

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 1

Flare-On 5: Challenge Solution – leet_editr.exe

Challenge Author: Michael Bailey (@mykill)

More than one player noticed some similarities between this and the challenge I wrote last year. Aside

from some reused ASCII art, leet_editr.exe bears substantive similarities to zsud.exe: it is a

native executable that furtively loads a scripting runtime (read on to see which) and decrypts a script

that calls functions to bind itself to its loader (read on to see how) such that it can’t be run in a normal

scripting environment; it also brings up a user interface that appears to be unrelated to the program’s

runtime. But the devil is in the details.

Executing leet_editr.exe produces a message box warning that you are about to run the coolest

ASCII Art editor on earth, as shown in Figure 1.

Figure 1: Corny warning message

Clicking OK led to disappointment on systems that were running things like IDA Pro or x64dbg (or

under, ahem, “other” circumstances1). True to samples found in the wild, running reverse engineering

(RE) tools can tip off malware or induce it to alter its behavior. You can get around this by executing

leet_editr.exe without any RE tools running, or you can be stubborn about it and find one that I

missed2.

Once you satisfy leet_editr.exe, it spawns a copy of Internet Explorer displaying a sinister-looking

ASCII art of Bob Dobbs’ face, as visible in Figure 2.

1 See https://twitter.com/alex_k_polyakov/status/1042844336902299648 and
https://twitter.com/stuxxn/status/1042498255026716672
2 See https://twitter.com/justadrawer2/status/1041040829366726656

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 2

Figure 2: leet_editr.exe after dismissing the message box

Viewing the source code in IE reveals JavaScript that implements string hash algorithms and sets the

status div element to some hint text. But the script code seems incomplete because nothing calls

these. Figure 3 display some of the script code.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 3

Figure 3: JavaScript in source view of Internet Explorer

Basic Static Analysis

There are only a few plain strings of interest in this binary, which are shown in Listing 1.

%d 0x%x
You are about to run the coolest
ASCII Art editor on earth. Continue?
Caution: Explosively Neat Program
Running shellcode crouching_vbs_hidden_title.asm...
HRESULT 0x%08x
%02x
createtextfile
gimmethatsweetsweetcrazylove
run
getspecialfolder
wimmymebrah

Listing 1: Obligatory strings listing for leet_editr.exe

The string "Running shellcode crouching_vbs_hidden_title.asm..." suggests a few

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 4

things:

• VBScript

• A hidden title (what might this mean?)

• Shellcode compiled from assembly language code

The strings CreateTextFile and GetSpecialFolder do correspond to a COM object that is indeed

commonly used in VBScript, namely Scripting.FileSystemObject which is commonly referred to

by script authors as FSO. The remaining strings are either marginally interesting or simply nonsensical.

The next stop for basic static analysis is imports. Here are some of the interesting ones along with a

running commentary of some reasonable inferences they should probably trigger:

• CoInitialize: COM usage? But where’s CoCreateInstance?

• CryptAcquireContextA, CryptCreateHash, etc.: Cryptographic hashing?

• OutputDebugStringA: You’re going to be one of those sassy challenge authors then, eh?

• AddVectoredExceptionHandler: Giving the game away a little bit, aren’t we?

• VirtualAlloc, VirtualProtect: Probably for that shellcode.

• FlushInstructionCache: Self-modifying? Or decoding shellcode? We’ll see.

• SetErrorMode: Worried about suppressing Windows Error Reporting dialogs?

The PE headers in this file don’t lend a lot of insight, so it’s time to move on to the next analysis stage.

Basic Dynamic Analysis

Just because leet_editr.exe doesn’t open when your favorite RE tool is open doesn’t make it

impossible to use basic dynamic analysis techniques. Assuming the mechanism used here is a blacklist

that enumerates process names, you can exploit a weakness by simply renaming your RE tools. Doing

so with Process Explorer yields the ability to conveniently review in-memory strings in search of any

decoded VBScript or other strings, as shown in Figure 4.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 5

Figure 4: Process Explorer in-memory strings view

Figure 5 depicts a vimdiff comparison of a sorted listing of in-memory strings against those from the

image. This yields no discoveries, suggesting that strings are re-encoded after they are used.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 6

Figure 5: Comparison of in-memory strings against image

Advanced Static Analysis

The WinMain function for this is relatively short. It first copies byte strings into heap buffers, setting

PAGE_NOACCESS. It then calls a function that copies further function addresses into a table. It finally

installs a vectored exception handler and calls into a heap buffer.

