
Unlocking the power of
GKE’s flat network:
design recommendation
Scale your GKE network for gen AI and agentic AI workloads

Abstract
A Kubernetes network model describes
how pod IPs integrate with the larger
network. Google Kubernetes Engine's
(GKE) flat network makes pod IPs
directly routable on the wider network,
simplifying external access. In contrast,
island-mode isolates the pod network
within the cluster, creating overlays or
isolated ‘islands’ requiring network
address translation (NAT) or gateways
for external communication.

This guide offers recommended practices
for designing, deploying, and managing
GKE’s flat network model, and contrasts it
with the island-mode network model. It
provides designs to adapt island-mode to
GKE's flat networking architecture and
presents the latest GKE innovations that
enhance the flat network’s capabilities.

The massive adoption of GKE by a wide
spectrum of customers signals a definitive
strategic pivot towards containerized
applications for enhanced scalability and
agility. GKE is increasingly being adopted
for gen AI and agentic AI workloads due to
its cloud-native architecture, advanced
networking capabilities, hardware
accelerator integration, scalability,
reliability, and state management benefits.

As organizations increasingly entrust their
mission-critical workloads to the GKE
platform, understanding and leveraging the
power of its default network model — fully
integrated or flat — is key to success.

Network model: flat or
fully integrated
Key network features

• Every pod in a GKE cluster gets a
unique IP address

• Pods share IPs with VPC and are
routable in the VPC network

• Full IP reachability across nodes,
clusters, and VMs

Network model:
island-mode

Key network features

• Pods don't have unique
addresses across clusters

• Typically communicate with
resources outside the cluster
through gateways or proxies,
often involving NAT

• Pods use isolated ranges and
typically use overlay networks

2

3

Overview
GKE leverages a flat network model as the
default. This is sometimes also referred to
as the “IP-per-pod” model.

This network model aligns elegantly with
Google Cloud's global Virtual Private Cloud
(VPC) concept to provide global
connectivity without need for NAT or
complicated overlay networks,

facilitating multiregional deployments of
distributed applications.

Kubernetes provides diverse network
implementation options, including the
alternative island-mode network model. Let’s
consider their main characteristics, pros, and
cons.

4

Feature/aspect GKE’s flat or fully integrated Island-mode

Pod IP range Part of the VPC IP range Could be part of the VPC IP range or
a separate subnet, isolated from
VPC

Pod IP Unique across the VPC Typically pod IPs are reused

Pod-to-pod
communication

Native or non-NAT. Allowed across
all GKE clusters and VMs by default

Restricted to within the cluster

Integration
with VPC

Seamless — pods are first-class citizens
of the VPC

Pods are isolated from VPC by default

Load balancing Container-native L7 load balancing that
can take advantage of all the advanced
algorithms offered by Google Cloud’s
load balancers

Load balancing happens across the VMs, then
from the VM the load balancing happens across
nodes since the pod IP is not directly routable
within the VPC

Security boundary
for cross-cluster
communication

Needs network policies or firewalls to isolate. Natural isolation due to subnet boundaries

Service discovery Global, native with VPC DNS and
GKE internal services

Local to the cluster. Needs complex IPAM
co-ordination between clusters or complex NAT
logic when crossing cluster boundaries. Needs
extra setup for cross-cluster DNS — typically
achieved via some sort of static or dynamic routing
protocol to distribute the pod ranges to the nodes
for communication

Compliance needs May require more controls
for regulatory isolation

Might be preferable for PCI, HIPAA, or regulated
data zones

Simplicity Easier to manage (setup) and maintain
(troubleshooting, observability)

More complex to setup and maintain

Scalability Improper IP address management (IPAM)
could lead to challenges. This document
details strategies to address IPAM

Can be scaled by reusing IP-address ranges
for in-cluster communication

For customers with extensive
on-premises networks, or that are
transitioning from other clouds, who
want to adapt island-mode model to
GKE’s flat network, this design
recommendation document will help
navigate and fully harness the potential of
GKE's flat network via strategies that
include efficient IP address planning and
leverage VPC-native networking features.

Intended audience: Platform
Engineers, DevOps, Network Admins,
Cluster Admins, Fleet Admins

Prerequisites: This document assumes
familiarity with Kubernetes concepts,
networking planning, and deployments.

