

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 1

Flare-On 5: Challenge 8 Solution – doogie.bin

Challenge Author: Matt Williams (@0xmwilliams)

doogie.bin is a boot sector followed by additional supporting sectors.

$ file doogie.bin
doogie.bin: DOS/MBR boot sector

Figure 1 – doogie.bin identification

Using an emulator such as Bochs1 to execute the boot code displays the prompt shown in Figure 2.
Those familiar with a certain television show2 from the early 90s may have appreciated the format of
the journal entry.

Figure 2 – Password prompt

1 https://countuponsecurity.com/2017/07/02/analysis-of-a-master-boot-record-eternalpetya/
2 https://en.wikipedia.org/wiki/Doogie_Howser,_M.D.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 2

Disassembling doogie.bin using IDA Pro3 in 16-bit mode results in the instructions shown in Figure 3.

Figure 3 – Initial disassembly using IDA Pro

Converting the initial bytes to code yields instructions that eventually call the sub_27 function. This
function contains an interrupt 13h instruction. Immediately before this interrupt, the value 42h is
moved into the AH register. This indicates an “extended read sectors from drive” operation4. As part of
this operation a Disk Address Packet (DAP), which contains the arguments needed to perform the
sector read operation, is built on the stack beginning at offset 0x2C. Table 1 below lists the byte
values associated with each DAP element. As a result, seven sectors, beginning at sector 1, are read
into memory address 0x8000. The bootloader jumps to this address after returning from sub_27.

3 https://www.hex-rays.com/products/ida/support/download_freeware.shtml
4 https://en.wikipedia.org/wiki/INT_13H#INT_13h_AH=42h:_Extended_Read_Sectors_From_Drive

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 3

DAP Element Hex Bytes
Size 10

Reserved 00
Sectors to Read 00 07

Destination Address 00 00 80 00
Start Sector 00 00 00 00 00 00 00 01

Table 1: Initial sector read DAP elements

To clean up the disassembly of the seven sectors, we can extract them from doogie.bin, open them
in a separate IDA Pro instance, and alter the base address to reflect the new location in memory. This is
accomplished via the Edit -> Segments -> Rebase program… menu as shown in Figure 4 below.

Figure 4 – Rebasing to 0x8000

The first function called in the rebased disassembly is sub_805B. Note IDA Pro does not interpret
memory addresses in the 0x8000 range correctly. To remedy this, convert the values to offsets using
the “O” key. The data stored at these memory addresses can be converted to strings using the “A” key.
As a result, the sub_805B disassembly should appear similar to Figure 5 below, which allows us to
quickly recognize this function is responsible for printing the password prompt shown in Figure 2.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 4

Figure 5 – Prompt function

The next function of interest is sub_8153 whose disassembly is shown in Figure 6 below.

Figure 6 – sub_8153 disassembly

At 0x8159, interrupt 1Ah5 reads the current date from the real time clock. By convention, the month
and day are stored in the DX register and the year is stored in CX. The four-byte date value is written to
0x87EE using the big-endian byte format YY YY MM DD.

The next function, sub_816B, accepts the date value and the hard-coded value 4 as arguments. It uses
the date value as a multi-byte repeating XOR key with length 4 to decrypt a NULL-terminated buffer at
0x8809. Clearly the XOR key varies based on the current date; therefore, you may have correctly
assumed the date from the journal entry is needed to properly decrypt the unknown buffer. This

5 https://en.wikipedia.org/wiki/BIOS_interrupt_call#Interrupt_table

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 5

assumption is addressed later in the solution.

After XORing the unknown buffer at 0x8809, the sample attempts to read user input in sub_80D5.
Examination of the function reveals it accepts a password string of maximum length 20 (WORD value
pushed at 0x8003) which it stores at 0x87F4. The length of the string entered by the user is returned
in the AX register. At this stage our marked-up disassembly of sub_8000 might look something like
Figure 7.

Figure 7 – sub_8000 marked-up disassembly

After reading the password at 0x8018, the XorBuffer function (sub_816B) uses the password as the
multi-byte repeating XOR key to further decrypt the unknown buffer at 0x8809. After clearing the
screen, the unknown buffer is printed and the sample enters an infinite hlt loop.