The location accessed at 0x401045 is loaded into the esi register and then manipulated such that a

structure can be discerned, as shown in Figure 6.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 7

Figure 6: Memory-oriented structure accessed in loop

The compiler’s optimizations obscure the real structure slightly, but analyzing the VirtualAlloc,

memcpy, and VirtualProtect calls in WinMain yields a sufficient structure having the fields shown

in the comment column of Figure 7.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 8

Figure 7: Unknown structure

Analyzing the structure as it is used in the loop reveals that the target of the indirect call toward the

end of WinMain is the heap allocation saved in the sixth such structure, as shown in Figure 8.

Figure 8: Call into sixth structure's heap buffer

Although the data in that location has permissions set to PAGE_NOACCESS after the

VirtualProtect call, it is possible to find the source of the memcpy that populates the heap buffer.

The data at 0x404718 must be the shellcode that is later executed at the indirect call, however

attempting to decode it as x86 instruction code leads to the dubious results shown in Figure 9.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 9

Figure 9: Nonsense instructions at 0x404718

The shellcode mystery will have to be resolved later.

Meanwhile, WinMain also calls the function shown in Figure 10 which copies function addresses into a

table.

Figure 10: Function pointer table

The functions referenced here all return values that correspond to well-known HRESULT values such as

E_INVALIDARG, E_NOINTERFACE, DISP_E_UNKNOWNNAME, and DISP_E_UNKNOWNINTERFACE. The

penultimate of these functions returns magic numbers in exchange for strings, and the last function

executes specific logic corresponding to each number. If you haven’t programmed or seen this before,

it may be unrecognizable, but this is an implementation of the COM interface known as IDispatch3,

which allows for late binding. Setting the type of the structure at 0x40FD8C to IDispatchVtbl from

3 https://msdn.microsoft.com/en-us/library/ms526185.aspx

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 10

IDA’s type libraries will cause IDA to name each function pointer with the corresponding name from

IDispatch, as shown in Figure 11. I’ve manually renamed the functions themselves (on the right-

hand side) to match their associated IDispatchVtbl struct field members.

Figure 11: IDispatch virtual function table setup

The GetIDsOfNames and Invoke methods define the method names and corresponding numeric IDs

that can be used by a COM client to invoke methods of the type that is implemented by this

IDispatch implementation. Table 1 lists the four method names, magic numbers, and their semantics

based on what can be seen from reading the body of each function.

Name Magic

Number

Semantic

createtextfile 0xCAFEBABE RC4 decrypt and return a BSTR (OLE automation string type) associated

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 11

with the string wimmymebrah

gimmethatsweetsweetcrazylove 0x1337 Hash something and use its MD5 sum as the key to RC4 decrypt

something else

run 0xDEADBEEF Disable WER dialogs using SetErrorMode and crash by calling a NULL

function pointer

getspecialfolder 0x1010101 Call the Sleep function

Table 1: Method names, IDs, and semantics based on GetIDsOfNames and Invoke

The vectored exception handler looms as the next major item pending analysis. It handles two main

cases: access violations, and single-step exceptions. In the access violation case, the handler obtains a

range structure that defines a base address and a length which it uses to decide where to change

memory protections. It changes protections to read/write before calling a decoder at 0x4012A0 that

consults a bitmask in the range structure to decide between the algorithms shown in Table 2.

Bitmask value Encoding

1 XOR

2 Incrementing XOR

4 RC4

0x80 Combination of three encodings (In source code, I callled it Neapolitan)

Table 2: Encoding algorithm enumeration

After decoding is finished, the handler changes the permissions of the memory range to read/execute

and calls FlushInstructionCache to ensure that the instruction cache is cleared of any invalid

instructions. It then sets bit 8 (0x100) in EFLAGS within the context record for the faulting thread. The

Intel 64 and IA-32 Architectures Software Development Manual shows this to be the Trap Flag (TF) bit

of the EFLAGS register, as shown in Figure 12.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 12

Figure 12: Bit 8 of EFLAGS is the Trap Flag (denoted TF)

The handler lastly returns EXCEPTION_CONTINUE_EXECUTION to permit the decoded shellcode to

execute.