5

Customer challenges
Adopting cloud-native architectures can be
incredibly powerful, but it's not without its
challenges. Many organizations face hurdles
with foundational networking that can
impact scalability, operational efficiency, and
seamless hybrid cloud integration.
Thankfully, solutions exist to transform these
challenges into opportunities.

One of the main concerns is the scarcity of
private IPv4 address space, which can
become a major headache when integrating
extensive on-premises networks or migrating
from other cloud environments.

Another common issue is hindered pod
connectivity. In some deployments, the lack
of direct, routable pod IP addresses forces

a reliance on complex gateway proxies,
which can introduce latency and make it
difficult to deploy distributed applications.

Additionally, many teams struggle with
limited network visibility, which makes it
challenging to understand traffic flows at
a granular level and complicates
troubleshooting. When applications are
built to expect a flat, directly addressable
network, migrating them to some
Kubernetes environments can be an
arduous process.

Imagine the power of direct, routable
IP connections to every pod! With a
flat network model, you can unlock
incredible benefits, including:

Simplified
routing

Effortless migration of
existing applications to
Kubernetes

The ability to seamlessly
bridge your cloud and
on-premises environments

Better
telemetry data

Intelligent load
balancing and security

This approach tackles common networking complexities head-on, paving the
way for a more efficient and powerful cloud-native journey.

6

GKE’s flat network model
GKE's flat network model provides every
pod within the GKE cluster, and even
across different GKE clusters within the
same VPC network, a unique IP address.
This eliminates the need for NAT or
overlay networks, simplifying pod-to-pod
communication both internally (within
the VPC) and externally (extending
Kubernetes deployments to on-prem).

The flat network model is principally
compatible with the desire for Kubernetes
to enable low-friction VM-to-container
migration, easing legacy app transitions to
GKE. For a detailed explanation on how
pods, nodes, and services get IPs in a GKE
cluster along with illustrations of the
communication pathways within the
cluster and with external resources, check
out this.

GKE’s flat network model is achieved
through the implementation of GKE
VPC-native clusters.

IP address allocation in
GKE’s flat networking model
with VPC-native clusters

Subnet-A

GKE cluster

Primary range
10.128.0.0/20

GKE Node A
IP:10.128.0.3

GKE Node B
IP:10.128.0.4

Secondary range
10.1.0.0/16

Secondary range
1O.8.0.0/16

vpc-network

Alias range: 10.1.1.0/24 Alias range: 10.1.2.0/24

Pod-a:
10.1.1.2

Pod-c:
10.1.2.5

Pod-b:
10.1.1.5

Pod-d:
10.1.2.7

In GKE VPC-native clusters:

The primary IP address range of
the VPC subnet is used to assign
IPs to GKE nodes. This subnet
should be large enough to
accommodate the maximum
number of nodes anticipated, as
well as IP addresses for internal
load balancers, if a separate
subnet isn't used.

A secondary IP address range
within the same subnet is used
by GKE to provision an alias IP
range on the nodes. Pod IPs are
assigned from the alias IP range
associated with a node and are
logically within the same subnet
as the nodes.

Service IP address, often referred to
as the ClusterIP, is allocated by GKE
from a secondary IP address range
that users define specifically for
services during cluster creation,
and this is stable for the lifetime of
the service, even if the underlying
pods change.

Service IPs:
10.8.0.0/16

https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview#ip-allocation
https://cloud.google.com/kubernetes-engine/docs/concepts/alias-ips
https://cloud.google.com/vpc/docs/alias-ip

7

Default communication in GKE’s flat network model deployment

Advantages of GKE’s flat network model

Pod-to-pod

Agents on a node (e.g. kubelet)

Pod-to-other-services within VPC

Pod-to-connected-on-premises

Can interact with all other pods on any nodes
within the cluster without NAT

Can communicate with all pods on that node

Can communicate with pod IPs without NAT

On-premises networks can learn routes to a pod using a cloud
router configured to advertise the pod IP address ranges

Performance: Reduced
network hops for all internal
communication within the VPC
makes it faster than an
island-mode network because
of no address translations and
no encapsulation /
decapsulation overhead for
pod-to-pod communication.
This efficiency gain is crucial,
especially for latency- and
performance- sensitive
workloads.

