

Written by

Sam Mackness

Sarah Lucas

Published

November 2017

Fleet management at scale
How Google manages a quarter million computers securely and efficiently

Introduction

Google's employees are spread across the globe, and with job functions

ranging from software engineers to financial analysts, they require a broad

spectrum of technology to get their jobs done. As a result, we manage a fleet

of nearly a quarter-million computers (workstations and laptops) across four

operating systems (macOS, Windows, Linux, and Chrome OS).

Our colleagues often ask how we're able to manage such a diverse fleet. Do

we have access to unlimited resources? Impose draconian security policies

on users? Shift the maintenance burden to our support staff?

The truth is that the bigger we get, the more we look for ways to increase

efficiency without sacrificing security or user productivity. We scale our

engineering teams by relying on reviewable, repeatable, and automated

backend processes and minimizing GUI-based configuration tools. Using and

developing open-source software saves money and provides us with a level

of flexibility that's often missing from proprietary software and closed

systems. And we strike a careful balance between user uptime and security

by giving users freedom to get their work done while preventing them from

doing harm, like installing malware or exposing Google data.

This paper describes some of the tools and systems that we use to image,

manage, and secure our varied inventory of workstations and laptops . Some 1

tools were built by third parties—sometimes with our own modifications to

make them work for us. We also created several tools to meet our own

enterprise needs, often open sourcing them later for wider use. By sharing

this information, we hope to help others navigate some of the challenges

we've faced—and ultimately overcame—throughout our enterprise fleet

management journey.

“Everyone in Site
Reliability
Engineering’s
goal is to
automate
themselves out
of a job. Don’t
worry—there will
be a new job for
you; something
that isn’t yet
automated.
Human beings
do not exist to
push buttons
and turn cranks
on things which
should be
automated.”

― Thomas
Bushnell, Linux
SRE at Google

1 Since Chrome OS requires very little enterprise management, we don’t cover it here. We also don’t discuss mobile
devices as the management systems and challenges are different and may be addressed in a future paper.

1

Imaging at scale

The first stop a device makes when it enters the Google ecosystem is

imaging. With nearly a quarter-million computers to image, we’ve had to find

ways to reduce the complexity of our imaging process and cut down on the

time it takes to image a machine.

No matter the platform, we always start with a basic vanilla image and

package it with our configuration management tools. It’s easier and faster to

change network-based files than it is to regenerate a new image whenever

we update a configuration tool.

We use Standalone Puppet —which doesn’t require connecting to Puppet 2

configuration servers on the web—to apply configurations across our entire

macOS, Windows, and Linux landscape. Our workflow entails declaring the

desired machine state; Puppet then consistently runs checks to ensure that

the computer is in the desired state. When a machine fails this check, Puppet

returns the machine to the declared state. For example, if you declare that

machines should have a 5-minute screen timeout and an employee disables

their screen-lock, Puppet will enable the screen timeout the next time it runs.

Master Puppet vs. Standalone Puppet

We’ve switched from standard Master Puppet mode to Standalone
(Masterless) Puppet mode at Google for two main reasons:

● Standalone doesn’t require a large infrastructure of Puppet
configuration servers. Our hosts pull the cryptographically
verified configuration files from a web host which serves the
files, verifies the data locally, and then applies the
configurations.

● Not having servers allows us to commit to our BeyondCorp
access model, which does away with using internal
networks for corp access.

Read more about our BeyondCorp effort at
https://cloud.google.com/beyondcorp

“Our package
management
and
configuration
management
tools [allow us]
to customize a
single
monolithic
image for all of
the Macs in the
Google
inventory.”

― Edward
Eigerman, Mac
SRE at Google

2 https://puppet.com

2

https://cloud.google.com/beyondcorp
https://puppet.com/

Our approach to packaging our configuration tools with the image and

distributing this image to computers varies by operating system.

