

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 1

Flare-On 5: Challenge 5 Solution – web2point0

Challenge Author: William Ballenthin (@williballenthin)

Challenge five (“web2point0”) tests our ability to reverse engineer WebAssembly modules that execute

in a web browser. The primary hurdles are: finding appropriate analysis tools, learning the

WebAssembly architecture, and reasoning about the logic of the program. Fortunately, WebAssembly

is developed in the open and documentation is easy to find; however, not all the tools we’d want exist

yet. Hopefully this challenge highlights pain points and leads to better tooling for reverse engineers.

TABLE OF CONTENTS

Challenge Five – web2point0 ...1

Initial triage ..2

WABT..7

WebAssembly Studio ...11

IDA Pro plugin for WebAssembly ...15

test.wasm logic analysis ...16

Calling convention ..21

Memory references ...22

Frame pointer ..23

Indirect calls ...28

Appendix: Further resources ...34

Appendix: Common instruction reference ..34

i32.const ...35

get_global ..35

get_local ...36

set_local ...36

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 2

i32.sub ..37

i32.store ...37

i32.load ..38

Initial triage

To begin, we open the challenge archive and find that it contains three files: a HTML document, a

JavaScript resource, and a WebAssembly module. Figure 1 shows the contents in Windows Explorer.

Figure 1- Contents of web2point0.zip

We assume that the entry point into the challenge is the HTML document, so we load it a web

browser. Figure 2 shows index.html rendered using the Firefox browser. It displays a single Emoji

character: 💩.

Figure 2 - index.html rendered in the Firefox web browser

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 3

Since there are no obvious inputs or controls, we review the contents of the HTML source code to see

how the page operates. Figure 3 lists the contents of the HTML document. The HTML document is very

simple: it loads the JavaScript resource named main.js. We’ll have to focus our attention there.

Figure 3 - Contents of index.html

Figure 4 lists the entry point of the JavaScript code in main.js. On line 75, the program

asynchronously loads the contents of the file test.wasm and creates a WebAssembly module from

the binary data. Once the module is created, lines 119 through 143 interact with the WebAssembly

module to check a key provided as the HTTP query string parameter named q. If the client provides the

correct key, the webpage will render 🎉, otherwise, 💩. Figure 5 shows Firefox rendering

index.html once the correct key has been provided. This is our goal!

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 4

Figure 4 - JavaScript entry point

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 5

Figure 5 - Rendered index.html with the correct key

To figure out how to decode the byte array initialized on line 122, we’ll have to extract and analyze the

logic in the WebAssembly module test.wasm. But first, what is WebAssembly, and how do we

analyze a .wasm file?

WebAssembly is a binary instruction format for a stack-based virtual machine. Wasm is designed as a

portable target for compilation of high-level languages like C/C++/Rust, enabling deployment on the web

for client and server applications.

The Wasm stack machine is designed to be encoded in a size- and load-time-efficient binary format.

WebAssembly aims to execute at native speed by taking advantage of common hardware capabilities

available on a wide range of platforms

via: https://webassembly.org/

So, WebAssembly is both a file format and architecture that augments the JavaScript runtime available

on modern web browsers. Its authors designed the format to easily map onto common CPU

architectures, such as x86, during JIT compilation. Therefore, we should expect to recognize the

semantics of many of the common WebAssembly instruction, e.g. i32.sub, i32.gt_u, and

i32.load8_u. The best resources for learning WebAssembly representations are available on

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 6

project’s website here: https://webassembly.org/docs/binary-encoding/.

We can use basic static analysis techniques to triage the WebAssembly file. Figure 6 shows the file’s

header in a hex editor, while Figure 7 enumerates the human-readable ASCII strings (there are no UTF-

16 strings). While there is some noticeable structure in the first 0xA0 bytes (magic header |00 61 73

6D| (“asm”) at offset 0x0 and function names in UTF-8), most of the file contains binary data that is

difficult to parse by hand.