Thus far we understand two multi-byte XOR keys are used to decrypt the bytes at 0x8809, which are
likely an encrypted solution of some kind. We also understand this unknown buffer is hard-coded and
does not update itself based on the current date; therefore, a specific date is needed to properly
decrypt the solution. Also, given the size of the NULL-terminated buffer (0x49A bytes), the decrypted
solution is unlikely to be the email address we’re after. Instead, considering the function that clears the

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 6

screen at 0x8028, the solution is likely to be in the form of ASCII art.

Assuming the date from the journal entry is the first key, we could XOR-decrypt the unknown buffer
using hexadecimal key 0x19900206. Doing so results in the bytes shown below in Figure 8. Non-
printable characters are represented with a “.” and new-line characters were removed for readability.
Keen observers may have spotted repeated strings like “MALWARE” or “OPERATE” and derived the
correct second XOR key based on surrounding text.

QWH]JYL.ANMAB.YJ]Q^ERATEONMALWYJ]QWH].OTEWVUALWAREQWH]JYL.AcgYTOARE0WH.R.L]?NM8TO.REIOPER
ATEWVUALW8J].OH]JATEONMYTOARG0WH..kL]WNMALOYJEIOPERO.]W>MALWAREIOP]JYTEONUYTWYJ]IOPERAL]W
NMALOYJhcWH]RAT.WV=ALWAR]QWHGRATEONMALWAJ]QOPE.YL5OVUYTO.\EIWH]RATEWVUlfOYJ]QWH5PATEONMAN
.Y.KIOPERATEONUYTOYJ]9MPEJYLEMVU.LOYJEIOP]JYyoWVUA8OY.EIOH]JATEOVUYLWAREIOPERYL]ONMALWAR]
QWPEJYLEWVUALWAJ]Qbz]JYTE;VU.LW8J].OP.JY$EONMALWAREQWHERATEONMYTOAR]QWP]JYTEAUY<zkJ]QOPE&
YL.ONO8TOYJ5KOP]JYL]WVUATOYREIOPERAL]WNMYTOAJ]QWH]J1VhecgAB.YJ]QWH].OTEO@YTOAJ]QOPERATEON
QOP.YJ5KOPEP8L]NYT'CREQWHERATEONMALzkJ]QOP.J.TEWVUATOYREIOH]JATEONMALWA.oQWHERYL]ONUYTWYJ
]QWHEJYLEOVUYT.OREQWH.JYLEAUY.YAREIOPERATK.VU.BWAJ]QWH.\ATheVUYLWYJ]..H]"AL]WNMALOYJEIOPE
WNM.OVUY<UAR.Q?PE+Y.EONMALWA.]QMR]J.T]WVMCTO.RhcWH]RA-
]WVU1NWAJ]QOPERYL]O@YTOYJ]IWH]RATEWVUYTOYJEQWH]JYT]WVMATOYR]QWPEJYLEbd4YT.OREIOPK.YT]WVMA
WVMA]IWH]RAL]WNUYTWARE0W.KRATEONMALWAR<QW^KJY$EWVUALOYJEdePG+YL]WVUYT'CR]QWPERAL]WNO8TOYJ
]QOH]JATEONO8TOYJEIOPERATEOL4YT'CREQWHERYL]OcglfWAREIA.]JYL.O@YT.OREQWH]J.Z.WV.Oa}AREI.H]
"CTEOUYNUYJ.IWH]RCL]WNOYT.lxEIOP]JYTEONMYTOAR]QWP]JYTEWVUALOYJhc.H.R8L]@MAL.YJKGWH5RYL]ON
ONUYTW]Qbz<J1TEM7UYTO1RG0WH5PAT]WVMATOYREQWHhx

Figure 8 – XOR-decrypted bytes using journal date (modified for readability)

Our task is to determine the multi-byte XOR key that will successfully decrypt what is likely an ASCII art
solution. For those new to breaking a repeating multi-byte XOR key (or cryptography in general), I
encourage you to review challenges published by http://cryptopals.com. One of the challenges6
specifically addresses our current situation. There are numerous write-ups published for these
challenges that cover various approaches to solving this problem.