Optimized for microservices:

Simplifies communication in
microservices architectures
and aligns with cloud-native
design patterns. Note that AI
inference workloads at scale
are increasingly coordinated,
distributed systems vs.
individual, stateless servers.

Integration: Seamless
integration with other Google
Cloud services like load
balancers, service meshes,
VPC network peering, and
shared VPC.

Enhanced features:

Allows simple deployment of
container-native load balancing,
directing traffic directly to pods
enabling the level of granularity
that gen AI workloads demand.

Observability and debugging:

Pod IP addresses are visible
throughout the network, making
telemetry data more useful for
monitoring, alerting, and logging.
Debugging gets simpler, even
from outside the cluster with VPC
Flow Logs and Connectivity Tests.

On-premises accessibility:

Pod IP address ranges in
VPC-native clusters can be
seamlessly made accessible from
on-premises networks connected
with Cloud VPN or Cloud
Interconnect.

Firewall rules for pod IPs:

Firewall rules that specifically apply to
pod IP address ranges, providing
granular security control. Kubernetes
network policies for finer-grained
control over traffic within your cluster.

Scalability: Efficiently scales to
meet your application needs,
supporting up to 65,000 nodes
and beyond for LLM training
and inference use cases.

https://cloud.google.com/kubernetes-engine/docs/concepts/container-native-load-balancing
https://cloud.google.com/blog/products/containers-kubernetes/gke-65k-nodes-and-counting?e=48754805
https://cloud.google.com/blog/products/containers-kubernetes/gke-65k-nodes-and-counting?e=48754805

Considerations of GKE’s
flat network model
When GKE carves out a portion of the
secondary IP address range for each node
in the cluster to assign IP addresses to the
pods running on that node, it inherently
provisions a buffer to handle scenarios with
high pod churn (e.g. frequent creation and
deletion during upgrades) and to minimize
IP reuse within a node.

In standard clusters: GKE reserves a
/24 alias IP range (256) from the pod
IP address range when the maximum
pods per node is set to 110.

In autopilot clusters: GKE reserves a /26
alias IP range from the pod IP address
range while allowing 32 pods to run on
it.

IP address management: While a flat
network model simplifies networking,
making pod IPs routable throughout
causes potential IP address exhaustion
scenarios in large clusters.

Pod density: Limits on the number of
pods per node due to IP constraints.

We will discuss how to navigate these
challenges in a later section.

8

9

Island-mode: an
alternative Kubernetes
network model
An alternative network model in
Kubernetes is the island-mode. This model,
commonly found in on-premises
Kubernetes deployments and the default
for some public clouds, isolates pod
networks from the broader network,
creating a hierarchical network.

The desire for an island-mode network is
usually driven by IP address reuse (the
next section details solutions for IPAM in
GKE’s flat network model) across logically
separate environments or strict network
segmentation that prevents direct
pod-to-pod communication between
‘islands’.

In island-mode, nodes have unique IP
addresses but pods don't have unique
addresses across clusters, and typically
communicate with resources outside the
cluster through gateways or proxies, often
involving NAT. Pod ranges are typically

distributed via some static or dynamic
routing protocol to the nodes for
communication — added complexity
that makes the stack less robust. GKE
does not support island-mode.

Some customers with IP address constraints
or fragmented IP space might lean towards
an island-mode where pod IP addresses can
be reused across clusters. However, the
island-mode network:

• Inherently incurs performance costs

due to translations and overlays

• Is more complex to debug and
observability of pods is tougher

• Is less robust due to the complexity of
the static or dynamic routing protocol
needed to distribute the pod range to
nodes for communication