Figure 6 - Hex dump of test.wasm

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 7

Figure 7 - ASCII strings extracted from test.wasm

WABT

Fortunately, there exist utilities to inspect the binary file format. The WebAssembly Binary Toolkit

(https://github.com/WebAssembly/wabt) provides the command line tool wasm2wat that translates a

.wasm file into the human-readable .wat format, as well as a basic decompiler called wasm2c. For

example, Figure 8 lists a portion of the .wat file produced from test.wasm. The .wat format can be

much nicer to review than the raw disassembly, because it collapses expressions that manipulate the

stack and uses whitespace to delimit blocks.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 8

Figure 8 - Human-readable .wat representation of test.wasm

We can use the wasm2c utility to decompile the module into C, which results in the listing shown in

Figure 9. While the format may be more familiar to us, it is clear that the source code has been

mechanically generated with few optimizations applied. Though not very useful in its raw form, we

could potentially compile the C source code into a native binary and analyze the logic using existing

tools like IDA Pro. Figure 10 shows a portion of $func2 from a binary compiled with gcc -O3 on the

decompilation output.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 9

Figure 9 - Output of test.wasm decompiled with wasm2c

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 10

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 11

Figure 10 - Disassembly of program compiled from the decompilation of test.wasm

WebAssembly Studio

Alternatively, we could use the web-based WebAssembly Studio IDE available at

https://webassembly.studio to inspect test.wasm. While this tool was primarily developed for writing

high-level code that compiles into WebAssembly modules, it also exposes features for extracting

.wasm files into interesting formats. For example, Figure 11 shows how the WebAssembly Studio has

extracted test.wasm into the human-readable .wat format with syntax highlighting.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 12

Figure 11 - test.wasm viewed with webassembly.studio

One neat feature of the WebAssembly Studio is that we can invoke Firefox’s SpiderMonkey JIT

compiler on a WebAssembly module and extract x86-64 instructions. This allows us to see how Firefox

would execute test.wasm on a host CPU. For those of us most familiar with x86 assembly, this

representation might be easier to digest.

For example, Figure 12 shows an annotated listing of the x86 instructions generated by SpiderMonkey

for $func2 in test.wasm. In the left column is the raw disassembly, while in the right column are

(human-supplied) notes that indicate an interpretation of the code. If we were to translate this

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 13

interpretation into C, we might end up with the function definition listed in Figure 13. This function of

four parameters validates its inputs and then copies a byte of input into an output buffer. We’re not

sure why, yet.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 14

Figure 12 - JIT-compiled x86 from test.wasm

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 15

Figure 13 - Function source reconstructed from x86 instructions

IDA Pro plugin for WebAssembly

Finally, we could develop our own tools for inspecting the WebAssembly module. For example, while

IDA Pro does not natively support the .wasm file format, we can extend the tool with Python. As the

FLARE team drafted this solution, they developed an IDA Pro loader and processor plugin that enables

support for WebAssembly. This lets us review the logic of test.wasm in a familiar graph mode

without any forward- or backward-compilation shenanigans. Figure 14 displays a portion of $func2 in

IDA Pro with the idawasm plugin enabled. You can download and install the idawasm IDA Pro plugin

from here: https://github.com/fireeye/idawasm.

This graph mode clearly indicates control flow structures such as if and while loops; however, the

plugin is not yet able to collapse stack manipulations. Fortunately, we can add comments and rename

functions, variables, and globals to remind us of functionality. For many of us, IDA Pro may be the

most comfortable interface.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 16

Figure 14 - test.wasm disassembled with IDA Pro and idawasm

Now that we have the means to inspect the WebAssembly module, it’s time to figure out what the

logic does.

test.wasm logic analysis

First, let’s survey the high-level features. There are 11 functions:

 $func1
 $func2
 $func3

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 17

 $func4
 $func5
 $func6
 $func7
 $func8
 $func9
 Match
 writev_c

While $func1 doesn’t do anything, Match is the exported routine invoked by main.js. We’ll

return our attention here in a moment. writev_c is a function exported to main.js and used to

implement the writev system call handler within WebAssembly; this function is likely part of the

runtime framework and probably not yet worth any effort.

As we review the remaining functions, a pattern emerges. The control flow structure of functions

$func2 through $func8 are identical! Figure 15 through Figure 21 compare the control flow graph

overview exported from IDA Pro; notice that they all have essentially the same dimensions and layout.

