encoded) w

0x4A Return value 7

0x4C Length RC4 encrypted data 0x47ED

0x50 RC4 encrypted data <PNG image data>
Table 2: Recovered resource data values for 1BpnGjHOT7h5vvZsV4vISSb60Xj3pX5G.exe

Extracting and decoding the resource data for multiple binaries shows that the return value fields and

the numbers in the created images are equal. This allows us to order the final flag letters automatically

using the return value as an offset without manually inspecting the image files.

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 10

Figure 12 shows the final structure definition in IDA Pro.

Figure 12: Final _ResourceData structure definition

We apply the defined structure in IDA Pro to the ResourceData offset by modifying its type via the Y

key (see Figure 13). Alternatively select the address and go to Edit – Struct var… (ALT-Q).

Figure 13: Applying the created structure to the global ResourceData offset

Figure 14 shows the annotated main function in IDA Pro including the applied structure definition.

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 11

Figure 14: Annotated disassembly of the application’s main function

Python Solution Script

Figure 15 lists a Python script to automatically extract the resource data and recover the final flag from

all 48 binaries. The script uses the vstruct Python module to parse the binary resource data. vstruct

is part of the vivisect project [5]. The article at [6] explains the vstruct module’s installation and

usage. The Python script RC4 decrypts the image data which is not necessary to solve the challenge.

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 12

"""
Solution script for FLARE On 5, 2018
Challenge 3, FLEGGO

Author: Moritz Raabe, moritz.raabe@fireeye.com, @m_r_tz

Example run:
python extract_bricks.py /path/to/dir/with/unzipped/FLEGGO.zip
The final flag is: mor3_awes0m3_th4n_an_awes0me_p0ssum@flare-on.com
"""

import os
import sys
import logging

import vstruct
from vstruct.primitives import v_wstr, v_bytes, v_int16, v_int32

from Crypto.Cipher import ARC4

RES_DATA_OFFSET = 0x2AB0
RES_DATA_SIZE = 0x8150
OUTPUT_DIR = "decrypted_images"

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class BrickConfig(vstruct.VStruct):
 def __init__(self):
 vstruct.VStruct.__init__(self)
 self.password = v_wstr(0x10) # offset 0x0
 self.filename = v_bytes(0x20) # 0x20
 self.letter = v_bytes(0xA) # 0x40
 self.letter_offset = v_int16() # 0x4A
 self.data_size = v_int32() # 0x4C
 self.data = v_bytes(size=0) # 0x50

 def pcb_filename(self):
 """ XOR decode filename """
 self.decoded_filename = bytearray(self.xor_decode(self.filename, 0x85)).decode("utf-
16").replace("\x00", "")

 def pcb_letter(self):
 """ XOR decode letter """
 self.decoded_letter = bytearray(self.xor_decode(self.letter, 0x1A)).decode("utf-
16").replace("\x00", "")

 @staticmethod
 def xor_decode(data, key):
 out = list(data)

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 13

 for i, c in enumerate(data):
 if c != "\0":
 out[i] = ord(c) ^ key
 return out

 def pcb_data_size(self):
 """ Set data length after parsing it """
 self["data"].vsSetLength(self.data_size)

 def pcb_data(self):
 """ RC4 decrypt data """
 rc4_cipher = ARC4.new(self.password)
 self.image_data = rc4_cipher.decrypt(self.data)

 def __str__(self):
 return "password: %s\nfilename: %s\nletter: %s\nletter offset: %d\ndata size: %d" % (
 self.password, self.decoded_filename, self.decoded_letter, self.letter_offset,
self.data_size)

def main():
 if len(sys.argv) != 2:
 print("Usage: %s <path to executable(s)>" % sys.argv[0])
 return -1

 input_path = sys.argv[1]

 if not os.path.exists(input_path):
 logger.error("%s does not exist", input_path)
 sys.exit(-1)

 if not os.path.isdir(input_path):
 exe_file_paths = [input_path]
 else:
 exe_file_paths = []
 for f in os.listdir(input_path):
 if f.endswith(".exe"):
 exe_file_paths.append(os.path.join(input_path, f))

 letters = process_exe_files(exe_file_paths)

 print_final_flag(letters)

def process_exe_files(exe_file_paths):
 """ Return list of tuples with letter offsets and letters """
 letters = []
 if not os.path.exists(OUTPUT_DIR):
 os.mkdir(OUTPUT_DIR)
 for fp in exe_file_paths:
 letters.append(extract_resource_data(fp))
 return letters

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 14

def extract_resource_data(file_path):
 """ Create image file and return tuple with letter offset and letter """
 resource_data = get_raw_resource_data(file_path)
 filename, letter, letter_offset, data_size, image_data = parse_resource(resource_data)
 t_file = os.path.join(OUTPUT_DIR, "%02d_%s.png" % (letter_offset, letter.encode("ascii")))
 with open(t_file, "wb") as f:
 logger.debug("Creating %s", t_file)
 f.write(image_data)
 return (letter_offset, letter)

def get_raw_resource_data(file_path):
 """ Return resource data using hard-coded offset and size, could also use pefile module """
 with open(file_path, "rb") as f:
 d = f.read()
 return d[RES_DATA_OFFSET:RES_DATA_OFFSET + RES_DATA_SIZE]

def parse_resource(resource_data):
 """ Return decoded resource data parsed via vstruct """
 brick_config = BrickConfig()
 brick_config.vsParse(resource_data)
 logger.debug("%s", brick_config)
 return brick_config.decoded_filename, brick_config.decoded_letter, brick_config.letter_offset,\
 brick_config.data_size, brick_config.image_data

def print_final_flag(letters):
 flag = []
 for d in sorted(letters):
 flag.append(d[1])
 if len(flag) > 1:
 print "The final flag is: %s" % "".join(flag)

if __name__ == "__main__":
 main()

Figure 15: Python solution script

FireEye, Inc., 601 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 15

Credits

A big shout-out to the LEGO community – especially BrickLink [7]. The instruction images were created

using MLCad 3.5 [8].

Links and Resources

[1] FLOSS, https://github.com/fireeye/flare-floss/

[2] VBinDiff, https://www.cjmweb.net/vbindiff/

[3] BinDiff, https://www.zynamics.com/bindiff.html

[4] Diaphora, https://github.com/joxeankoret/diaphora

[5] vivisect, https://github.com/vivisect/vivisect/

[6] Parsing Binary Data with `vstruct`, William Ballenthin,

http://www.williballenthin.com/blog/2015/09/08/parsing-binary-data-with-vstruct/

[7] BrickLink, https://www.bricklink.com

[8] MLCad, https://www.lm-software.com/mlcad/