A common first step in breaking a multi-byte XOR key is determining a probable key length. One tool
that assists with this is xortool7. Executing it against our ciphertext using the maximum key length 20
produces the results shown in Figure 9, which indicates the probable key length is 17 bytes. We could
brute-force all 256 one-byte keys, but this does not produce meaningful results. For those curious
about determining probable key lengths using tools like xortool, I encourage to review this blog post8
from Dave Hull.

> python xortool -m 20 ciphertext.bin
The most probable key lengths:
 1: 44.0%
 17: 56.0%
Key-length can be 17*n

6 http://cryptopals.com/sets/1/challenges/6
7 https://github.com/hellman/xortool
8 https://trustedsignal.blogspot.com/2015/06/xord-play-normalized-hamming-distance.html

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 7

Most possible char is needed to guess the key!

Figure 9 – xortool key length result

Unfortunately, providing xortool with a probable most-frequent character (e.g., 0x20) does not
produce an obvious solution as shown in Figure 10.

> python xortool -l 17 -c 0x20 xored.bin
4 possible key(s) of length 17:
qwh}jyteonuatoyj}
qwh}jyteonuytoyj}
qwh}ryteonuatoyj}
qwh}ryteonuytoyj}
Found 4 plaintexts with 95.0%+ printable characters
See files filename-key.csv, filename-char_used-perc_printable.csv

Figure 10 – xortool brute-force result

The same can be said for xortool’s “-o” option, which brute-forces the XOR key by restricting the
plaintext result to printable ASCII characters. However, it does produce possible keys that contain
partial or full strings observed previously, as shown in the xortool output from Figure 11. This output
offers a hint about the correct XOR key.

<cut>
xortool_out\032.out;ioperal7dwvmylware
xortool_out\033.out;ioperal7dwvmalware
xortool_out\034.out;iopejal7dwvmylware
xortool_out\035.out;iopejal7dwvmalware
<cut>

Figure 11 – xortool brute-force possible keys

At this stage it appears we need to devise our own brute-force solution. This will allow us to tailor our
input and desired output, which may reveal interesting patterns that can be used to discover the
correct key. Using the bytes produced by XORing the unknown buffer with the journal date (see Figure
8), we can collect encrypted bytes associated with a given XOR key position within the 17-byte
repeating XOR key. For example, we’ll combine the bytes at offsets 0x00, 0x11, 0x22, etc. into a
single sequence. These bytes will be XORed with the first character of the XOR key. The same will be
done for bytes at offsets 0x01, 0x12, 0x23, etc., which will be XORed with the second byte of the XOR
key. The Python snippet in Figure 12 demonstrates collecting these encrypted sequences for each of
the 17 XOR key positions.

KEY_LENGTH = 17

read current ciphertext from provided file
with open(sys.argv[1], 'rb') as f:
 ciphertext = f.read()

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 8

initialize key position dictionary
encrypted_bytes_by_key_position = {x: "" for x in range(KEY_LENGTH)}

collect encrypted bytes for each key position
for i in range(len(ciphertext)):
 encrypted_bytes_by_key_position[i % KEY_LENGTH] += ciphertext[i]

Figure 12 – Collecting encrypted bytes at each key position

To further illustrate the collection process, Figure 13 below shows encrypted bytes within the
ciphertext to be decrypted by the first byte of the 17-byte XOR key. Notice two characters have a much
higher frequency than others.