The single-step handling logic of the vectored exception handler likewise calls the encoder, thus re-

encoding whatever data was decoded in the access violation case.

In summary, leet_editr.exe copies encoded shellcode from static buffers into heap locations with

no page access to induce an access violation upon execution. It installs a vectored exception handler to

catch these exceptions and then decode the data, set the trap flag, and re-encode the data after the

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 13

instruction has executed. At this point, it is reasonable to consider dynamic analysis.

Advanced Hybrid Analysis: Dynamic, Static, and Bochs Debugging

In WinDbg, you can disable access violations, single-step exceptions, and other items that would

produce unwanted console output. Special thanks to Tyler Dean of the FLARE team (Twitter: @spresec)

for identifying the WinDbg syntax for preventing single-step exceptions (sxi ssec) and sharing one

other solution rudiment that I have shamelessly borrowed (read on for more). Listing 2 shows a

WinDbg session that ignores exceptions (1), executes up to the shellcode call instruction (2), sets a

memory breakpoint on execution of the shellcode (3), and disassembles the first instruction after it has

been decoded (4).

0:000> sxi av $$ (1)

0:000> sxi sse

0:000> sxi ssec

0:000> sxi ld

0:000> bp leet_editr+0x11cc $$ (2)

0:000> g

Running shellcode crouching_vbs_hidden_title.asm...

Breakpoint 0 hit

eax=0053fdb0 ebx=00000000 ecx=73e44063 edx=00000000 esi=00840000 edi=75df5c20

eip=011711cc esp=0053fd98 ebp=0053fee0 iopl=0 nv up ei pl zr na pe nc

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246

leet_editr+0x11cc:

011711cc ffd6 call esi {00840000}

0:000> ba e1 @esi $$ (3)

0:000> g

Breakpoint 1 hit

eax=0053fdb0 ebx=00000000 ecx=73e44063 edx=00000000 esi=00840000 edi=75df5c20

eip=00840000 esp=0053fd94 ebp=0053fee0 iopl=0 nv up ei pl zr na pe nc

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246

00840000 ?? ???

0:000> u @eip

00840000 ?? ???

 ^ Memory access error in 'u @eip'

0:000> p

eax=0053fdb0 ebx=00000000 ecx=73e44063 edx=00000000 esi=00840000 edi=75df5c20

eip=00840001 esp=0053fd90 ebp=0053fee0 iopl=0 nv up ei pl zr na pe nc

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246

00840001 7512 jne 00840015 [br=0]

0:000> u @eip-1 $$ (4)

00840000 55 push ebp

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 14

00840001 7512 jne 00840015

00840003 7d12 jge 00840017

00840005 dea8758bf696 fisubr word ptr [eax-6909748Bh]

0084000b 26ee out dx,al

0084000d 2e54 push esp

0084000f a875 test al,75h

00840011 b8ee012e7d mov eax,7D2E01EEh

Listing 2: WinDbg output

Indeed push ebp is a coherent instruction to expect to see at the beginning of a function. One of the

encoding algorithms listed in Table 2 was XOR. Since the original value of the first shellcode byte was

0xAB, we can calculate a potential XOR key and see if using it produces coherent code throughout the

shellcode. The XOR result of 0xAB ^ 0x55 is 0xFE. The IDAPython one-liner in Listing 3 can be used

to apply this to the shellcode region.

for n in range(0x70): PatchByte(here() + n, Byte(here() + n) ^ 0xfe)

Listing 3: XORing shellcode with 0xFE

The result is shellcode that calls several function pointers and references numeric constants that are

reminiscent of string hashes (for details, see https://www.fireeye.com/blog/threat-

research/2012/11/precalculated-string-hashes-reverse-engineering-shellcode.html).

Doing this with the other shellcode regions brings us to an intricate, 965-byte swath of shellcode at

0x4041D8 which IDA fails to turn into a procedure. Careful analysis (or use of the strings utility on the

decoded shellcode) reveals the ASCII string "If I were to title this piece, it would be

'A_FLARE_f0r_th3_Dr4m4t1(C)'\r\n" as shown in Figure 13.

