)
<OF; reeEye

Flare-On 5: Challenge Solution — leet_editr.exe

Challenge Author: Michael Bailey (@mykill)

More than one player noticed some similarities between this and the challenge | wrote last year. Aside
from some reused ASCll art, leet_editr.exe bears substantive similarities to zsud.exe:itisa
native executable that furtively loads a scripting runtime (read on to see which) and decrypts a script
that calls functions to bind itself to its loader (read on to see how) such that it can’t be run in a normal
scripting environment; it also brings up a user interface that appears to be unrelated to the program’s

runtime. But the devil is in the details.

Executing leet _editr.exe produces a message box warning that you are about to run the coolest

ASCII Art editor on earth, as shown in Figure 1.

Caution: Explosively Meat Program 3

You are about to run the coolest
ASCI Art editor on earth, Continue?

Cancel ‘

Figure 1: Corny warning message
Clicking OK led to disappointment on systems that were running things like IDA Pro or x64dbg (or
under, ahem, “other” circumstances?). True to samples found in the wild, running reverse engineering
(RE) tools can tip off malware or induce it to alter its behavior. You can get around this by executing
leet_editr.exe without any RE tools running, or you can be stubborn about it and find one that |

missed?.

Once you satisfy 1eet_editr.exe, it spawns a copy of Internet Explorer displaying a sinister-looking

ASCII art of Bob Dobbs’ face, as visible in Figure 2.

1 See https://twitter.com/alex_k_polyakov/status/1042844336902299648 and
https://twitter.com/stuxxn/status/1042498255026716672
2 See https://twitter.com/justadrawer2/status/1041040829366726656

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 1

mailto:info@FireEye.com

)
<O Fire Eye

& aboutblank

@ Crypto-Donkeys' ASCIl Art .

+ & | Search.. P~

—.-"-.—=<[Crypto-Donkeys' ASCII Art Editor]>——'"-.-"-.-!

—-'—.-"—.—=<[Crypto-Donkeys ASCII Art Editor]>=—'-.-"-.-"

Figure 2: Leet_ed1itr. exe after dismissing the message box

Viewing the source code in IE reveals JavaScript that implements string hash algorithms and sets the

status div element to some hint text. But the script code seems incomplete because nothing calls

these. Figure 3 display some of the script code.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 2

mailto:info@FireEye.com

)
<O FireEye FLARE

[~ Rl aboutblank X

24 «<script language='JavaScript’>»
25 function hint(s) {

26 document.getElementById(status').innerText = "You''re on to something!’ + s
27 %

28 |

29 function strhash2(s) {

30 // Adapted from:

31 J/ https://stackoverflow.com/questions/7616461/generate-a-hash-from-string-in-javascript-jguery
32 var hash = 8, i, c;

33 for (i=0; i<s.length; i++) {

34 ¢ = s.charCodeAt(i);

35 hash = ((hash << 5) - hash) + c;

36 hash |= @8;

37 L

38 return hash;

39 3

49

41 function strhash(s) {

42 // Adapted from:

Figure 3: JavaScript in source view of Internet Explorer

Basic Static Analysis

There are only a few plain strings of interest in this binary, which are shown in Listing 1.

%d OX%X

You are about to run the coolest
ASCII Art editor on earth. Continue?
Caution: Explosively Neat Program
Running shellcode crouching vbs _hidden_title.asm...
HRESULT ©x%08x

%02x

createtextfile
gimmethatsweetsweetcrazylove

run

getspecialfolder

wimmymebrah
Listing 1: Obligatory strings listing for Leet_editr.exe

The string "Running shellcode crouching vbs _hidden_title.asm..." suggests a few

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 3

mailto:info@FireEye.com

)
<® FireEye F LARE

things:

e VBScript
e A hidden title (what might this mean?)

e Shellcode compiled from assembly language code

The strings CreateTextFile and GetSpecialFolder do correspond to a COM object that is indeed
commonly used in VBScript, namely Scripting.FileSystemObject which is commonly referred to

by script authors as FSO. The remaining strings are either marginally interesting or simply nonsensical.

The next stop for basic static analysis is imports. Here are some of the interesting ones along with a

running commentary of some reasonable inferences they should probably trigger:

e (ColInitialize: COM usage? But where’s CoCreateInstance?

e CryptAcquireContextA, CryptCreateHash, etc.: Cryptographic hashing?

e OutputDebugStringA: You're going to be one of those sassy challenge authors then, eh?
e AddVectoredExceptionHandler: Giving the game away a little bit, aren’t we?

e VirtualAlloc, VirtualProtect: Probably for that shellcode.

e FlushInstructionCache: Self-modifying? Or decoding shellcode? We’ll see.

e SetErrorMode: Worried about suppressing Windows Error Reporting dialogs?
The PE headers in this file don’t lend a lot of insight, so it’s time to move on to the next analysis stage.
Basic Dynamic Analysis

Just because leet _editr.exe doesn’t open when your favorite RE tool is open doesn’t make it
impossible to use basic dynamic analysis techniques. Assuming the mechanism used here is a blacklist
that enumerates process names, you can exploit a weakness by simply renaming your RE tools. Doing
so with Process Explorer yields the ability to conveniently review in-memory strings in search of any

decoded VBScript or other strings, as shown in Figure 4.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 4

mailto:info@FireEye.com

)
<O FireEye FLARE

[5] leet_editr.exe: 16308 Properties - O >

Image Performance Performance Graph Disk and Network GPU Graph
Threads TCPJIP Security Environment Job Strings