Cluster1

Cluster2

Node1: 10.240.0.1
Pod range: 10.0.1.0/24

Node1: 10.240.0.3
Pod range: 10.0.1.0/24

Node1: 10.240.0.2
Pod range: 10.0.2.0/24

Node1: 10.240.0.4
Pod range: 10.0.2.0/24

Island-mode network model

Pod-a:
10.0.1.1

Pod-e:
10.0.1.1

Pod-c:
10.0.2.1

Pod-g:
10.0.2.1

Pod-b:
10.0.1.2

Pod-f:
10.0.1.2

Pod-d:
10.0.2.2

Pod-h:
10.0.2.2

10

Despite the additional considerations around IPAM, we believe
GKE’s flat network model is superior for most cloud deployments
due to its ease of communication with applications inside and
outside Kubernetes, better telemetry data with visible pod IPs,
simpler firewall configurations, better protocol compatibility (no
NAT constraints), easier debugging with direct pod reachability,
and inherent compatibility with service meshes. GKE ensures pod
IP addresses are exposed in VPC Flow Logs, Packet Mirroring,
firewall rules logging, and application logs.

Strategies to navigate the IPAM challenges have been
detailed in the section that follows.

Pod IPs
reused

Other service:
10.128.1.2

Gateway

Gateway

Network: 10.0.0.0/8

11

Navigating complexities
of GKE’s flat network
model

Start
Continue
with setup

Use multi-pod CIDR option
and then any of the range
enhancement options

Use flexible service CIDR
option along with
Google reserved range

Consider GKE auto IPAM Plan for IPV6 adoption

Still facing
challenges?

Future-proof your
deployments

Is your IP address
exhaustion related

to pod, node, or
services?

Do you have enough
internal IP address
space for all your

GKE clusters?

Use multi-subnet option with any
of the supported GKE ranges

N

Y

Pod Svc

Node

IP address management

12

Maximizing RFC 1918

addresses: Utilize the standard
private IPv4 address ranges
defined in RFC 1918, specifically
172.16.0.0/12 and 192.168.0.0/16,
in addition to 10.0.0.0/8. These
ranges are natively supported
on GKE for pods, nodes, and
services.

Leveraging Google reserved

service IPs: Google has reserved
34.118.224.0/20 for services to
help with IP exhaustion, for
customers who need less than 4k
IPs.

GKE auto IPAM: Simplifies IP
address management by
dynamically allocating IP address
ranges for nodes and pods as
your cluster grows, on-demand. It
helps optimize resource
allocation, enhance IP efficiency,
scale with confidence, prevent IP
exhaustion, and reduce
administrative overhead by
eliminating the need for large
upfront reservations or manual
intervention. It is compatible with
new and existing clusters running
GKE version 1.33 or greater.

Leveraging non-RFC 1918 space:
The 100.64.0.0/10 range
(carrier-grade NAT or CGNAT
space) can also be used
alongside RFC 1918 ranges for
GKE pods, nodes, and services.

Adding additional ranges:

GKE provides features to
dynamically add IP ranges.

• Multi-pod CIDR: Enables adding
additional secondary ranges for
pods to new nodes in new node
pools. This could also be used for
scenarios where the pod needs to
access more than one network.

• Multi-subnet support:

Enables adding new subnets to
an existing GKE cluster, which
can then be used by new node
pools, removing single-subnet
limitations and allowing seamless
growth and dynamic scaling
beyond the initial subnet's limits.

• Flexible service CIDR

(extend service IP ranges):

Enables the ability to increase the
number of available IP addresses
for services by adding a new
ServiceCIDR, which allows
dynamically modifying the
service IP address range without
downtime. This feature is
available on GKE version 1.31 and
later.

IPv6 future enablement:

GKE supports dual-stack (IPv4
and IPv6) clusters and is
introducing future support for
IPv6-only clusters for pods,
nodes, and services, which can
directly address IP exhaustion
and meet compliance
requirements. This enables
end-to-end IPv6 connectivity.

Leveraging Class E

IPv4 address space:

The Class E IPv4 address space
(240.0.0.0/4) offers a
significantly larger pool of
addresses (approximately 268.4
million) compared to RFC 1918
addresses. While historically
reserved, Google Cloud's VPC
includes Class E addresses as
part of its valid address ranges
for IPv4 within the VPC.
However, considerations
around operating system and
networking equipment
compatibility should be noted.