Figure 13: ASCII text interspersed between instructions

This string interrupts IDAs disassembly and analysis of the shellcode function, so it is useful to take

mailto:info@FireEye.com
https://www.fireeye.com/blog/threat-research/2012/11/precalculated-string-hashes-reverse-engineering-shellcode.html
https://www.fireeye.com/blog/threat-research/2012/11/precalculated-string-hashes-reverse-engineering-shellcode.html

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 15

note of the string and then nop it out with a PatchByte one-liner similar to Listing 3.

There are a number of stack strings and other elements in the shellcode. A quick way to evaluate these

is to use IDA’s Bochs debugger integration in IDB mode and advance EIP over the function calls to get

the stack strings written into debug memory. This yields the strings and structures in Figure 14.

Figure 14: Stack strings and GUIDs found using Bochs in IDB mode

Along with the shellcode, these stack artifacts tell a story. The stack string CoCreateInstance is

created within var_3C to resolve the COM function that instantiates COM class instances; the

shellcode resolves this function by name and stores the result in var_C. When the shellcode calls this

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 16

function, it pushes the IID and a CLSID that are also constructed in stack memory. We also see the

strings VBScript and poo (I'm regretting that choice now that I must write it up).

To understand the COM function pointers being used throughout the shellcode, it is ideal to identify

the interface ID (IID) or class ID (CLSID) and associated function pointer table. I want to share some

tactics I use in practice for resolving questions that arise from reversing COM client code. The payoff

for this is that we can use it to understand something about how the VBScript code is going to interface

with the native binary.

COM Rabbit Hole

The goal here is to get a structure that defines the virtual function table offsets being used in the COM

client code. I usually get good results grepping for standard IIDs and CLSIDs in the Windows headers

directory and by searching in the registry. The Windows headers are silent here but searching the

registry for E59F1D3 yields IScriptControl as shown in Figure 15.

Figure 15: IScriptControl IID

This registry finding is the beginning of a trail of breadcrumbs that will allow us to make the shellcode

more coherent. Underneath the IID is a TypeLib key that points to a Universally Unique Identifier

(UUID) as shown in Figure 16.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 17

Figure 16: TypeLib GUID associated with IScriptControl

A type library (normally a .tlb file) can be used to derive an interface definition (a .idl file) for the

COM interface and then derive header files that can be modified and imported into IDA Pro to become

structures for use in enriching the disassembly. Searching the registry for the UUID associated with this

type library yields the path to msscript.ocx shown in Figure 17.

Figure 17: Path to Microsoft Script Control type library

Granted, the.ocx file path here isn’t a .tlb, but as it turns out, it contains exactly what we need.

Opening msscript.ocx in OleView displays the generated IDL file shown in Figure 18. This is a

language-neutral definition of the interfaces supported by msscript.ocx.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 18

Figure 18: Using OleView on msscript.ocx

Saving this IDL file to disk with File -> Save As… and choosing a name such as msscript.idl allows us

to use Microsoft’s MIDL compiler (midl.exe) from a Visual Studio Tools prompt. There is one hitch,

however: Microsoft’s MIDL compiler complains about the syntax of the IDL generated from Microsoft’s

own type library! Figure 19 shows the MIDL compiler’s complaints (MIDL2400 and MIDL2401).

Figure 19: MIDL compiler errors 2400 and 2401

Figure 20 shows how to disable these warnings 2400 and 2401 with midl_pragma statements.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 19

Figure 20: Disabling MIDL warnings 2400 and 2401

The generated header file msscript.h is hostile to IDA’s type importation system due to the

numerous COM-related definitions, so it is expedient to gut the definition of IScriptControlVtbl

and import the simplified version shown in Figure 21.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 20

Figure 21: Simplified IScriptControlVtbl definition derived from msscript.h

With the IScriptControlVtbl type added to IDA’s types, it is now possible to conveniently add it as

a structure of the same name and then use its structure offsets to make sense of the COM function

calls. For instance, Figure 22 shows the call to IScriptControlVtbl.put_Language which sets the

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 21

Language property of the script control instance.