Printable strings found in the scan:

You are about to run the coolest A
ASCIl Art editor on earth. Continue ?
Caution: Explosively Neat Program
createtextfile
gimmethatsweetsweetcrazylove
nn

getspecialfolder

wimmymebrah

IThis program cannot be run in DOS mode.
3Rich

text

"rdata

@data

reloc

SWW3

y(Phs

SWv

WWP

WWP

thj

xk5

QPY

NPh

SV

WWWW

SWWw

VFj

BV

Q5

Py

VW

hLA
Dl

) Image

Save Eind

Cancel

Figure 4: Process Explorer in-memory strings view

Figure 5 depicts a vimdiff comparison of a sorted listing of in-memory strings against those from the

image. This yields no discoveries, suggesting that strings are re-encoded after they are used.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 5

mailto:info@FireEye.com

)
<© FireEye F LARE

1% [No Name] + - GVIMS — | X
File Edit Tools Syntax Buffers Window Help
= = S B BREAISSA TS| ? 2
L]
*This program cannot be run in DOS
""DHb
"nkWHE ""'nkWHE
#kid%j #rid%j
~qrys ~qrys
~utx ~utx
+Audf +Audf
<bHLT <bHLT
<DHb <DHb
£1v,\wu {1lv,\Ww
LuEf<{ud
=+ 0200513 =+ C0x1 2w
=a=j=o0= =a=j=o0=
v [Ho Hame] [+] 2,1 Top [Ho Hame] [+] 2.1 Top v

Figure 5: Comparison of in-memory strings against image

Advanced Static Analysis

The WinMain function for this is relatively short. It first copies byte strings into heap buffers, setting
PAGE_NOACCESS. It then calls a function that copies further function addresses into a table. It finally

installs a vectored exception handler and calls into a heap buffer.

The location accessed at ©x401045 is loaded into the esi register and then manipulated such that a

structure can be discerned, as shown in Figure 6.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 6

mailto:info@FireEye.com

)
<O Fire Eye

FIEE

88481845 mov esi, offset blobl

ae4ale4ls nop word ptr [eax+eax+88h]

| x;

FIEE
aadalese
@ge42lese loc_401050: ; TlProtect
ee481858 push 4
@e421@852 push 3@88h ; flAllocationType
28421857 push [esitpadded_blob.bleb.size] ; dwSize
88421859 push a ; lpAddress

284816858 call
aa4a1a5D mov

eax ; Virtualalloc
[esi+padded_blob.blob.dyn], eax

ga4aless test eax, eax
getales? jz loc_4811F8
_ Y
FIZIE
28481863 mov ecx, [esit+padded_bleb.blob.src]
@e421868 push dword ptr [esi] ; Size
ee4a1@6D push dword ptr [ecx] ; Src
@ae421@6F push eax ; Dst
eesplere call mEmMEpY
ae421@75 add esp, @Cch
ee421873 lea eax, [ebp+floldProtect]
@e421@7E push eax 5 1pflOoldProtect
ee481@7F push PAGE_NOACCESS ; flNewProtect
@e421@881 push [esit+padded_bleb.blob.size] ; dwSize
28421883 push [esitpadded bleb.bleb.dyn] ; lpAddress
ee4eless call ds:VirtualProtect
2e48185C test eax, eax
@e481@8E jz loc_4811F8
A J
eax, ds:Virtualflloc
edi
esi, size padded_blob
edi, dword 48C388
short loc_481858
I

vy

Figure 6: Memory-oriented structure accessed in loop

The compiler’s optimizations obscure the real structure slightly, but analyzing the VirtualAlloc,

memcpy, and VirtualProtect calls in WinMain yields a sufficient structure having the fields shown

in the comment column of Figure 7.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com

www.FireEye.com 7

mailto:info@FireEye.com

)
<O Fire Eye

80408C2B8 blobl dd &Eh

8840C2B38

8840C2B8 dd offset off_ 48B000
8840C2B38 dd 38h

0040C2B8 dd offset dword 48B818
8840C2B38 dd 1

0040C2B8 dd offset dword 48B198
8840C2B38 dd 8

8840C2B8 dd 1

8840C2B38 dd 8

Figure 7: Unknown structure

FLARE

; blob.

size
; DATA XREF: sub_4061860+45To
; blob.src
; blob.field_8
; blob.field C
; blob.field_16
; blob.ptr to len_and buf
; blob.dyn
; field 1C
; field 20

Analyzing the structure as it is used in the loop reveals that the target of the indirect call toward the

end of WinMain is the heap allocation saved in the sixth such structure, as shown in Figure 8.

004811B2 mov
604811B8 mowv
884811BE push
904911C3 call

884811CB push eax

884811CC call esi

884811CE add esp, 4

994811D1 test eax, eax
88401103 jns short loc_4811FD

esi, blob& main.dyn ; size
edi, ds:0utputDebugStringh
offset OutputString ; "Runnin
edi ; OutputDebugStringh
884011C5 lea eax, [ebp+var_138]

; blob& heap

shellcode crouching_vbs_hidden " ...