(If you don’t have access to the idawasm plugin, you can replicate this result by comparing the textual

representation of these functions using the human-readable .wat file). This pattern indicates that the

functions probably have the same logic but may differ in key instructions.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 18

Figure 15 - $func2 control flow

Figure 16 - $func3 control flow

Figure 17 - $func4 control

flow

Figure 18 - $func5 control flow

Figure 19 - $func6 control flow

Figure 20 - $func7 control flow

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 19

Figure 21 - $func8 control flow

By diffing the instructions among these functions, we quickly realize that the functions have changes in

four places: in three immediate constants and in a small region of instructions. For example, Figure 22

illustrates the differences between $func2 and $func6. We can see that $local7, $local14, and

$local30 are initialized with different immediate constants, and that $func6 has additional code to

initialize $local33. Table 1 summarizes the differences among all the related functions.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 20

Figure 22 - Differences between $func2 and $func6

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 21

FUNCTION

NAME

$LOCAL7 $LOCAL14 $LOCAL30 $LOCAL33 NOTABLE

INSTRUCTIONS

$FUNC2 2 0 2

$FUNC3 2 1 2 i32.xor

$FUNC4 3 2 3 i32.xor

$FUNC5 3 3 3 i32.and

$FUNC6 3 4 3 i32.or

$FUNC7 3 5 3 i32.add

$FUNC8 3 6 3 i32.sub

Table 1 - Comparison of function features

This table hints at the primary purpose of each function; however, to really understand what’s

happening, a closer inspection of the logic is required. Let’s break down $func4 in detail over the next

few sections, start with how the WebAssembly calling conventions works.

Calling convention

In WebAssembly, function arguments are pushed onto the operand stack from left to right. Once

control enters a function, arguments can be referenced directly using the get_local instruction (the

runtime uses the function declaration to map N declared parameters into the first N local variable

slots).

A function returns values by pushing them onto the operand stack prior to invoking the return

instruction. While WebAssembly will eventually support multiple return values, the current

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 22

specification supports a single return value.

With this in mind, we can see in Figure 23 that $func4 returns a single value that comes from local

variable $local42. The instruction get_local $local42 pushes the current value of local variable

$local42 onto the top of the stack, and the return instruction returns it.

Figure 23 - Final basic block of $func4

Memory references

As a stack-based machine, WebAssembly instructions cannot access arbitrary entries of the operand

stack – only the top few. For sequences of contiguous data, WebAssembly exposes memory regions

(well, in the current version, a single region) that can be indexed by a base and offset. Instructions such

as i32.load fetch an element from a memory region and push it onto the top of the operand stack,

where it can be manipulated by subsequent instructions.

As a specific example, the instruction i32.load fetches 32-bit unsigned, little-endian integer from a

memory region. To compute the memory offset, the instruction pops from the operand stack a base

offset value and adds to it the immediate constant offset. While the immediate constant offset is fixed,

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 23

the base offset is a result of prior instructions, which enables pointer arithmetic in WebAssembly. For

further information, refer to the second appendix to this solution document that summarizes the

semantics of several other common WebAssembly instructions.

Referring back to Figure 23, we can be even more specific about the return value from $func4. The

32-bit value is read from the memory index $local6 + 0x18, assigned to local variable $local42,

and then returned.

As we scan backwards through the function, it’s easy to find the three basic blocks in which memory

index $local6 + 0x18 is written (The i32.store instruction works just like i32.load, except it

reads an additional value from the operand stack and writes it into the computed memory index).

Figure 24 shows these basic blocks. These cases correspond to the return values 0x69, 0x70, and 0x0,

respectively. It’s reasonable to assume these constants are error codes that indicate the success or

failure of the function.

Figure 24 - Return value set in $func4

Frame pointer

In the example above, the base offsets come from local variable $local6, which we can interpret as

the function frame pointer. The function frame is a construct specific to this compiler (LLVM) and not

part of the WebAssembly specification. The compiler uses the frame pointer to prepare a region of

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 24

function-local memory that can be arbitrarily indexed (remember, the operand stack cannot be

indexed). The setup and teardown of the frame pointer happens in the function prologue and epilogue,

just like in the Microsoft x64 ABI.

Figure 25 and Figure 26 show the prologues of a non-leaf and a leaf function, respectively. Notice that

both fetch the current value of the global variable $global0 (the “top of frame stack” pointer),

allocate a region of 0x20 bytes, and store a pointer to this region in local variable $local6. The non-

leaf function then updates the global variable $global0.

Figure 27 shows the epilogue of a non-leaf function, which de-allocates the function frame and

updates the “top of frame stack” pointer $global0.

Figure 25 - Function prologue of non-leaf function

Figure 26 - Function prologue of leaf function

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 25

Figure 27 - Function epilogue of a non-leaf function

With this new understanding, we can scan through $func4, find memory load and store instructions

that reference offsets relative to the frame pointer $local6, and map out the frame’s layout. For

example, in Figure 28, we can see that the four function parameters are saved off into frame offsets

0x14, 0x10, 0xC, and 0x8. Mapping out the other references leaves us with the layout shown in Figure

29.

