Proprietary & Confidential Go g Ie AdS

Getting Started:

Credentials & Account Access
Google Ads APl Migration Workshops - 2021

In this session, we will be learning how to authorize and generate
credentials for the Google Ads API, and debug the credentials when
something goes wrong. We’'ll also introduce a tool for debugging
credentials issues called the Google Ads Doctor tool and show you how to
use it.

The main steps involved in this session are listed below.

Part O - Prerequisites
Part 1 - OAuth

Part 2 - Client Libraries

Part 3 - Google Ads Doctor
Part 4 - Fix Missing Scope Error
Part 5 - Success

Part 6 - Update Refresh Token

This is meant to be an interactive session in which you can follow along
with the demonstration by performing each of the steps below. Please
post any questions you have to the Q&A forum, and our team will be
standing by to help you out.

Proprietary & Confidential Go g Ie AdS

Part O - Prerequisites

Before getting started you will need the following.

e A Google Ads Test Account
e A Developer Token
[]
[J

A Google Cloud Platform project with the Google Ads API enabled
An environment with
o Your client library of choice installed

o git

Note that a GCP project can only be linked to a single Developer Token.

https://developers.google.com/google-ads/api/docs/first-call/overview#test_account
https://developers.google.com/google-ads/api/docs/first-call/dev-token
https://developers.google.com/google-ads/api/docs/first-call/oauth-cloud-project
https://developers.google.com/google-ads/api/docs/client-libs
https://git-scm.com/

Proprietary & Confidential Go g Ie AdS

Part 1 - OAuth

OAuth is an open standard for authorizing access to APIs and services.
Many Google APIs, like the Google Ads API, use OAuth 2 to delegate
access to Ads Accounts to third-party services, client libraries, and more
without the authorizing party sharing their Google password.

Your App Google Servers

e =g

Request token ———m

% = User login & consent

User

- - - - - Authorization - - - - - - -
code

Exchange code)
for token

-+ - - - - Token response - - - - - 4

Use token to call
Google API

All Google Ads API requests must include authorized OAuth credentials.
While there are several types of credentials and flows for granting
credentials, this codelab focuses on user Access Tokens and the Desktop
flow.

Service accounts use an OAuth flow that avoids the token negotiation
steps. They can be used with the Google Ads API, however they will not be
covered in this session. The desktop flow we’ll demonstrate here is the
recommended approach.

https://developers.google.com/identity/protocols/oauth2
https://developers.google.com/google-ads/api/docs/oauth/cloud-project#choose_an_app_type
https://developers.google.com/google-ads/api/docs/oauth/cloud-project#choose_an_app_type
https://developers.google.com/google-ads/api/docs/oauth/service-accounts

Proprietary & Confidential Go g Ie AdS

Part 2 - Client Libraries

We recommend using the client libraries to interact with the Google Ads
API. They provide friendlier interfaces that help you get started faster and
have a large set of code examples for performing most common API tasks.

We also expose a REST API which you can use if we do not support a client
library for your preferred programming language. This codelab will not be
covering the REST API.

Part 2.0: Setup
We will be using Ruby in this codelab. If you choose to use another client

library, the setup will be slightly different. From an empty directory we'll
create the dependencies file.

2.0.0: Create the dependencies file

Gemfile

source 'https://rubygems.org'’

gem 'google-ads-googleads', '~> 14.0'

Once we have set the dependencies, they can be installed with a
dependency manager, in this case bundler.

2.0.1: Install your dependencies

$ bundle install

N

https://developers.google.com/google-ads/api/docs/first-call/get-client-lib
https://developers.google.com/google-ads/api/rest/overview

Proprietary & Confidential GO g Ie AdS

Part 2.1: Script

From the same directory we’ll create the main script. More functionality
will be added later.

2.1.0: Create the main script

main.rb
require 'google/ads/google ads'

client = Google::Ads::GoogleAds: :GoogleAdsClient.new('./google ads_config.rb')

Running the script will demonstrate the error result of not having a
configuration file.