[ij=]

Figure 8: Call into sixth structure's heap buffer

Although the data in that location has permissions set to PAGE_NOACCESS after the

VirtualProtect call, it is possible to find the source of the memcpy that populates the heap buffer.

The data at 9x404718 must be the shellcode that is later executed at the indirect call, however

attempting to decode it as x86 instruction code leads to the dubious results shown in Figure 9.

044718 loc_484718:

00404718 stosd
00404719 jnz
00404718 jge
0040471D fisubr
0040471D

00404723 db
00404723 out
00404725 db
00404725 push
00404727 test

; DATA XREF: .data:src_entrylo

short near ptr loc_484729+4
short near ptr loc_48472E+1
word ptr [eax-69859748Bh]

26h

dx, al
2Eh

esp

al, 75h

; CODE XREF: .rdata:0048478573

; CODE XREF: .rdata:0e4846E8T]

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 8

mailto:info@FireEye.com

)
<® FireEye F LARE

Figure 9: Nonsense instructions at ©x404718

The shellcode mystery will have to be resolved later.

Meanwhile, WinMain also calls the function shown in Figure 10 which copies function addresses into a

table.

Mz

20401998

20401998

88401990 ; Attributes: bp-based frame

20401998

80401998 sub_481998 proc near

20401998

88401998 arg_0= dword ptr 8

20401998

88401998 push ebp

88481991 mov ebp, esp

88481993 mov eax, [ebpt+arg_ 8]

88481996 mov fptr_array, offset fptr table
88481948 mov fptr_table, offset sub_401FA8
©84819AA mov fptr table+4, offset sub 481976
88481984 mov fptr_table+8, offset sub_482836
©84819BE mov fptr table+8Ch, offset sub_481B1@
©84819CE mov fptr table+16h, offset sub_ 481ABE
88481902 mov fptr_table+l4h, offset sub_4819F8
©848190C mov fptr table+18h, offset sub_ 481B30
8B4819E6 mov dword ptr [eax], offset fptr_array
8804019EC xor eax, eax

@B4819EE pop ebp

B04019EF retn

@B4019EF sub_481998 endp

B04019EF

Figure 10: Function pointer table

The functions referenced here all return values that correspond to well-known HRESULT values such as
E_INVALIDARG, E_NOINTERFACE, DISP_E_UNKNOWNNAME, and DISP_E_UNKNOWNINTERFACE. The
penultimate of these functions returns magic numbers in exchange for strings, and the last function
executes specific logic corresponding to each number. If you haven’t programmed or seen this before,
it may be unrecognizable, but this is an implementation of the COM interface known as IDispatch?3,

which allows for late binding. Setting the type of the structure at 9x40FD8C to IDispatchVtbl from

3 https://msdn.microsoft.com/en-us/library/ms526185.aspx

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 9

mailto:info@FireEye.com

)
<O FireEye FLARE

IDA’s type libraries will cause IDA to name each function pointer with the corresponding name from
IDispatch, as shown in Figure 11. I've manually renamed the functions themselves (on the right-

hand side) to match their associated IDispatchVtbl struct field members.

Ll i =

88401990

88401990

©8401990 ; Attributes: bp-based frame

88401990

©8481998 setup IDispatch proc near

88401990

08481998 ppv= dword ptr B8

89401990

88481998 push ebp

88481991 mov ebp, esp

88481993 mov eax, [ebp+ppv]

88481996 mov pv, offset wtbl

88481948 mov vitbl.QueryInterface, offset QueryInterface
884819AA mov vtbl.AddRef, offset AddRef

©84819B4 mov vtbl.Release, offset Release

884819BE mov vtbl.GetTypeInfoCount, offset GetTypeInfolount
©84819C8 mov vtbl.GetTypelnfo, offset GetTypelnfo
88481902 mov vtbl.GetIDsOfMNames, offset GetIDsOfMNames
©848190C mov vtbl.Invoke, offset Invoke

8B4819E6 mov dword ptr [eax], offset pv

204019EC xor eax, eax

©B84819EE pop ebp

@04019EF retn

©B4819EF setup_ IDispatch endp

804019EF

Figure 11: IDispatch virtual function table setup

The GetIDsOfNames and Invoke methods define the method names and corresponding numeric IDs
that can be used by a COM client to invoke methods of the type that is implemented by this
IDispatch implementation. Table 1 lists the four method names, magic numbers, and their semantics

based on what can be seen from reading the body of each function.

Semantic

createtextfile ‘ OxCAFEBABE RC4 decrypt and return a BSTR (OLE automation string type) associated

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 10

mailto:info@FireEye.com

)
<® FireEye F LARE

with the string wimmymebrah

gimmethatsweetsweetcrazylove | ©x1337 Hash something and use its MD5 sum as the key to RC4 decrypt

something else

run OXDEADBEEF Disable WER dialogs using SetErrorMode and crash by calling a NULL

function pointer

getspecialfolder oxl1l010101 Call the Sleep function

Table 1: Method names, IDs, and semantics based on GetIDsOfNames and Invoke

The vectored exception handler looms as the next major item pending analysis. It handles two main
cases: access violations, and single-step exceptions. In the access violation case, the handler obtains a
range structure that defines a base address and a length which it uses to decide where to change
memory protections. It changes protections to read/write before calling a decoder at 9x4012A0 that

consults a bitmask in the range structure to decide between the algorithms shown in Table 2.