On Mac, we use AutoDMG to combine the base image from Apple with our 3

configuration tools and then upload it onto our internal distributed file

system (DFS). We created an app that pulls the image from our DFS and

writes the image to machines attached in a target-disk mode. Our imaging

time is down to 15 minutes, compared to the hour that it used to take when

we used TFTP servers and PXE boot.

On Windows, we use Glazier —a code-based imaging tool that we created in 4

house and then open sourced. Glazier is made up of binaries that are

configured through source-controlled and peer-reviewed text. Text files suit

our typical use cases better than GUIs because they work with version

control systems. Admins can see a complete revision history of the imaging

environment, peer-review changes, and roll back the image if problems arise.

The image files are then distributed over HTTP(S). We chose this method

because it’s open and ubiquitous, has many freely available server

implementations, can distribute data globally, and is highly secure (in the

case of HTTPS).

On Linux, we use PXE to netboot a standard Ubuntu/Debian installer image.

We have a system that automatically builds new OS install images on a

schedule (in the form of compressed tar-format archives). These install

images are then placed on an HTTPS server alongside Debian preseed files

that automate the host setup portion of the installation.

Our installation process is integrated with our Puppet and host update

infrastructure to ensure every host is configured as intended at install. This

allows us to reinstall any host from the network in about 30 minutes without

needing to distribute media or requiring another host to boot from.

We have a team
dedicated to
tracking the
latest in
consumer
enterprise
hardware,
working with
outside vendors
and partners, as
well as the
internal Chrome
OS hardware
group. They
monitor industry
trends, attend
advisory
meetings with
vendors, and run
their own tests
and focus
groups with
Googlers to
ensure that our
hardware
offerings
continue to
meet everyone’s
needs.

3 https://github.com/MagerValp/AutoDMG
4 https://github.com/google/glazier

3

https://github.com/MagerValp/AutoDMG
https://github.com/google/glazier

As a result of our retooling, our imaging processes are easy and fast enough

for Googlers to reimage their own machines if they need to.

Getting software on computers

Since we aim to keep the image we install on new machines simple, we only

preload mandatory management software onto machines. If a user needs

specific software to do their job, we make this available to them through

central software repositories. We use a combination of third-party and

custom tools developed in-house to package and push software to these

repositories in ways that are automatic and easily repeatable.

In 2010 we evaluated several commercially available software packaging

and management solutions for macOS, but none of them fit our needs.

Munki , a great open source software (OSS) tool, also fell short of our 5

requirements because its only purpose is to fetch a manifest and catalog file

from a simple web server. We needed the ability to dynamically generate

these catalog and manifest files on a per-host basis, so we created and open

sourced a solution called Simian . Simian is a Google App Engine-hosted 6

server, with a client powered by Munki.

We use Luggage to create the Apple package installers and Munki to get the 7

packages on Googlers' machines and push updates. Simian then works with

Munki to deploy or update software to targeted users, hostnames, OS

versions, groups, and more. Simian also lets us force-install updates on

machines when necessary.

On Windows, we currently use Microsoft System Center Configuration

Manager (SCCM). While SCCM has many features beyond packaging, it’s not

the best solution for us. Software needs are as diverse as our workers, so we

need a tool that allows us to create reviewable packages in our codebase

and push directly to our software repository. We’ve developed an internal tool

on Linux called Rapture that does just this, and are working on switching

We provide end
users with a
catalog-style
shopping portal
where they can
order licensed
software. Once
the request is
approved, most
software
packages are
automatically
“pushed” to a
user’s machine
and can be
installed without
tech support
intervention.

5 https://github.com/munki/munki
6 https://github.com/google/simian
7 https://github.com/unixorn/luggage

4

https://github.com/munki/munki
https://github.com/google/simian
https://github.com/unixorn/luggage

from SCCM to Rapture on Windows to drive more consistency between

platforms and the infrastructure we use.

With Rapture, we can create union software repositories to group multiple

repositories owned by different teams into one larger meta-repository. Using

this system, we can publish one small set of repositories to all clients, that

make use of server-side features like canaries and version controlling,

without having to manage a complicated set of repositories on the client

side.

