

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
1

Flare-On 5: Challenge 7 Solution – WorldOfWarcraft.exe

Challenge Author: Ryan Warns

Summary

This challenge implements a 32-bit Windows binary meant to run in a Windows on Windows (WOW) environment.

Analysis

I often start my analysis of samples by quickly skimming the output of static analysis tools and looking through IDA.
Performing basic static analysis on the binary we see that WorldOfWarcraft.exe is a simple 32-bit DLL. Running
strings.exe on this binary shows us several strings that look like they might be related to the key.

USER32
WS2_32
%s@FLARE-On.com
Cannot read payload!
n1ght_4lve$_R_c00L.bin
A_l1ttl3_P1C_0f_h3aV3n
RSDS
R:\objchk_win7_x86\i386\WorldOfWarcraft.pdb

Figure 1 - strings in WorldOfWarcraft.exe

Opening the binary in IDA we can see that the binary doesn’t appear to implement much in the way of functionality,
with the main function only calling 3 subroutines. The subroutine at address 0x1001A60 contains references to our
strings of interest.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
2

I’ve cleaned up the decompilation in the screenshot above to be slightly more accurate. Quickly skimming
sub_1001910 reveals that this function grabs the contents of a file, so it looks like sub_0x1001A60 will read the file
n1ght_4lve$_R_c00L.bin and XOR the contents against the string A_l1ttl3_P1C_0f_h3aV3n. The result of this
operation is compared to a static array on the stack, and if the two match the sample will print our key.

Thinking perhaps you might have gotten lucky and the maintainers of the Flare-On competition uploaded a buggy
sample, you quickly curtail your analysis and calculate the data that the malware is looking for:

Th1s_1s_th3_wr0ng_k3y_

Figure 3 - Result of manually decoding the XOR loop

Additionally, running the sample reveals that not only do we not see the error message in the above decompilation,
but a print message not shown in the IDA. Note that these screenshots are taken from my FLARE VM. Despite
being a 32-bit binary, the sample appears to do nothing if run from a 32-bit operating system.

Knowing that the initial strings are red herrings, we can start by looking at our main function to discover where the
program diverges. The subroutine at address 0x1017D0 loads WS2_32.dll. The subroutines at 0x1001800 and

Figure 2 - Decompilation of function using interesting strings

Figure 4 - Result of running WorldOfWarcraft.exe from the command line on a 64-bit system

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
3

0x1001600 validate that the sample is running in its intended environment. The function at address 0x1001800
calls GetVersionExA to determine the operating system it is executing on. The sample expects the major version
to equal 6 and the minor version to equal 1. Per MSDN these values correspond to Windows 7 or Windows Server
2008.

The function at address 0x1001600 is more complicated. The subroutines at address 0x1001410 and 0x10012A0
perform an export lookup using a simple ROR-based hash algorithm. These subroutines ultimately return the
function NtQueryInformationProcess from NTDLL. This function is called with 26 as the
ProcessInformationClass, which according to MSDN is ProcessWow64Information. This information class
returns whether the target process (the current process in this case) is running in a WOW64 environment: if
ProcessInformation is populated by the function, the process is a WOW64 process.

This information means that this binary expects to be running on a 64-bit Windows 7 operating system, running in
a WOW environment.

Windows on Windows

Microsoft has consistently prioritized backwards compatibility throughout the development of the Windows operating
system. One aspect of this is the Windows on Windows (WOW, or WOW64) subsystem, which provides a small
compatibility layer so that 32-bit executables can run natively on a 64-bit system.

Figure 5 - Difference in loaded modules from 32-bit view (top) vs 64-bit (bottom)

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
4

At a high level, when a WOW process starts the OS creates a normal 64-bit “shell” process with a fake 32-bit
environment, including 32-bit versions of the normal system DLLs (kernel32, ntdll, etc) and important process
structures (PEB, TEB, etc). These structures allow the 32-bit binary to function as it if was running natively, despite
being inside a 64-bit process. We can see how this is constructed by attaching 32-bit and 64-bit variants of windbg
to a WOW process and dumping the loaded DLLs.