2.1.1: Config file missing error

$ bundle exec ruby main.rb

No configuration file found at location "./google_ads_config.rb" (ArgumentError)

63}

Proprietary & Confidential GO g Ie AdS

Part 2.2: Configure

Let’s add the missing file where we’ll store our configuration information
by creating google ads_config. This file name and setup will be different
depending on what client library you are using. The links below contain
client-library specific configuration information:

Java

NET

Perl

e
o

Python
u

2.2.0: Create a configuration file

$ touch google ads config.rb

4

Next, let’s execute the script, which will produce an error message. The
exact error message will vary depending on your client library.

2.2.1: Run script and see error
$ bundle exec ruby main.rb

Configuration file did not produce expected type Google::Ads::GoogleAds::Config,
got "NilClass" instead (ArgumentError)

Congratulations, you've successfully unsuccessfully configured a client
library!

o

https://developers.google.com/google-ads/api/docs/client-libs/java/config-file
https://developers.google.com/google-ads/api/docs/client-libs/dotnet/configuration
https://developers.google.com/google-ads/api/docs/client-libs/perl/configuration
https://developers.google.com/google-ads/api/docs/client-libs/php/configuration
https://developers.google.com/google-ads/api/docs/client-libs/python/configuration
https://developers.google.com/google-ads/api/docs/client-libs/ruby/configuration

Proprietary & Confidential Go g Ie AdS

Part 3 - Google Ads Doctor

When using a client library and run into configuration or authentication
issues, the Google Ads Doctor (or OAuthDoctor) tool should be your first
stop. The OAuthDoctor will help you debug and troubleshoot issues
related to configuration and account access.

Part 3.0: Install the OAuthDoctor

To install the OAuthDoctor, clone the git repository and execute the binary
built for your environment. Do this within the same directory for easy
access.

3.0.0: Clone the OAuthDoctor

$ git clone https://github.com/googleads/google-ads-doctor.git
Part 3.1: Test without Configuration

Execute the binary with the --help flag to make sure OAuthDoctor is
installed correctly and show the possible options for the tool.

3.1.0: Run the OAuthDoctor with the —help option

$./google-ads-doctor/oauthdoctor/bin/darwin/amd64/oauthdoctor --help

With OAuthDoctor installed and running, execute the OAuthDoctor to test
the environment to identify issues. Note, your command line parameters
may be different depending on your client library.

https://github.com/googleads/google-ads-doctor
https://github.com/googleads/google-ads-doctor.git

Proprietary & Confidential Go g Ie AdS

3.1.1: Run the OAuthDoctor with language-specific parameters

$./google-ads-doctor/oauthdoctor/bin/darwin/amd64/oauthdoctor -language ruby
-oauthtype installed_app -configpath ./google_ads_config.rb

OAuthDoctor prints out all the missing configuration values and a prompt
to enter an Account ID. Abort the script with control + c orthe
equivalent for your environment.

Part 3.2: Fix your Configuration File

Update your configuration file to include the client ID, client secret, and
developer token with values from your GCP Project and Google Ads
Manager account. The refresh token will be added in a later step. Each
client library has a sample file showing all the configurable options.

e o o o o o
Y
L
o

https://github.com/googleads/google-ads-java/blob/HEAD/ads.properties.sample
https://github.com/googleads/google-ads-dotnet/blob/HEAD/src/App.config
https://github.com/googleads/google-ads-perl/blob/HEAD/googleads.properties
https://github.com/googleads/google-ads-php/blob/HEAD/examples/Authentication/google_ads_php.ini
https://github.com/googleads/google-ads-python/blob/HEAD/google-ads.yaml
https://github.com/googleads/google-ads-ruby/blob/HEAD/google_ads_config.rb

Proprietary & Confidential GO g Ie AdS

3.2.0: Update your configuration file

google_ads_config.rb

Google: :Ads: :GoogleAds: :Config.new do |c|

#

N H H OH o H H H

H*

(g}

0 0 H H O H OB

end

Treat deprecation warnings as errors will cause all deprecation warnings
to raise instead of calling "Warning#warn™ . This lets you run your tests
against google-ads-googleads to make sure that you are not calling any
deprecated code

.treat_deprecation_warnings_as_errors = false

Warn on all deprecations. Setting this to “true’ will cause the library to
warn every time a piece of deprecated code is called. The “false ™ (default)
behaviour is to only issue a warning once for each call site in your code.