Rapture also handles significant request load. Our hosts check in with

Rapture every 15 minutes for new software updates. When things get busy,

like during a new software release, Rapture regularly serves more than 75

gigabits per second of network traffic.

Of course, these backend processes are invisible to end users. We provide

centralized software centers on all of our platforms where users can find the

software they need and install it with just a few clicks. On Linux, since most

of our users are much happier using CLI’s, software can also be installed via

APT. This self-service approach cuts down on the amount of time techs need

to spend installing software on users’ computers and makes it easy for users

to quickly get the software they need, when they need it.

Balancing usability with security

We try to give end users as much freedom as possible in managing their own

machines and installing software. Granting end users this freedom, however,

means that we need to take precautions to secure our fleet. Puppet is one

tool we use towards this end. However, since Puppet isn't equipped to

singlehandedly safeguard our fleet, we're taken steps to ensure that all of our

devices are encrypted, have the latest OS version installed, and are free from

malware.

We often find
that third-party
tools don’t fully
suit our typical
use cases.
That’s why we
use open-source
software
whenever
possible, or
build our own
tools and make
them available
for wider use.

5

Encrypting devices

The first step to securing our fleet was to fully encrypt all of our machines.

To fit our needs, we used Apple’s provided tools for key escrowing and

created Cauliflower Vest on App Engine. With Cauliflower Vest (an anagram 8

for Filevault Escrow), we can forcibly enable encryption on users' machines

and access recovery keys to unlock or revert volumes.

While we initially developed Cauliflower Vest for macOS, it also works with

BitLocker recovery keys from Active Directory and LUKS on Linux. Users can

retrieve their own recovery keys, so if they get locked out they don’t have to

wait for tech support to regain access.

Applying operating system updates

At Google, the state of your machine is a key factor in determining your level

of access to internal systems. We use our Access Proxy and Access Control

Engine to enforce policies, like mandatory operating system upgrades, and 9

restrict access to most corp resources until these policies are met.

To encourage users to install OS updates, we nag them with pop-up

messages. The longer they wait to update, the more frequent the pop-ups

become. If they wait too long to update, they will find their level of access

degraded until these updates are applied.

If that isn’t enough to get someone to upgrade, we built a tool that forces

updates if too much time has passed since the last system update. The user

receives pop-up notifications that their machine is about to reboot and

upgrade so they're not force-updated without warning.

At Google,
security and
usability aren’t
necessarily
mutually
exclusive goals.
We aim to
design invisible
and unobtrusive
security
solutions that
users don’t have
to “work
around”.

8 https://github.com/google/cauliflowervest
9 https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45728.pdf

6

https://github.com/google/cauliflowervest
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45728.pdf

Preventing malware with social whitelisting

While our software repositories allow Googlers to download the most

popular software, we can’t possibly review and package every piece of

software employees need when they need it. We do allow users to download

software from the internet, but only after it’s gone through a social

whitelisting process involving peer-based voting.

To this end, we use tools that provide local binary whitelisting systems at the

kernel level: Santa on macOS and Carbon Black (formerly Bit9) on 10 11

Windows. These tools run every time a binary launches, checking the hash of

the binary and running it against local SQL database to see if the binary is

allowed to run. If not, the tool blocks the binary from running.

When a user tries to install software that isn’t whitelisted, they're served a

pop-up that sends them to an internal website where they can request

whitelisting approval. The tool notifies the user of any red flags with the

software—for instance, if it looks like potential malware. If the software has

no obvious problems, the user simply has to vote for the software in the tool

and get another employee to vote for it. The software is then whitelisted and

available for download by the user and anyone who voted for it.

Of course, there are some third-party tools that we prohibit due to potential

security issues, so we maintain a list of banned software. Banned software

can't be whitelisted with votes.

And if a piece of software becomes sufficiently popular, as measured by the

percentage of installs across our fleet, we undertake a security review, and

then package and deploy it to our software repositories.