Under normal system operation, most Windows APIs end up calling an exported function inside of ntdll. These
functions’ names start with Zw or Nt and their only job is to issue a request to the kernel, usually via a sysenter or
syscall instruction.

kd> u ntdll!ZwCreateFile
ntdll!ZwCreateFile:
00000000`76d61860 4c8bd1 mov r10,rcx
00000000`76d61863 b852000000 mov eax,52h
00000000`76d61868 0f05 syscall
00000000`76d6186a c3 ret

Figure 6 - Disassembly of normal system calls in NTDLL

In a WOW64 environment there are only four 64-bit DLLs loaded: wow64cpu.dll, wow64win.dll, wow64.dll,
ntdll.dll. The emulated 32-bit environment works the same way described above, but instead of making system
calls the 32-bit NTDLL uses a far jump to pass execution to wow64cpu!CpupReturnFromSimulatedCode. wow64cpu
tracks the transitions between 32-bit and 64-bit code and maintains the 64-bit stack for threads executing in WOW
mode.

Figure 7 - Transition from 32-bit (left) to 64-bit code (right)

There are several instructions, including far jumps, which use a segment selector. Other than the FS and GS
segment registers, segmentation is a processor feature generally ignored by Windows which was originally used to
provide a way to segregate and organize memory access on 16-bit systems. To support WOW Windows has set
the appropriate Global Descriptor Table (GDT) entry for the 0x33 segment selector selector shown above. The far
jump shown in Figure 7 is the mechanism used to jump to 64-bit code. Executing a similar instruction with a segment
selector of 0x23 will jump back to 32-bit.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
5

64 Bit Analysis

Now that we understand the execution environment for this sample we can continue our analysis. Despite being an
executable, there is an export named X64Call. This function breaks IDA’s stack analysis and uses the retf
instruction.

This function implements a variant of what was first publicly described as Heaven’s Gate1. Because segmentation
is a feature of the processor, once we know the correct segment selectors to use Heaven’s Gate is a technique to
manually jump between 32-bit and 64-bit code without going through the normal WOW DLLs.

Figure 8 - Disassembly of X64Call

1 http://rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching/

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
6

X64Call is used in subroutine at address 0x1001740. Analyzing this function, we can see that sub_1001740
accesses a global data buffer and XORs it with 0xDEEDEEB; the result of this decoding is a 64-bit DLL. X64Call is
used to jump to 64-bit code and execute offset 0x580 in this decoded DLL.

Offset 0x580 corresponds to the single exported function inside the DLL. This function implements a variant of in-
memory DLL loading, but instead of loading a target DLL the sample is loading itself into memory. The function
begins by resolving several imports using the same hash algorithm detailed earlier in this report. Note that because
this DLL is running in the 64-bit “heaven” area of the process all imports must come from NTDLL. After finding its
PE header in memory, the sample fully loads itself. Note that the subroutine at 0x18000360A is used to jump to the
fully loaded copy of the DLL; the debugger will not regain execution after stepping over this function.

Figure 9 - Function that calculates and jumps to the loaded 64-bit DLL

Once fully loaded, the new DLL begins modifying the 32-bit program state. The function at address 0x180001BA0
once again calls NtQueryInformationProcess with ProcessWow64Information but uses the return value like a
pointer. In a WOW64 process (on this OS) NtQueryInformationProcess returns the 32-bit PEB for this
ProcessInformationClass.

The subroutine at 0x1800023B0 uses this PEB and the same hashing function from previous lookups to resolve the
base address of and functions exported by the 32-bit NTDLL. The subroutine at address 0x180001950 is called
with the address of the 32-bit ZwDeviceIoControlFile. ZwDeviceIoControlFile is the NTDLL API called by
DeviceIoControl, used to send IOCTLs to drivers. This subroutine searches this API’s function body for the byte
0xB8, which corresponds to mov eax, <immediate value>. When using the syscall instruction, EAX contains the
syscall number; this subroutine is meant to dynamically determine the system call number for
ZwDeviceIoControlFile. This technique of dynamically walking code is used in more sophisticated malware
samples for OS compatibility reason.