1 XOR

2 Incrementing XOR

4 RC4

0x80 Combination of three encodings (In source code, | callled it Neapolitan)

Table 2: Encoding algorithm enumeration

After decoding is finished, the handler changes the permissions of the memory range to read/execute
and calls FlushInstructionCache to ensure that the instruction cache is cleared of any invalid
instructions. It then sets bit 8 (0x100) in EFLAGS within the context record for the faulting thread. The
Intel 64 and IA-32 Architectures Software Development Manual shows this to be the Trap Flag (TF) bit

of the EFLAGS register, as shown in Figure 12.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 11

mailto:info@FireEye.com

)
<® FireEye F LARE

M302928272625242322212019181716151413121110€ 8 F 6 5 4 3 2 1 0

HY Y A
olo|ofo|o|o|oloajo|l|i|1|A
PlF

ID Flag (1D} ‘
Virtual Interrupt Pending (VIP)

Wirtual Interrupt Flag (VIF)

Alignment Check / Access Control (AC)
Virtual-8086 Mode (VM)
Resume Flag (RF)
Nested Task (NT}
1/0 Privilege Level (IOPL)
Overflow Flag (OF)
Direction Flag (DF}
Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF)
Auxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF)

T
I~
I=
-
L]

o|D| T
FIF|R|F|-

|
v 0
MIF|Y|T| p

L

DWW WUERXEK O XX XXX XXX

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

> oW

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Figure 12: Bit 8 of EFLAGS is the Trap Flag (denoted TF)

The handler lastly returns EXCEPTION_CONTINUE_EXECUTION to permit the decoded shellcode to

execute.

The single-step handling logic of the vectored exception handler likewise calls the encoder, thus re-

encoding whatever data was decoded in the access violation case.

In summary, leet _editr.exe copies encoded shellcode from static buffers into heap locations with
no page access to induce an access violation upon execution. It installs a vectored exception handler to

catch these exceptions and then decode the data, set the trap flag, and re-encode the data after the

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 12

mailto:info@FireEye.com

)
<© FireEye F LARE

instruction has executed. At this point, it is reasonable to consider dynamic analysis.
Advanced Hybrid Analysis: Dynamic, Static, and Bochs Debugging

In WinDbg, you can disable access violations, single-step exceptions, and other items that would
produce unwanted console output. Special thanks to Tyler Dean of the FLARE team (Twitter: @spresec)
for identifying the WinDbg syntax for preventing single-step exceptions (sxi ssec) and sharing one
other solution rudiment that | have shamelessly borrowed (read on for more). Listing 2 shows a
WinDbg session that ignores exceptions (1), executes up to the shellcode call instruction (2), sets a
memory breakpoint on execution of the shellcode (3), and disassembles the first instruction after it has

been decoded (4).

:000> sxi av $$ (1)

:000> sxi sse

:000> sxi ssec

:000> sxi 1d

:000> bp leet editr+0xllcc $$ (2)

:000> g

Running shellcode crouching vbs hidden title.asm...

Breakpoint 0 hit

eax=0053fdb0 ebx=00000000 ecx=73e44063 edx=00000000 esi=00840000 edi=75df5c20

O O O O O O

eip=011711cc esp=0053fd98 ebp=0053feel iopl=0 nv up ei pl zr na pe nc
cs=0023 ss=002b ds=002b es=002b £fs=0053 gs=002b ef1=00000246
leet editr+0Oxllcc:

011711cc ffd6 call esi {00840000}

0:000> ba el @esi $$ (3)

0:000> g

Breakpoint 1 hit
eax=0053fdb0 ebx=00000000 ecx=73e44063 edx=00000000 esi=00840000 edi=75df5c20

eip=00840000 esp=0053£fd94 ebp=0053feel iopl=0 nv up ei pl zr na pe nc
cs=0023 ss=002b ds=002b es=002b f£s=0053 gs=002b ef1=00000246
00840000 27 2?7
0:000> u Qeip
00840000 2? 2?7

~ Memory access error in 'u (@eip'
0:000> p
eax=0053fdb0 ebx=00000000 ecx=73e44063 edx=00000000 esi=00840000 edi=75df5c20
eip=00840001 esp=0053£fd90 ebp=0053feel0 iopl=0 nv up el pl zr na pe nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b ef1=00000246
00840001 7512 jne 00840015 [br=0]
0:000> u Reip-1 $S(4)
00840000 55 push ebp

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 13

mailto:info@FireEye.com

)
<© FireEye F LARE

00840001 7512 jne 00840015

00840003 7d12 jge 00840017

00840005 dea8758bf696 fisubr word ptr [eax-6909748Bh]
0084000b 26ee out dx,al

0084000d 2e54 push esp

0084000f a875 test al,75h

00840011 b8eell1l2e7d mov eax, 7D2EO1EEh

Listing 2: WinDbg output

Indeed push ebp is a coherent instruction to expect to see at the beginning of a function. One of the
encoding algorithms listed in Table 2 was XOR. Since the original value of the first shellcode byte was
OxAB, we can calculate a potential XOR key and see if using it produces coherent code throughout the
shellcode. The XOR result of @xAB ~ 0x55 is OXFE. The IDAPython one-liner in Listing 3 can be used

to apply this to the shellcode region.

for n in range(@x70): PatchByte(here() + n, Byte(here() + n) ~ oxfe)

Listing 3: XORing shellcode with ©xFE

The result is shellcode that calls several function pointers and references numeric constants that are

reminiscent of string hashes (for details, see https://www.fireeye.com/blog/threat-

research/2012/11/precalculated-string-hashes-reverse-engineering-shellcode.html).