Figure 28 - Copying of function parameters into the function frame

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 26

Figure 29 - Function frame layout for $func4

Finally, we can trace how the parameters to $func4 are accessed. The key instructions are listed in

Figure 30. Starting from the top, $param0 is loaded from the function frame and used as a memory

base offset to read a byte. This is a pointer dereference! Therefore, we can infer that the first

argument is a byte array.

The code reads the byte at index 1 from our input buffer, uses a bitmask to ensure we’re dealing with

an eight-bit integer, and stores the value in $local34. Next, the code repeats itself, but this time

reads the byte at index 2, and stores the result in $local38.

With $local34 and $local38, the code XORs the byte values, storing the resulting in $local39.

Finally, the code writes $local39 into the memory index read from $param2.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 27

Figure 30 - Key instructions in $func4

We might summarize this portion of the function with the C source code listed in Figure 31: the code

computes the XOR of two bytes and writes the result into an output buffer.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 28

Figure 31 - Main functionality of $func4

After going back to repeat this style of analysis on the other similar functions, we can recover the

following summaries:

FUNCTION

NAME

PURPOSE

$FUNC2 compute param0[1]

$FUNC3 compute ~(param0[1])

$FUNC4 compute param0[1] ^ param0[2]

$FUNC5 compute param0[1] & param0[2]

$FUNC6 compute param0[1] | param0[2]

$FUNC7 compute param0[1] + param0[2]

$FUNC8 compute param0[1] – param0[2]

Indirect calls

This is great progress! But, how are these functions used? When we search for call instructions, none

reference any of these handler functions. Are they even used?

Fortunately, our effort is not wasted, as we notice an unusual call_indirect instruction within

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 29

$func9. WebAssembly does not allow a compiler to mix code and data, but provides the

call_indirect instruction to support dynamic dispatch. This instruction pops a value off the top of

the stack and uses it to index into the elements table. The elements table contains the indices of

functions that may be invoked indirectly.

For example, consider the elements table [0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8] found in

test.wasm and a call_indirect instruction with the value 0x3 on the top of the stack. The

runtime uses 0x3 to index into the table, fetching value 0x5. This value 0x5 refers to the fifth

function, so the runtime invokes $func5.

Resolving our elements table into a table of function names, we’re left with [$func2, $func3,

$func4, $func5, $func6, $func7, $func8]. These are the handlers we identified above! If

we can figure out which index is placed onto the stack, and where the second parameter comes from,

perhaps we can figure out how the flag is encoded.

The value of local variable $local60 determines the index into the elements table. With enough

patience, we can trace the flow data through other local variables and into $local60. To understand

$func9, the manual approach is probably sufficient. However, if we plan to analyze other

WebAssembly modules, we should consider developing additional tools to simplify our work.

By convention, WebAssembly compilers emit instructions that reference variables in Single Static

Assignment (SSA) form. This is a handout to browser engines, because code that is already in SSA form

is easier to import into analysis systems such as optimizers and JIT engines. Its SSA form that explains

why we see dozens or hundreds of local variables in even the simplest functions.

But as a human, SSA form is tedious to analyze since we must trace operations across many separate

local variables. To help us out, we might develop a WebAssembly emulator that can track instructions

at a symbolic level. This would enable us to collapse a sequence of simple-but-related instructions into

a single complex expression.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 30

The idawasm project includes a WebAssembly code emulator that does just this! To use it, we select a

region of instructions and run the wasm_emu.py script. The script emulates the instructions, simplifies

their effects, and renders the effect to global variables, locals, memory, and the stack. Figure 32 shows

how a function’s prologue is simplified to a single global variable update.

Figure 32 - wasm-emu translation

With an emulator like wasm_emu.py, it’s easier to understand the effects of a basic block of

WebAssembly instructions. If we apply the emulator to the basic blocks of $func9, then we can

quickly infer the following:

- $local60 is the handler index that specifies one of $func2 … $func8
- $local60 contains the value from $frame.field_10, and
- $frame.field_10 contains the value from

memory[memory[($frame.field_17<<0x2)+0x400]]

Translating this expression into pseudo-C, we’d have something like:

int index = ((int *)400)[$frame.field_17 * 4]

Or, in other words, the 8-bit function frame member at offset 0x17 is used as an index into an array of

32-bit integers located at memory address 0x400.