The subroutine at address 0x180003100 looks similar to the loader functionality from 0x1800032F0, but this function
is used to load another 32-bit binary embedded in the .data section of this DLL.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
7

Figure 10 - 32-bit DLL embedded in the 64-bit DLL's .data section

The syscall number resolved earlier is used in the function at address 0x1800013E0. This function uses the syscall
number resolved earlier to dynamically build a buffer of executable code. The sample then replaces the pointer at
fs:0C0 with this executable code buffer. Per earlier in this report, this offset in the PEB is used when transitioning
between 32-bit and 64-bit code. The dynamic code buffer redirects syscalls from ZwDeviceIoControlFile to the
subroutine at address 0x180001660.

Figure 11 - Dynamically constructed hook code inserted into the PEB

Finally, the function at address 0x1800035A2 searches the stack for a marker. By adding the values 0xCCB9984
and 0x1234567 the sample attempts to obfuscate that it is searching the stack for the value 0xDEEDEEB, the same
XOR key used earlier to decode this DLL. The sample overwrites 4 bytes before this location, which contains the
original return address from X64Call, with address 0x10001220 from the newly loaded 32-bit DLL.

Final Analysis

This second 32-bit binary (helpfully labeled as crackme by the pdb string) is very small; only two functions are called
from the subroutine we’ve returned to. After resolving several function pointers, the subroutine at address
0x10001390 implements the prompt we saw earlier.

This function runs a loop 29 times, where for each iteration the input from the prompt is taken, passed to htons and
used in the connect API (to connect to localhost). After concluding the sample calls recv and prints the result to
the screen in the format we want for our key.

The code does not do anything with the result of the connect call, so it may appear we have no indication of where
to go next. However, a breakpoint on the ZwDeviceIoControlHook we saw earlier will be hit as part of the connect
API call.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
8

Figure 12 - Stack trace from connect to ZwDeviceIoControlFile

Socket functionality on Windows is implemented using I/O requests to afd.sys, the Ancillary Function Driver for
Winsock. This driver implements management functionality for the Windows networking stack. Back in our hook
function, the second parameter to this function is a pointer to the parameter stack from the 32-bit
ntdll!ZwDeviceIoControlFile. According to MSDN2 the sixth parameter to this function is the ioControlCode (IOCTL),
designating what functionality the driver should run. We can see that the hook function switches on and implements
several control codes but the only two we care about for this analysis are 0x12007 and 0x12017 which correspond
to connect and recv, respectively. Note that there are other IOCTLs that end up in the hook code, but they stem
from the socket api.

2 https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntdeviceiocontrolfile

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
9

Figure 13 - Relevant decompilation of the ZwDeviceIoControlFile hook

The IOCTL handler for the connect API interacts with two global buffers. The seventh parameter to
ZwDeviceIoControlFile is the input buffer for this API, which for the connect API call contains the sockaddr_in
structure at offset 0xC. The hook function reads the port from this structure. One of the global buffers, which is also
referenced in the recv IOCTL, is always XORed with the port number. For the other buffer, the hook function
maintains a global counter of the number of times it has been called and if the port matches the current position in
the buffer, the rest of the buffer is XORed with the port.

Now we have a good understanding of all the moving pieces of this binary:

1. The sample runs as a WOW64 process with red herring code

2. The sample uses the function X64Call to jump to the 64-bit part of the process

3. A 64-bit DLL is self-loaded

4. The 64 bit DLL hooks the pointer in the PEB normally used to redirect system calls through
wow64cpu!CpupReturnFromSimulatedCode

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
10

5. The 64 bit DLL then loads and redirects execution to another 32 bit DLL which contains the challenge
prompt

6. The 32 bit DLL goes through a loop calling the connect API to “connect” to whatever port the user enters

7. The connect API is routed through the hooked pointer in the PEB and the 64-bit DLL performs an XOR
operation on one or more lists depending on the port entered

Using the port check as a hint, entering the matching port number in the second list for each 29 iterations will give
us the key: P0rt_Kn0ck1ng_0n_he4v3ns_d00r@flare-on.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com
11

Appendix 1: Full list of correct port numbers

15
88
54
22
124
241
79
100
80
24
53
11
55
200
66
72
94
172
168
37
192
56
184
138
7
18
78
85
27