GKE offers several strategies to improve IP capacity, flexibility, and efficiency.

https://cloud.google.com/kubernetes-engine/docs/how-to/enable-auto-ipam
https://cloud.google.com/kubernetes-engine/docs/how-to/multi-pod-cidr
https://kubernetes.io/docs/tasks/network/extend-service-ip-ranges/
https://kubernetes.io/docs/tasks/network/extend-service-ip-ranges/
https://cloud.google.com/kubernetes-engine/docs/how-to/multi-subnet-cluster

13

Pod density
Managing pod density within GKE is an
important consideration, especially since
high pod density necessitates a large
number of IP addresses. Different pods
have varying resource requirements,
including CPU, memory, disk, and network
bandwidth. Understanding these diverse
resource needs is essential for effective
pod density management.

GKE offers two main types of
scaling mechanisms:

Horizontal scaling, where more nodes are
added to the cluster within the node pool,
increasing density capacity horizontally.

Vertical scaling, typically applied to the
underlying VMs and involves adding
more CPU and RAM to the VMs, which
provides the capability to run more pods
on those nodes.

Adapting to GKE's flat
networking architecture
GKE does not support island-mode network
setup. This means that pod ranges cannot
be shared across clusters within the same
VPC. All clusters must have unique IPs
(non-overlapping), even with NAT/IP
masquerade. However, there are strategies
that can be leveraged to translate your
current configuration to GKE’s flat network
model.

Adopting GKE’s flat network model
involves integrating the cluster's
networking directly within a Google Cloud
VPC.

The common considerations in this transition
can be broken down as follows.

Infrastructure configuration

• Defining specific IP address spaces to
be used for pods, nodes, and services

• Selecting appropriate VM type

Shared VPC considerations

• Infrastructure tasks are managed by a
network team within the host project

• Otherwise, AppDev or service teams may
have the responsibility to manage their
own VPCs and configurations

Google Cloud

Shared VPC

Common tooling

VPC-C VPC-A

VPC-B

Routing VPC

15

Emulating island-mode behavior

Option 1: Create VPC networks per ‘island’ and leverage Network Connectivity
Center + Private Service Connect to connect GKE ‘islands’

Cluster-C
Cluster-A

Cluster-B

PSC
Endpoint

Cloud
Router

Cloud
Router

Cloud
Interconnect GKE_ISLAND

GKE_ISLAND

On-premises
network

On-premises
service

Service
attachment

PSC
endpoint

PSC
endpoint

PSC
endpoint

Service
attachment

PSC
backend

GKE_ISLAND

Service
attachment

Hybrid
NEG

Service
Attachment

Network
Connectivity
Center

PSC

PSC

01

02

03

05

04

PSC

PSC

Cloud Load Balancing

Cloud
Load

Balancing Cloud
Load

Balancing

Cloud
Load Balancing

Cloud
Load Balancing

16

Strategy for isolation
and IP reuse
Deploy each ‘island’ (e.g. a GKE cluster
or a set of clusters) into its own
dedicated VPC network. Since each
VPC is a completely isolated network
space, the pod IP ranges in VPC-A can
overlap with pod IP ranges in VPC-B.

Strategy for inter-island
communication
To communicate between apps in different
‘islands’, use Private Service Connect (PSC)
for controlled, private consumption of
services across VPCs without peering.

Services running on Cluster-A (producer)
that need to be consumed by apps in
Cluster-B (consumer) are exposed via an
internal passthrough Network Load Balancer
with a PSC service attachment. In the
consumer VPC-B, a PSC endpoint is created.
The PSC endpoint is allocated an unique IP
from the VPC-B’s IP ranges. Traffic is
privately and securely routed between the
PSC endpoint and its corresponding PSC
service attachment. The consumer VPC-B
only sees the PSC endpoint’s IP address, not
the pod IP addresses in VPC-A.

Hint: Create a Kubernetes Service of type
LoadBalancer in GKE with an internal-only
annotation, and GKE will automatically
provision an internal passthrough Network
Load Balancer.

Connectivity to
common tooling and
Google API services
Use PSC-based strategy for scalable and
reusable service exposure and connectivity
to common tooling, say in a shared VPC.

Applications in both Cluster-A and
Cluster-B can connect via a single PSC
service attachment in the shared VPC to
access common tooling.