Doing this with the other shellcode regions brings us to an intricate, 965-byte swath of shellcode at
0x4041D8 which IDA fails to turn into a procedure. Careful analysis (or use of the strings utility on the
decoded shellcode) reveals the ASClI string "If I were to title this piece, it would be
"A_FLARE_fOr_th3 Dr4m4t1(C)'\r\n" as shown in Figure 13.

204043D8 83 C4 14 add esp, 1dh

204043DB 81 FE 48 69 6E 74 cmp esi, 'tniH'

204043E1 75 51 jnz short loc 464434

804043E1 T T T T T T T T T oo

664043E3 49 66 20 49 26 77 65 72 65+alfllWereToTitle db "If I were to title this piece, it would be ',27h,"A FLARE fér th3"'
G04043E3 28 74 6F 20 74 69 74 6C 65+ db ' Drd4mdt1(C)"',27h,8Dh,84h

8040442C T T T T T T T T T oo

#040442C 8B 5D 88 mov ebx, [ebp+8]

@e4e442F 8B 7D F8 mov edi, [ebp-8]

§0404432 EB 08 jmp short loc_48443C

Figure 13: ASCIl text interspersed between instructions

This string interrupts IDAs disassembly and analysis of the shellcode function, so it is useful to take

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 14

mailto:info@FireEye.com
https://www.fireeye.com/blog/threat-research/2012/11/precalculated-string-hashes-reverse-engineering-shellcode.html
https://www.fireeye.com/blog/threat-research/2012/11/precalculated-string-hashes-reverse-engineering-shellcode.html

)
@ FireEye

note of the string and then nop it out with a PatchByte one-liner similar to Listing 3.

FLARE

There are a number of stack strings and other elements in the shellcode. A quick way to evaluate these

is to use IDA’s Bochs debugger integration in IDB mode and advance EIP over the function calls to get

the stack strings written into debug memory. This yields the strings and structures in Figure 14.

IDA View-EIP

STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:
STACK:

UNENCWN 00420F5&:

00420F44
00420F44
00420F56
00420F57
00420F58
00420F58
00420F58
00420F58
00420F68
00420F68
00420F68
00420F68
00420F78
00420F89
00420F3D
00420F8F
00420F90
00420F9D
00420F9E
00420F9F
00420FAG
00420FAG
00420FA8
00420FA9
00420FAA

aVbscript:

text "UTF-16LE", ‘VBScript®,®@

db 0

db 0

dd @E59F1D5h ; Datal
dw 1FBEh 3 Data2
dw 11D6h 3 Data3
db 8Fh, @F2h, @, ©Adh, @D1lh, @, 38h, @BCh; Datad
dd @E59F1D3h ; Datal
dw 1FBEh 3 Data2
dw 11D6h 5 Data3

db 8Fh, ©F2h, ©, @ARh, @D1h, @, 38h, @BCh; Data4d
aCocreateinstan db 'CoCreateInstance’,®
dd @

dw @

db 0

a0leaut32D11l @ db 'oleaut32.d11',6
db 0

db 0

db 5]

aPoo:

text "UTF-16LE", 'poo’,®
db @Dh

db 24h ; §

db 36h ; 6

STACE:00420F5€ (Synchronized with EIP)

Figure 14: Stack strings and GUIDs found using Bochs in IDB mode

Along with the shellcode, these stack artifacts tell a story. The stack string CoCreateInstanceis

created within var_3C to resolve the COM function that instantiates COM class instances; the

shellcode resolves this function by name and stores the result in var_C. When the shellcode calls this

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com

www.FireEye.com 15

mailto:info@FireEye.com

)
<© FireEye F LARE

function, it pushes the IID and a CLSID that are also constructed in stack memory. We also see the

strings VBScript and poo (I'm regretting that choice now that | must write it up).

To understand the COM function pointers being used throughout the shellcode, it is ideal to identify
the interface ID (IID) or class ID (CLSID) and associated function pointer table. | want to share some
tactics | use in practice for resolving questions that arise from reversing COM client code. The payoff
for this is that we can use it to understand something about how the VBScript code is going to interface

with the native binary.
COM Rabbit Hole

The goal here is to get a structure that defines the virtual function table offsets being used in the COM
client code. | usually get good results grepping for standard 11Ds and CLSIDs in the Windows headers
directory and by searching in the registry. The Windows headers are silent here but searching the

registry for E59F1D3 yields IScriptControl as shown in Figure 15.

Registry Editor
File Edit Wiew Favorites Help

Computer\HKEY_CLASSES_ROOTInterface\{OE33F1D3-1FBE-11D0-8FF2-00A0D10038EC}

{OE59F1D3-1FBE-11D0-8FFZ2-00A0D10038BC} »
: ProwyStubClsid32
Typelib

Do

Mame Type Data

E"{(Default]é REG_SZ I5criptControl

Figure 15: IScriptControl 11D

This registry finding is the beginning of a trail of breadcrumbs that will allow us to make the shellcode
more coherent. Underneath the IID is a TypelLib key that points to a Universally Unique Identifier

(UUID) as shown in Figure 16.