.warn_on_all deprecations = false

The developer token is required to authenticate that you are allowed to
make API calls.

.developer_token = 'INSERT_DEVELOPER_TOKEN_HERE'

Authentication tells the API that you are allowed to make changes to the
specific account you're trying to access.

The default method of authentication is to use a refresh token, client id,
and client secret to generate an access token.

.client_id = 'INSERT_CLIENT_ID HERE'
.client_secret = 'INSERT CLIENT_SECRET_HERE'

Running the OAuthDoctor command again will show several values are
now configured. Continue to the next step by entering your Google Ads
Manager Account ID in the format of 123-456-7890. This will log Google
Identity authorization dialog URL.

3.2.1: Sample URL output

https://accounts.google.com/o/oauth2/auth?access_type=offline&client_id=123456789-b
5tsd9bh5. apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3A00
b&response_type=code&scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fadwords&state=
state

Proprietary & Confidential

Google Ads

Part 3.3: Introducing a Scope Error

Before authorizing access, make one small change to add the email
scope (email is shorthand for the
https://www.googleapis.com/auth/userinfo.email Google Identity
scope) followed by an encoded space. Update the scope value of the URL
so that instead of
scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fadwords it's
scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fadwo
rds.

G Sign in with Google

Open that URL in a browser where

you will select the Google account
you wish to authorize. Grant access
to the Google Account leaving
“manage your AdWords
campaigns” unchecked for now.

If the GCP Project OAuth app is
unverified you may have to click
through a warning screen.

A

This app isn't verified

This app hasn't been verified by Google yet. Only
proceed if you know and trust the developer.

Advanced BACK TO SAFETY

10 A ——

Credentials Example wants
access to your Google Account

Q credentials.example.727699@gmail.com

Select what Credentials Example can access

Associate you with your personal info on
® Google

See your primary Google Account email
® address

Manage your AdWords campaigns. D
Learn more

Make sure you trust Credentials Example

You may be sharing sensitive info with this site or app. You
can always see or remove access in your Google Account.

Learn how Google helps you share data safely.

See Credentials Example’s Privacy Policy and Terms of
Service.

Cancel Continue

https://www.googleapis.com/auth/userinfo.email
https://support.google.com/cloud/answer/7454865

Proprietary & Confidential Go g Ie AdS

Account access has now been authorized for the email scope. Copy the
desktop flow code and paste it into the OAuthDoctor prompt.

Google
Signin

Please copy this code, switch to your application and paste it there:

4/1AX4XfWjumDetViMTdBW1ChwktpDAmAtRV1U9 8brMb FD
S5eEzFgbogvI7cyKtg

After continuing with OAuthDoctor you'll get an ERROR: OAuth test
failed message. This is caused by missing authorization of the
https://www.googleapis.com/auth/adwords scope.

11 D

https://www.googleapis.com/auth/adwords~

Proprietary & Confidential Go g Ie AdS

Part 4 - Fix Missing Scope Error

Part 4.0: Enable missing scope

Go through the Desktop OAuth flow again, this time enabling “Manage
your AdWords campaigns.”.

G sign in with Google

Credentials Example wants
access to your Google Account

Q credentials.example.727699@gmail.com

Select what Credentials Example can access

Manage your AdWords campaigns. D
Learn more

Make sure you trust Credentials Example

You may be sharing sensitive info with this site or app. You
can always see or remove access in your Google Account.

Learn how Google helps you share data safely.

See Credentials Example’s Privacy Policy and Terms of
Service.

Cancel Continue

12 A ——

Proprietary & Confidential Go g Ie AdS

After enabling the Google Ads (Displayed as AdWords) and authorizing
access, OAuthDoctor will display a success message.

4.0.0: Sample prompt from OAuthDoctor

2021/08/19 ©6:27:56 SUCCESS: OAuth test passed with given config file settings.
2021/08/19 06:27:56 Would you like to replace your refresh token in the client
library config file with the new one generated?

Confirm Y at the prompt to write the refresh token to the configuration
file. A refresh token is a long lived OAuth credential that allows generating
short lived Access Tokens that are used to authenticate each request.