What’s at address 0x400? The memory at 0x400 is not written by any instructions in test.wasm;

however, the WebAssembly runtime uses the data section to initialize 0x1C bytes starting at 0x400,

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 31

as seen in Figure 33. Looks like this is yet another translation table to assist with dynamic dispatch. In

summary, $frame.field_17 indexes into table at 0x400, which indexes into the elements table,

which resolves to our handler routines. Neat!

Figure 33 - Memory initialization from data section

To find the contents of $frame.field_17, we trace back a bit further, finding:

- $frame.field_17 contains $frame.field_3f & 0xF, and
- $frame.field_3f contains memory[$frame.field_1c]

So, the function index comes from the lower nibble of $frame.field_3f, which is the value

dereferenced from $frame.field_1c. In pseudo-C:

byte index = ((byte *)$frame.field_1c)[0] & 0xF.

And what is $frame.field_1C? Figure 34 shows that it’s initialized to $param0, and Figure 35

shows that it’s incremented with each pass through the loop.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 32

Figure 34 - Initialization of frame member at offset 0x1C

In pseudo-C: $frame.field_1c = $frame.param0;

Figure 35 - Update of frame member at offset 0x1C

In pseudo-C: $frame.field_1c += $frame.field_8;

After chasing down a few details (that are left as an exercise for the reader), we can infer that

$frame.field_1C is a pointer to the encrypted blob. The lower nibble of the byte it points to

specifies the handler to invoke, and the handler manipulates subsequent bytes (e.g. ADD, XOR, NOT,

etc.). Then, $frame.field_1C increments by the number of bytes consumed. The key comparison

routine ensures that characters from the user-provided key match the data decrypted from the blob.

With this in mind, we can develop the script to dump the decrypted key shown in Figure 36; Figure 37

shows us solving challenge five successfully!

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 33

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 34

Figure 36 - Decoder script and decrypted key

Figure 37 - Successfully recovering the key

Appendix: Further resources

- Project homepage: https://webassembly.org/
- Design documents: https://github.com/WebAssembly/design
- The WebAssembly Binary Toolkit: https://github.com/WebAssembly/wabt
- The WebAssembly Studio: https://webassembly.studio/
- IDA Pro loader and processor module: https://github.com/fireeye/idawasm
- Python parser and disassembler: https://github.com/athre0z/wasm
- Radare2 support: https://github.com/radare/radare2/tree/master/libr/asm/arch/wasm
- Analysis techniques: https://www.sophos.com/en-us/medialibrary/PDFs/technical-

papers/understanding-web-assembly.pdf

Appendix: Common instruction reference

WebAssembly is a stack-based architecture. Instructions may have up to one immediate operand, and

push and/or pop additional operands from the stack. The following section enumerates the semantics

of instructions commonly encountered when reverse engineering WebAssembly modules.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 35

i32.const

i32.const pushes the immediate constant value onto the top of the stack.

Example:

i32.const V

Bottom of stack

V

Bottom of stack

get_global

get_global pushes the current value of the global variable identified by the immediate onto the top

of the stack.

Example:

get_global 0

Global 0 G0

Global 1 G1

Global 0 G0

Global 1 G1

Bottom of stack

G0

Bottom of stack

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 36

get_local

get_local pushes the current value of the local variable identified by the immediate onto the top of

the stack.

Example:

get_local 0

Local 0 L0

Local 1 L1

Local 0 L0

Local 1 L1

Bottom of stack

L0

Bottom of stack

set_local

set_local pops the value off the top of the stack and assigns it to the local variable identified by the

immediate.

Example:

set_local 0

Local 0 L0 Local 0 V

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 37

Local 1 L1

Local 1 L1

V

Bottom of stack

 Bottom of stack

i32.sub

i32.sub pops two values off the top of the stack, subtracts one from the other, and pushes the result

onto the top of the stack.

Example:

i32.sub

V1

V0

Bottom of stack

V0 - V1

Bottom of stack

i32.store

i32.store operates on three values: two from the stack, and one immediate value. It pops the two

values (base and V) off the top of the stack, and stores V at the memory cell identified by the sum of

the base value and the immediate operand value (offset).

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 38

Example:

i32.store offset

Memory[n] M0

 Memory[base+offset] V

V

base

Bottom of stack

 Bottom of stack

i32.load

i32.load operates on two values: one from the stack, and one immediate value. It pops the base

value from the top of the stack, and pushes onto the top of the stack the 32-bit integer value from the

memory cell identified by the sum of the base value and the immediate operand value (offset).

Example:

i32.load offset

Memory[base+offset] V

 Memory[base+offset] V

base

Bottom of stack

V

Bottom of stack

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 39