00000000 51 51 51 51 30 49 0B 30 49 49 49 63 51 51 49 51 QQQQ0I.0IIIcQQIQ

00000010 49 39 49 49 49 51 51 0B 51 51 51 4B 49 51 51 51 I9IIIQQ.QQQKIQQQ

00000020 4B 51 51 49 51 51 51 49 51 0B 49 51 51 63 51 49 KQQIQQQIQ.IQQcQI

00000030 51 51 49 49 30 51 64 51 51 49 51 49 51 49 49 49 QQII0QdQQIQIQIII

00000040 51 63 47 51 30 51 QcGQ0Q

Figure 13 – Encrypted bytes at key position 0

Once we’ve collected all 17 encrypted byte sequences, we can treat each sequence as being encrypted
with a single-byte XOR key. From there we can determine which single-byte XOR keys produces only
printable ASCII output for each encrypted sequence. The Python snippet in Figure 14 performs this
process. Note the xor_buffer and is_printable functions are not shown for brevity.

determine which keys in range 0x20-0x7E produce ASCII output
for key_pos, encrypted_bytes in encrypted_bytes_by_key_position.iteritems():
 for key_candidate in range(0x20, 0x7E):
 # XOR encrypted bytes with key candidate
 xor_result = xor_buffer(encrypted_bytes, chr(key_candidate))

 # is the resulting string printable?
 if is_printable(xor_result):
 key_candidates_by_position[key_pos].append(chr(key_candidate))

Figure 14 – Finding keys that product printable output

Printing the character representation for each candidate in key_candidates_by_position (Figure
14) results in the list shown in Figure 15. Most key positions have three or fewer possible candidates,
which significantly reduces the number of possible 17-byte keys.

Key Position 0: i, n
Key Position 1: 5, 6, h, o
Key Position 2: , ", #, $, %, &, ', (,), *, +, ,, ., 0, 1, 2, 3, 4, 5, 6, 8, 9, :, ;,
<, =, >, ?, p, s, w
Key Position 3: a, b, e

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 9

Key Position 4: r, u
Key Position 5: a, b, f
Key Position 6: p, s, t
Key Position 7: 8, <, ?, b, e
Key Position 8: 6, h, o
Key Position 9: i, n
Key Position 10: j, m, n
Key Position 11: a, e, f
Key Position 12: 5, k, l
Key Position 13: p, w
Key Position 14: a, f
Key Position 15: , !, ", $, %, &, ', (,), *, +, ,, ., /, 0, 1, 2, 3, 4, 6, 7, 8, 9, :,
;, <, =, >, ?, r, u
Key Position 16: b, e

Figure 15 – Key candidates by position

Next, we’ll examine the plaintext produced by each one of these candidates. Because ASCII art
commonly uses repeating characters, we’ll measure character frequency in the generated plaintext.
The Python snippet in Figure 16 performs these steps and uses the collections module to print the
three most-frequent characters in the plaintext produced by each key position candidate.

for key_pos, encrypted_bytes in encrypted_bytes_by_key_position.iteritems():
 print 'Key Position %d' % key_pos
 for key_candidate in key_candidates_by_position[key_pos]:
 xor_result = xor_buffer(encrypted_bytes, key_candidate)
 top_3_chars = collections.Counter(xor_result).most_common(3)
 print 'Character: %c -> %s' % (key_candidate, top_3_chars)

Figure 16 – Printing character frequency for each key position candidate

Partial results of the Figure 16 code snippet are shown in Figure 17. They reveal common most-
frequent characters across all 17 key positions. Namely, “8” and the space character occur most
frequently for at least one candidate at each position. The same can be said for “?” and “’”.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 10

Key Position 0
Character: i -> [('8', 34), (' ', 21), ('Y', 4)]
Character: n -> [('?', 34), ("'", 21), ('^', 4)]
Key Position 1
Character: 5 -> [('b', 34), ('z', 25), ('>', 3)]
Character: 6 -> [('a', 34), ('y', 25), ('=', 3)]
Character: h -> [('?', 34), ("'", 25), ('c', 3)]
Character: o -> [('8', 34), (' ', 25), ('d', 3)]
Key Position 2
 <cut>
Key Position 3
Character: a -> [('<', 28), ('$', 25), ('f', 4)]
Character: b -> [('?', 28), ("'", 25), ('e', 4)]
Character: e -> [('8', 28), (' ', 25), ('b', 4)]
Key Position 4
Character: r -> [(' ', 27), ('8', 27), ('"', 4)]
Character: u -> [("'", 27), ('?', 27), ('%', 4)]
Key Position 5
Character: a -> [('8', 29), (' ', 26), ('b', 3)]
Character: b -> [(';', 29), ('#', 26), ('a', 3)]
Character: f -> [('?', 29), ("'", 26), ('e', 3)]