After rolling out
Santa (binary
whitelisting for
macOS) to our
Mac fleet, we
observed a 78%
decrease in
malware-related
Mac reimage
requests.

10 https://github.com/google/santa
11 https://www.carbonblack.com

7

https://github.com/google/santa
https://www.carbonblack.com/

Applying a similar strategy at your

company

Adopting a scaled enterprise fleet management approach did require some

upfront investment and a culture shift toward automated, reviewable, and

repeatable systems and processes. In return, we've benefited from lower

maintenance and support costs, and increased job satisfaction for

engineers, support staff, and our users.

Many of the tools mentioned in this paper are open source, making them

affordable for companies of any size. Indeed.com is one good example of

how a company much smaller than Google implemented a scalable strategy

for securely managing their fleet of Macs. Before experimenting with Simian,

their process for installing patches and updates was time-consuming and

cumbersome. Their help desk had to manually apply updates using a

20+-task checklist and run various scripts manually on firstboot. It only took

Indeed.com a few days to implement Simian with Munki, and their

implementation was covered under the free App Engine usage tier.

The company further invested in this new strategy by using another tool to

automatically upload the software package metadata and automate

uploading/hosting the packages outside of the blobstore. According to

Allister Banks, an IT Systems Administrator at Indeed.com, “Coworkers are

very happy that they can self-serve to offer software to any customer, look at

basic inventory items, and an item can be pushed globally in a super efficient

manner.”

When looking for ways to efficiently scale your fleet:

● Automate as many of the technical processes as possible.

● Give your users plenty of self-service options.

● Put automatic checks in place that prevent users from doing real

harm.

“Employees at
indeed.com are
very happy that
they can
self-serve to
offer software
to any customer,
look at basic
inventory items,
and an item can
be pushed
globally in a
super efficient
manner.”

—Allister Banks,
IT Systems
Administrator at
Indeed.com

8

If you’d like to implement any of our open-source tools to manage your fleet,

you can find a list of the tools with links to implementation instructions in the

table below.

Google’s open-source fleet management tools

Tool Compatible
with

Configure
with

Setup and usage
instructions

Glazier Windows N/A https://github.com/google/
glazier

Simian macOS https://github.com
/munki/munki

https://github.com/google/
simian

Cauliflower
Vest

macOS,
Windows, Linux

N/A https://github.com/google/
cauliflowervest

Santa macOS https://github.com
/groob/moroz

or
https://github.com
/zentralopensourc

e/zentral/wiki

https://github.com/google/
santa

9

https://github.com/google/glazier
https://github.com/google/glazier
https://github.com/munki/munki
https://github.com/munki/munki
https://github.com/google/simian
https://github.com/google/simian
https://github.com/google/cauliflowervest
https://github.com/google/cauliflowervest
https://github.com/groob/moroz
https://github.com/groob/moroz
https://github.com/zentralopensource/zentral/wiki
https://github.com/zentralopensource/zentral/wiki
https://github.com/zentralopensource/zentral/wiki
https://github.com/google/santa
https://github.com/google/santa

About the authors

Sam Mackness, Engineering and Operations Manager

Sam leads the organization responsible for Google’s
corporate computing fleet. He is based in the Bay
Area. Since joining Google in 2002, he has held roles in
Hardware Operations, Global Production Infrastructure,
and Corporate Engineering. Sam holds a BA in Political
Science from the University of California, Irvine.

Sarah Lucas, Technical Writer

Sarah is a technical writer for Google’s Corporate
Engineering organization, based in NYC. Prior to
joining Google in 2013, she was a freelance writer and
content manager in the Metro Detroit area. Sarah holds
degrees in English and Advertising from Michigan
State University.

Contributors: Erin Pierce, Justin Hahn, Clay Caviness, Ofer Bar-Zakai, Matt
LaPlante, Marga Manterola, Betsy Beyer, Kate Borger, Daniel Meltz, David
Dorbin, Max Saltonstall

10