Figure 22: Using IScriptControlVtbl struct offsets to mark up the COM call at 0x4044DD

Aside from put_Language, the shellcode also calls AddObject three times and ExecuteStatement

once before releasing the COM instance. Now we can debug the binary again using sxe ld

msscript and use the WinDbg x (Examine Symbols) command to search msscript and find

addresses to set breakpoints and observe details.

Figure 23: Examining msscript symbols in search of COM function addresses

In summary, the shellcode adds objects poo, oSh, and fso as aliases for a single interface pointer. This

pointer corresponds to the IDispatch interface that was set up at 0x40FD8C. What this does is allow

the VBScript to use the aforementioned object names to invoke any of the methods in Table 1.

The shellcode next calls ExecuteStatement passing an encoded buffer that has PAGE_NOACCESS

set. The encoded, protected buffer is burdensome to reverse statically, and VBScript builds an abstract

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 22

syntax tree (AST) instead of maintaining the decoded string in memory, so a dynamic solution is

preferable.

The decoder at 0x4012A0 ends at 0x4013C6, so the solution employed by Tyler Dean of the FLARE

team (Twitter: @spresec) was to break there and dump the bytes to be stitched together later by a

Python function. Listing 4 shows a sequence of WinDbg commands that can be used to dump a list of

addresses and decoded bytes

sxi av

sxi ld

sxi sse

sxi ssec

ba e1 leet_editr+0x13C6 "db poi(esp+8) L2; g"

g

Listing 4: WinDbg sequence to dump decoded Unicode bytes of VBScript

Although this takes a long time to run under the debugger, it does finally produce the decoded bytes,

with encoded versions interspersed between. Eliminating the extraneous WinDbg commands and

output, and deleting every other line, makes a text file we can parse with the Python in Figure 24.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 23

Figure 24: Python script to convert WinDbg breakpoint hex dump into VBScript

The result of this is the decoded script which bears the ASCII art preamble in Figure 25.

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 24

Figure 25: ASCII art preamble to VBScript

The VBScript uses the InternetExplorer.Application COM object to inject the hard-coded

HTML in the Page variable into a blank browser page and then inject a script separately to poll the

contents of the textarea element named textin until it contains a substring of the ASCII art at the

top of the script and matches a particular string hash value. A second similar check validates that the

user has entered a certain title for their ASCII art. The script calls the createtextfile, run,

getspecialfolder, and gimmethatsweetsweetcrazylove COM methods through the objects

provided via IScriptControl->AddObject. This binds the VBScript to the native program that

loaded it and prevents it from being executed outside of that environment without modification. The

function gimmethatsweetsweetcrazylove is what decrypts the flag and injects it into the browser.

All that is necessary to satisfy the first (textarea) check and proceed to the next is to paste the ASCII

art (comment characters and all) into the textarea element. Figure 26 shows how the hint box is

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 25

updated, prompting the user to enter a title for the ASCII art.

Figure 26: After pasting ASCII art into ASCII art editor

Recall that the shellcode contained the string "If I were to title this piece, it would

be 'A_FLARE_f0r_th3_Dr4m4t1(C)'". Figure 27 shows the title pasted into the title element.

Figure 27: Pasting the title into the web page

mailto:info@FireEye.com

FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | info@FireEye.com | www.FireEye.com 26

When this is done, the VBScript injects the HTML shown in Figure 28, which displays a marquee version

of the flag.

Figure 28: Sweet, sweet flag

The flag is scr1pt1ng_sl4ck1ng_and_h4ck1ng@flare-on.com.

Props to:

Tyler Dean for making sense of the documentation to identify the right exceptions to enable in WinDbg

to ignore single-step exceptions. Tobias Krueger for finding a flaw in which RC4 keytext was excessively

long and was discarded from the RC4 key scheduling algorithm allowing the player to solve the

challenge without finding the second half of the key! Alexander Polyakov for bringing to my attention

an issue that players were noticing with the CryptAcquireContext flags as well as

internationalization issues (who would have thought that 2-ish weeks of development and testing on

about five different systems would not be enough!). And to Eatbrain (https://eatbrain.net/) for

allowing me to make use an ASCII of their logo to greet players who beat this challenge.

mailto:info@FireEye.com
https://eatbrain.net/