Alternatively, if any application in the
shared VPC needs access to a service
hosted in an island, (e.g. in Cluster-C), the
PSC-based strategy can be extended to
solve for secure, private connectivity.
Note that all GKE pods within this shared
VPC will have unique, routable IPs.

Strategy for hybrid
connectivity
Create connectivity to on-prem via a
Dedicated Interconnect or Partner
Interconnect and terminate the
connections in a ‘Routing VPC’, where all
external connectivity will be handled.

Deploy a Network Connectivity Center
(NCC) hub for a mesh topology to centralize
hybrid connectivity. Each of the GKE ‘island’
VPCs, which need to communicate with
on-premises environments or other public
clouds (e.g. VPC-C), should be deployed as a
VPC spoke connected to this NCC hub. The
‘Routing VPC’ should be connected as a
hybrid spoke to the NCC hub.

NCC provides a centralized, managed
gateway for traffic to on-premises
environments or other public clouds and
helps manage routing between your
on-premises network spoke VPCs.
Leverage export filters in NCC to
advertise only specific routes.

Lastly, services running on-prem (producer)
that need to be consumed by apps in
Cluster-C (consumer) can be exposed via a
load balancer with a PSC service
attachment and a hybrid NEG.

01

02 03

04 05

https://cloud.google.com/vpc/docs/private-service-connect
https://cloud.google.com/kubernetes-engine/docs/how-to/internal-load-balancing#create
https://cloud.google.com/load-balancing/docs/negs/hybrid-neg-concepts
https://cloud.google.com/network-connectivity/docs/network-connectivity-center/concepts/vpc-spokes-overview#vpc-connectivity-with-export-filters
https://cloud.google.com/network-connectivity/docs/network-connectivity-center/concepts/overview
https://cloud.google.com/network-connectivity/docs/network-connectivity-center/concepts/overview
https://cloud.google.com/network-connectivity/docs/interconnect/concepts/overview
https://cloud.google.com/network-connectivity/docs/interconnect/concepts/overview

17

Best practices and recommendations

Leverage diverse
IPv4 address ranges
• Beyond standard RFC 1918 ranges,

consider non-RFC 1918 ranges
• Employ Class E addresses

2 for pods and services

Add IP ranges
dynamically as needed
• Use multi-pod CIDR to add secondary

ranges for pods for new node pools
• Consider flexible service CIDR to

dynamically extend the service IP range
if needed

• Utilize multi-subnet support: adding
additional subnets to an existing cluster

Plan for and adopt IPv6
• GKE supports dual-stack (IPv4 and IPv6)

clusters and will introduce future support
for IPv6-only clusters

Examine pod density
• Understand the resource requirements of

your workloads for effective pod scaling
(horizontal or vertical)

• Set the maximum number of pods based on
requirement. Setting it too high (110) will
result in IP address wastage as these IP
addresses are reserved for every node

• More information:
https://cloud.google.com/
kubernetes-engine/docs/how-to/flexible-po
d-cidr?hl=en#cidr_ranges_for_clusters

Leverage observability
at the pod level
• The visibility of pod IP addresses simplifies

debugging and enhances telemetry data,
making monitoring, alerting, and logging
more effective

Implement robust
security with granularity
• Utilize network segmentation with

namespaces and network policies
• Configure firewall rules that specifically

apply to pod IP ranges for granular control

01 04

05

06

02

03

https://cloud.google.com/kubernetes-engine/docs/how-to/flexible-pod-cidr?hl=en#cidr_ranges_for_clusters
https://cloud.google.com/kubernetes-engine/docs/how-to/flexible-pod-cidr?hl=en#cidr_ranges_for_clusters
https://cloud.google.com/kubernetes-engine/docs/how-to/flexible-pod-cidr?hl=en#cidr_ranges_for_clusters

18

Summary
This design recommendation document serves as a
guide to best leverage GKE's default flat network model,
which provides unique, routable IP addresses for every
pod. This model enhances observability and simplifies
communication, offering significant latency and
throughput benefits, crucial for gen AI and agentic AI
deployments. While large or constrained environments
may face IP address management challenges, the
document provides strategies and highlights recent
GKE innovations to overcome these complexities,
ensuring successful workload deployment and
maximizing the flat network's potential for scalability,
performance, and seamless integration.