Figure 17 – Character frequency

Assuming the ASCII art will contain a significant number of repeated characters, we can group key
position candidates that produced the same most-frequent characters. For example, we can select all
key candidates whose most-frequent characters match “?” and “’”. At key position 1 we’d select
candidate “n”, at position 2 we’d select “h”, and so on. Doing so produces two possible XOR keys listed
in Figure 18.

nhwbufsbhijfkpfub
ioperateonmalware

Figure 18 – Possible XOR keys

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 11

Conveniently, both keys produce a legible ASCII art solution as shown in Figure 19 and Figure 20.

Figure 19 – ASCII art solution generated by the key nhwbufsbhijfkpfub

Figure 20 – ASCII art solution generated by the key ioperateonmalware

Given the more legible solution (Figure 20), we can understand why the uppercase strings “OPERATE”
and “MALWARE” were present in the ciphertext (Figure 8). This is due to the significant number of

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 12

spaces (hex value: 0x20) in the final solution. The result of XORing a lowercase character with 0x20
produces the uppercase equivalent and vice versa. Therefore, the proper key contains the lowercase
strings “operate” and “malware”.

Figure 21 below contains a Python script that may be used to reproduce the brute-force approach
outlined above.

import sys
import collections

KEY_LENGTH = 17

def is_printable(buf):
 for c in buf:
 if ' ' <= c <= '~' or c in '\n\r\t':
 continue
 else:
 return False

 return True

def xor_buffer(buf, key):
 key_len = len(key)
 xored_buf = ""
 for i in range(len(buf)):
 xored_buf += chr((ord(buf[i]) ^ ord(key[i % key_len])))

 return xored_buf

def gen_key_candidate_char_frequency(encrypted_bytes_by_key_position, key_candidates_by_position):
 for key_pos, encrypted_bytes in encrypted_bytes_by_key_position.iteritems():
 print 'Key Position %d' % key_pos
 for key_candidate in key_candidates_by_position[key_pos]:
 xor_result = xor_buffer(encrypted_bytes, key_candidate)
 top_3_chars = collections.Counter(xor_result).most_common(3)
 print 'Character: %c -> %s' % (key_candidate, top_3_chars)

def find_key_candidates_by_position(encrypted_bytes_by_key_position):
 # initialize list of candidates for each key position
 key_candidates_by_position = {x: [] for x in range(KEY_LENGTH)}

 # determine which keys in range 0x20-0x7E produce ASCII output
 for key_pos, encrypted_bytes in encrypted_bytes_by_key_position.iteritems():
 for key_candidate in range(0x20, 0x7E):
 # XOR encrypted bytes with key candidate
 xor_result = xor_buffer(encrypted_bytes, chr(key_candidate))

 # is the resulting string printable?
 if is_printable(xor_result):
 key_candidates_by_position[key_pos].append(chr(key_candidate))

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 13

 return key_candidates_by_position

def extract_encrypted_sequences(ciphertext):
 # initialize key position dictionary
 encrypted_bytes_by_key_position = {x: "" for x in range(KEY_LENGTH)}

 # collect encrypted bytes for each key position
 for i in range(len(ciphertext)):
 encrypted_bytes_by_key_position[i % KEY_LENGTH] += ciphertext[i]

 return encrypted_bytes_by_key_position

def main():
 with open('doogie.bin', 'rb') as f:
 doogie_bytes = f.read()

 # decrypt encrypted buffer using journal date
 date_decrypted = xor_buffer(doogie_bytes[0xA09:0xEA3], '19900206'.decode('hex'))

 encrypted_bytes_by_key_position = extract_encrypted_sequences(date_decrypted)
 key_candidates_by_position = find_key_candidates_by_position(encrypted_bytes_by_key_position)
 gen_key_candidate_char_frequency(encrypted_bytes_by_key_position, key_candidates_by_position)

if __name__ == "__main__":
 sys.exit(main())

Figure 21 – Python script to brute-force possible keys and character frequencies