Registry Editor

File Edit Wiew Favorites Help

Computer\HKEY_CLASSES_ROOT\Interface\{0E33F1D3-1FBE-11D0-8FF2-00A0D10038BC I Typelib
- v {DESSFID3-1FBE-11D0-8FF2-00A0D10038BC} A || Name Type Data

Proxy5tubClsid32 ab|(Default) REG.SZ {DESOF1D2-1FEE-11D0-8FF2-0DAOD10032BC)

Typelib)
bl ab|Version REG.SZ 1.0
INFSr1TAR-5A3A_AANI - AF?A.C1IFFARCNITRAM

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 16

mailto:info@FireEye.com

)
<© FireEye F LARE

Figure 16: Typelib GUID associated with IScriptControl

A type library (normally a . t1b file) can be used to derive an interface definition (a .id1 file) for the
COM interface and then derive header files that can be modified and imported into IDA Pro to become
structures for use in enriching the disassembly. Searching the registry for the UUID associated with this
type library yields the path to msscript.ocx shown in Figure 17.

[Registry Editor

File Edit View Favorites Help

Computer\HKEY_CLASSES_ROOT\Typelib\{DE59F1D2-1FBE-11D0-8FF2-DDA0DN D03BBC 1.0\ D\win32
v | | IDESOF1D2-1FBE-11D0-8FF2-D0AOD10038BC) A || Mame Type Data

v 1s10 a8)(Default) REG.SZ C:\Windows\SysWOWB\msscript.ocx

Figure 17: Path to Microsoft Script Control type library
Granted, the.ocx file path here isn’t a . t1b, but as it turns out, it contains exactly what we need.
Opening msscript.ocx in OleView displays the generated IDL file shown in Figure 18. This is a

language-neutral definition of the interfaces supported by msscript.ocx.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 17

mailto:info@FireEye.com

)
<© FireEye F LARE

"J";E ITypelib Viewer — O it
Eile View
]
=5 3 MSScriptControl (Microsof ~ // Generated .IDL file (by the OLE/COM Chject Viewer) ~
: - £
TEE?Q mOdCl:IE:c SCFIDTCSOFTTFOéCC // typelib filename: msscript.ocx
Jlr um tyipe_ ef enum cr_lpt or
+-4 dispinterface IScriptProc [
1% interface IScriptProcedu uuid (0OES559F1D2-1FBE-11D0-8FF2—00R0D10038EC) ,
i L) version(l.0),
T(dispinterface IScriptProc helpstring ("Microsoft Script Control 1.0"),
+- ¢ interface IScriptProcedu helpfile ("MSSCRIPT.HLE"),
+(dispinterface IScriptMot : helpcontext (0x00113f4c)
T? interface IScriptModule library MSScriptControl
+-4 dispinterface IScriptMot [
+- ¢ interface IScriptModule! /./ TL:i.bl: OLE Automation : {00020430-0000-0000-C0Q00-000000000046}
+1-4 dispinterface IScriptErrc amportlib ("stdele.£lb®);
! - -
T? interface IScriptError // Forward declars all types defined in this typelib
+-# dispinterface IScriptCon interface IScriptProcedure;
;? interface IScriptControl :i_nterfacr: IScr:i.ptPrujcedureCujllectiujn;
! « dispi of DScrintC interface IScriptModule;
T Ispinterface criptCo " interface IScriptModulsCollection;
4.6 roclass Procedire interface IScriptError;
< > interface IScriptControl; ¥
Ready

Figure 18: Using OLeView on msscript.ocx

Saving this IDL file to disk with File -> Save As... and choosing a name such asmsscript.idl allows us
to use Microsoft’s MIDL compiler (midl.exe) from a Visual Studio Tools prompt. There is one hitch,
however: Microsoft’s MIDL compiler complains about the syntax of the IDL generated from Microsoft’s

own type library! Figure 19 shows the MIDL compiler’s complaints (MIDL2400 and MIDL2401).

Visual C++ 2008 32-bit Command Prompt -] X

: for oleautomation,

'

ure
optional]. Please remove
of Procedure 'AddObject' (Interface 'IScriptControl’)]

:\Users\mykill\AppData\Local\Temp\msscript>g
Figure 19: MIDL compiler errors 2400 and 2401

Figure 20 shows how to disable these warnings 2400 and 2401 with midl_pragma statements.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 18

mailto:info@FireEye.com

)
<© FireEye F LARE

{8 msscriptidl + - | >
File Edit Tools Syntax Buffers Window Help
SAERE 9@ B\ SIA|THQ? 2

// Generated .IDL file (by the OLE/COM Object Uiewer)

/
// typelib filename: msscript.ocx

midl_pragma warning(disable:2400)
midl_pragma warning(disable:2401)

1
2
3
y
5
6
T
8

[
uuid(OES9F1D2-1FBE-11D0-8FF2-00ABD10038BC) ,

version(1.0),
helpstring(“Microsoft Script Contreol 1.8"),
helpfile("MSSCRIPT.HLP"),
helpcontext(0x00113F4c)

14]