13 D

Proprietary & Confidential GO g Ie AdS

Part 5 - Success

Configuration is set up, access has been granted, and a refresh token with
the correct scope has been issued. Let’s see a successful API call.

Part 5.0: Account Information

Update main script to include the primary function code from the get
campaigns examples linked below. Update the example to select
customers instead and include the Google Ads Customer ID without any
dashes (e.g. 1234567890).

e 6 o o o o
U
D
=

14 D

https://github.com/googleads/google-ads-java/blob/HEAD/google-ads-examples/src/main/java/com/google/ads/googleads/examples/basicoperations/GetCampaigns.java
https://github.com/googleads/google-ads-dotnet/blob/HEAD/examples/BasicOperations/GetCampaigns.cs
https://github.com/googleads/google-ads-perl/blob/HEAD/examples/basic_operations/get_campaigns.pl
https://github.com/googleads/google-ads-php/blob/HEAD/examples/BasicOperations/GetCampaigns.php
https://github.com/googleads/google-ads-python/blob/HEAD/examples/basic_operations/get_campaigns.py
https://github.com/googleads/google-ads-ruby/blob/HEAD/examples/basic_operations/get_campaigns.rb

Proprietary & Confidential GO g Ie AdS

main.rb

require 'google/ads/google_ads'

client = Google::Ads::GoogleAds: :GoogleAdsClient.new('./google_ads_config.rb')
customer_id = 'INSERT_CLIENT ID'

responses = client.service.google ads.search_stream(
customer_id: customer_id,
query: 'SELECT campaign.id, campaign.name FROM campaign ORDER BY campaign.id',

)

responses.each do |response|
response.results.each do |row|
puts "Campaign with ID #{row.campaign.id} and name '#{row.campaign.name}' was
found."
end
end

5.0.1: Get customer info code

main.rb

require 'google/ads/google_ads'

client = Google::Ads::GoogleAds: :GoogleAdsClient.new('./google ads_config.rb')
customer_id = "INSERT_CLIENT ID'

responses = client.service.google_ads.search_stream(
customer_id: customer_id,
query: 'SELECT customer.id, customer.descriptive_name FROM customer',

)

responses.each do |response|
response.results.each do |row|
puts "Customer with ID #{row.customer.id} and name
"#{row.customer.descriptive_name}' was found."
end
end

15 D

Proprietary & Confidential GO g Ie AdS

Run the example to see successful output.

5.0.2: See a successful run

$ bundle exec ruby main.rb

16 D

Proprietary & Confidential Go g Ie AdS

Part 6 - Update Refresh Token

One of the common pitfalls when working with OAuth credentials is
missing a character when copy/pasting a client ID, a secret, etc. Let’s take
a look at what happens.

Part 6.0: Introduce Credentials Error

Back in the google ads_config.rb config file, delete the last character of
the refresh token.

6.0.0: See Authorization Error

$ bundle exec ruby main.rb

There will be a large error message that includes “Authorization failed”.

A similar error can also be caused by revoking the application’s access to
the Google account.

Part 6.1: Update Refresh Token
Run the OAuthDoctor flow again and perform the following steps

Enter an Account ID

Select Google account in browser

Enable managing AdWords campaigns

Copy OAuth code and paste it into OAuthDoctor
Confirm overwriting client library config file

17 D

https://support.google.com/accounts/answer/3466521

Proprietary & Confidential GO g Ie AdS

6.1.0: Run the OAuthDoctor Again

$./google-ads-doctor/oauthdoctor/bin/darwin/amd64/oauthdoctor -language ruby
-oauthtype installed_app -configpath ./google_ads_config.rb

Great job! Run the example to see successful output.

6.1.1: See a successful run

$ bundle exec ruby main.rb

Resources

e Client library docs

e Google Ads API Authentication Docs

e Google Ads Doctor

e Using OAuth 2.0 to Access Google APIs

18

https://developers.google.com/google-ads/api/docs/client-libs
https://developers.google.com/google-ads/api/docs/oauth/overview
https://github.com/googleads/google-ads-doctor
https://developers.google.com/identity/protocols/oauth2