15 library MS$ScriptControl

Figure 20: Disabling MIDL warnings 2400 and 2401

The generated header file msscript.h is hostile to IDA’s type importation system due to the
numerous COM-related definitions, so it is expedient to gut the definition of IScriptControlVvtbl

and import the simplified version shown in Figure 21.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 19

mailto:info@FireEye.com

)
<© FireEye F LARE

1% No Name] + - GVIM — O ot

File Edit Tools Syntax Buffers Window Help
= B @ B & %0«

typedef struct IScriptControlVtbl

FARPROC QuerylInterface;
FARPROC AddRef;
FARFROC Release;
FARPROC GetTypeInfoCount;
FARPROC GetTypelInfo;
FARPROC GetIDsOfHames;
FARPROC Invoke;
FARPROC get_Language;
FARPROC put_Language;
FARPROC get_State;
FARPROC put_State;
FARPROC put_Sitehind;
FARPROC get_Sitehlnd;
FARPROC get Timeout;
FARPROC put_Timeout;
FARPROC get_AllowUI;
FARPROC put_AllowUI;
FARPROC get_UseSafeSubset;
FARPROC put_UseSafeSubset;
FARPROC get_Hodules;
FARPROC get_Error;
FARFPROC get CodeObject;
FARPROC get_Procedures;
FARPROC _AboutBox;
FARPROC AddObject;
FARFROC Reset;
FARPROC AddCode;
FARPROC Ewal;
FARPROC Executeitatement;
FARPROC Run;

33 } IScriptControlUtbl;

1,1

Figure 21: Simplified IScriptControlVtbl definition derived from msscript.h
With the IScriptControlVtbl type added to IDA’s types, it is now possible to conveniently add it as
a structure of the same name and then use its structure offsets to make sense of the COM function

calls. For instance, Figure 22 shows the call to IScriptControlVtbl.put_Language which sets the

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 20

mailto:info@FireEye.com

)
<© FireEye F LARE

Language property of the script control instance.

il e =]

004044D1

004044D1 loc 4044D1:

00404401 mov eax, [ebp+ppv]

00404404 push [ebp+str VBScript]

00404407 push eax

00404408 mov ecx, [eax]

004044DA mov eax, [ecx+IScriptControlVtbl.put Language]
204044DD call eax ; IScriptControl->put Language(this, BSTR)
PR4044DF mov esi, eax

PR4044E1 test esi, esi

004044E3 js short loc 484562

Figure 22: Using IScriptControlVtbl struct offsets to mark up the COM call at ©x4044DD
Aside from put_Language, the shellcode also calls AddObject three times and ExecuteStatement
once before releasing the COM instance. Now we can debug the binary again using sxe 1d

msscript and use the WinDbg X (Examine Symbols) command to search msscript and find

addresses to set breakpoints and observe details.

1:001> x msscript!®put Language

6ab631ed msscript!CcscriptControl: :put Language (<no parameter info>)

1:001> x msscript!*addobject

6ab63918 msscript!CScriptControl: :AddObject (<no parameter info>)

1:001> x msscript!*ExecuteStatement

6ab68250 msscript!cModuleobject: :ExecuteStatement (<no parameter info>)
6ab63118 msscript!CScriptControl: :ExecuteStatement (<no parameter info>)
6ab64899 msscript!cscriptControl: :ModuleExecuteStatement (<no parameter info»)

Figure 23: Examining msscript symbols in search of COM function addresses

In summary, the shellcode adds objects poo, oSh, and fso as aliases for a single interface pointer. This
pointer corresponds to the IDispatch interface that was set up at @x40FD8C. What this does is allow

the VBScript to use the aforementioned object names to invoke any of the methods in Table 1.

The shellcode next calls ExecuteStatement passing an encoded buffer that has PAGE_NOACCESS

set. The encoded, protected buffer is burdensome to reverse statically, and VBScript builds an abstract

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 21

mailto:info@FireEye.com

)
<® FireEye F LARE

syntax tree (AST) instead of maintaining the decoded string in memory, so a dynamic solution is

preferable.

The decoder at 9x4012A0 ends at ©x4013C6, so the solution employed by Tyler Dean of the FLARE
team (Twitter: @spresec) was to break there and dump the bytes to be stitched together later by a
Python function. Listing 4 shows a sequence of WinDbg commands that can be used to dump a list of

addresses and decoded bytes

sxi av

sxi 1d

sxi sse

sxi ssec

ba el leet_editr+0x13C6 "db poi(esp+8) L2; g"

g
Listing 4: WinDbg sequence to dump decoded Unicode bytes of VBScript

Although this takes a long time to run under the debugger, it does finally produce the decoded bytes,
with encoded versions interspersed between. Eliminating the extraneous WinDbg commands and

output, and deleting every other line, makes a text file we can parse with the Python in Figure 24.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 22

mailto:info@FireEye.com

)
<® FireEye FL

File Edit Tools Syntax Buffers Window Help
QERE 9@ B BHRE/SSATIRA ? A
BJ# Read WinDbg breakpoint output, emit decoded UBScript J00aTO00Y
import re J00aTO00Y
J00aTOR06
script = (] Jooat0008
prog = re.compile(' ([B-9a-fA-F]{8})\s+([0-%9a-fA-F]{2}) [0-9a-fA-F]{2}') [JocaToe0a
with open(‘decode2.txt', 'r') as f: J00aTO00C
for line in f.readlines(): |00aTO00e
m = prog.match(line) J00aTOO10
if m: |00aToO12
addr = int(m.group(1), 18) |00aTOO 1Y
n = int(m.group(2), 18) |00aTeR16
if n: |00aTOR18
seript[addr] = chr(n) J00aTO01a
ubs = ' J00aTR01c
for k in sorted(script): J00aTe01e
ubs *+= script[k] J00aTEO20
Jo0aToR22
print{vbs) |00aTee2Y
|00aTO026

Figure 24: Python script to convert WinDbg breakpoint hex dump into VBScript

The result of this is the decoded script which bears the ASCII art preamble in Figure 25.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com

% decode2.py (Ch\Exclusions\srch\c\fust..uck\veh_sgx_wannabe\solution) - GVIM2 — |

v decode2 . py 5.1 All <e2.txt 1.1

Top v

23

mailto:info@FireEye.com

)
<© FireEye F LARE

1% No Name] + - GVIM4 - O e

File Edit Tools Syntax Buffers Window Help
QERE e @ B RHRERBSSA|THA[?2 2

; “a,
_Wém,

_Wmmmm/

‘BmmBmmBmm[Bmm abmmmmmB / BmmBmmBm&a 3BmmBmmBm
" mmm [mimm jHEmmmmmmme mmm “Ymm[3mm[
"mBmLaaaa, B JUBmmP Ymmmml mmBaaaatmm®™ 3Bmbaaaa,
‘mmmPY e M JWmmmP YmmmBL Brim ¢ 4 XHE" 3mmP???7?"
"Bt [Bmmaaaaa JWmmm? YmmmBL mmm YHEL 3BmLaasaa
“mmm [mmm#EZHZ _jWmmmmaaaaaa, JmBmm6. mmB "HBm/ 3mmmEUZHZ

_WBmmmmmEZHEZH* “mmmBm,
22497

RN EWN =

. JmmmP
_jmmP’
_Ju?t
"2

17 Dim Page(118)
18 Page(0) = "<tdoctype html>"
19 Page(1) = "<html>”

Figure 25: ASCIl art preamble to VBScript
The VBScript uses the InternetExplorer.Application COM object to inject the hard-coded
HTML in the Page variable into a blank browser page and then inject a script separately to poll the
contents of the textarea element named textin until it contains a substring of the ASCII art at the
top of the script and matches a particular string hash value. A second similar check validates that the
user has entered a certain title for their ASCIl art. The script calls the createtextfile, run,
getspecialfolder, and gimmethatsweetsweetcrazylove COM methods through the objects
provided via IScriptControl->AddObject. This binds the VBScript to the native program that
loaded it and prevents it from being executed outside of that environment without modification. The

function gimmethatsweetsweetcrazylove is what decrypts the flag and injects it into the browser.

All that is necessary to satisfy the first (textarea) check and proceed to the next is to paste the ASCII

art (comment characters and all) into the textarea element. Figure 26 shows how the hint box is

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 24

mailto:info@FireEye.com

)
<© FireEye F LARE

updated, prompting the user to enter a title for the ASCII art.

2 aboutblank + (| Search.. O~

2 Crypto-Donkeys' ASCI Art E...

(Note: optimized for IE1l1l)
You're on to something! - But did wvou think of a title for your masterpiece?
g Y Y P

=

Bmm S Tm B mBrmBm
IO C wi

Bmm #mmP dmmmmL

T nmm P AmmmBL

Figure 26: After pasting ASCII art into ASCII art editor

Recall that the shellcode contained the string "If I were to title this piece, it would

be 'A_FLARE_fOr_th3 Dr4m4tl1(C)'". Figure 27 shows the title pasted into the title element.

= aboutblank ~ (| Search.. 0O~

& Crypto-Donkeys' ASCIl Art E...

A FL

.—=<[Crypto-Donkeys ASCII Art Editor]>=

Figure 27: Pasting the title into the web page

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 25

mailto:info@FireEye.com

)
<© FireEye F LARE

When this is done, the VBScript injects the HTML shown in Figure 28, which displays a marquee version

of the flag.

& aboutblank - & || Search.. P~

& Crypto-Donkeys' ASCH Art E

JAEEDEUEGUAX DAL LUUUAUT & UYL SOEUSTUUUE L& LUTEAVUTEIUA UL EUSTEE_
1QETUEDE: : 8 : 50 STTEATUT GADETOX

Figure 28: Sweet, sweet flag

The flagis scrlptlng_sl4cklng_and_h4cklng@flare-on.com.
Props to:

Tyler Dean for making sense of the documentation to identify the right exceptions to enable in WinDbg
to ignore single-step exceptions. Tobias Krueger for finding a flaw in which RC4 keytext was excessively
long and was discarded from the RC4 key scheduling algorithm allowing the player to solve the
challenge without finding the second half of the key! Alexander Polyakov for bringing to my attention
an issue that players were noticing with the CryptAcquireContext flags as well as
internationalization issues (who would have thought that 2-ish weeks of development and testing on
about five different systems would not be enough!). And to Eatbrain () for

allowing me to make use an ASCII of their logo to greet players who beat this challenge.

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 26

mailto:info@FireEye.com
https://eatbrain.net/

