
A guide for
Architects

2

G
o G

reen Soft
w

are - A
 guide for A

rchitects

Contents
Introduction	 3

Microservices architecture	 5

Event-driven design	 6

Caching strategies and CDNs	 7

Logging and monitoring architecture	 9

Carbon efficiency monitoring	 10

Programming language strategy	 11

3

G
o G

reen Soft
w

are - A
 guide for A

rchitects

The architects are expected to align the requirements to a technology
approach which provides the appropriate cost, reliability, scalability and
now should also take into account long term sustainability.

Architects are critical for sustainability as they are one of the
only technical roles who have a horizontal view of the solution.
Architects working with all the project/programme personas could help
inform and educate on how their system design embeds sustainable
principles. The architect is also responsible for generating a set of
acceptance test requirements which ultimately determines whether the
high level requirements have been met, in the case of this document,
how will they log and monitor the carbon efficiency of the system.

Introduction
An architect (e.g. Solution, Technical or Systems) will typically interface with multiple different
personas in an organization to understand the business and technical requirements, the technologies
available and the anticipated development approach through the software development lifecycle.

4

G
o G

reen Soft
w

are - A
 guide for A

rchitects

Architects must consider the
impact of choosing specific
design patterns from monoliths
through to microservices whilst
also investigating strategies on
how to reduce data consumption,
how to minimize compute cycles,
how to optimize network traffic
and when and how “jobs” need to
be performed. In this next section
we can identify how different
strategies could be implemented
to help become more efficient.

5

G
o G

reen Soft
w

are - A
 guide for A

rchitects

Microservices architecture
Complexity: Easy | Impact: High

Is a microservice or monolith design pattern more wasteful? Typically microservices
can be automatically scaled in isolation, individually configurable and should create less
waste of resources.

Using serverless or container solutions it is possible to to reduce
the size of the footprint to consume less energy. However, one
side effect of the microservice pattern is the introduction
of the need for multiple services to communicate with each
other over various networks. Microservices can therefore
become highly distributed and it is possible to see an increase
in network traffic. With this in mind the architect should ensure
they consider the payloads being returned, the proximity
of each service to each other and also whether the correct
transfer protocol is being consumed. It is possible a ‘chatty’
microservice can end up more wasteful than a monolith.

6

G
o G

reen Soft
w

are - A
 guide for A

rchitects

Event-driven design
Complexity: Medium | Impact: High

The adoption of RESTful APIs creates a methodology where a response is required
immediately. Real-time processing has transformed how our consumers receive
data and systems are built. However, in a number of use cases it is possible to move
from a synchronous request-response paradigm to an asynchronous process.

An event driven architecture allows you
to push workloads into streams to be
processed and dealt with when needed
by different components. The benefit
of this approach is it is possible in some
cases to offload these components
through worker processes in other
regions, later times and also batch
them up. We can use computers as
and when it is needed rather than
wasting it in idle states waiting.

7

G
o G

reen Soft
w

are - A
 guide for A

rchitects

Complexity: Medium | Impact: Medium

When it comes to storing and querying with databases an architect will need to
ensure you are using the right data type.

However, going deeper than the database engine, the application can minimize
wasteful queries by adopting a cache strategy, a good indicator of what to cache is to find
any element where multiple executions of some request will cause the same outcome. Any data
which doesn’t change too often that is read very frequently is ideal for a cache, resulting in less
computational power required. The architect also needs to ensure that data is appropriately
pruned, indexes put in place and queries that occur not only traverse the shortest route but also
minimize the amount of data returned.

Transporting data within your network has a huge impact on your application’s emissions.
A content delivery network (CDN) refers to a geographically distributed group of servers and
data centers that deliver content to your user from a location as close as possible to them.

Caching strategies and CDNs

8

G
o G

reen Soft
w

are - A
 guide for A

rchitects

If you have a global
footprint as an architect,
you need to ensure that
where possible you are
presenting information
from a location as close
to the user as possible
and minimize requests
traversing the globe.
CDN’s are also able to
cache content, caching
within a CDN at the
edge will ensure that
fewer requests need
to be processed and
transported around
your data center, plus
also has the added
benefit of reducing
latency for the user.

9

G
o G

reen Soft
w

are - A
 guide for A

rchitects

Complexity: Medium | Impact: Medium

An architect will always want to collect logs from their application, this enables them to analyze
usage patterns, debug errors and optimize.

Logging and monitoring architecture

However, log collection and processing can consume
significant energy if not designed appropriately.
An architect should consider the granularity of the
log level required and also whether this information
needs to persist. The architect needs to remember
their goal is to reduce data consumption, and how
to minimize compute cycles. As log files grow,
processing these files and deriving valuable insight
becomes computationally expensive, so it’s best to
ensure what is required from both a business and
compliance perspective and ensure that these
files are appropriately pruned, deleted or moved
to cold storage and not allowed to grow out of
control.

10

G
o G

reen Soft
w

are - A
 guide for A

rchitects

Complexity: Medium | Impact: High

At the beginning of this section it was mentioned that an architect should be defining the
acceptance criteria when it comes to the carbon footprint of the application. They are
responsible for defining the KPIs to be met when releasing and deploying the application.

They will need to be able to report and be able to measure and track the emission of their
projects over time. Carbon Footprint1 is an example of a tool that gives the ability to measure,
report, and ultimately provides insight on how to reduce your cloud carbon emissions.

Carbon efficiency monitoring

1 Google Cloud: Carbon Footprint tool

https://cloud.google.com/carbon-footprint?hl=en
https://cloud.google.com/carbon-footprint

11

G
o G

reen Soft
w

are - A
 guide for A

rchitects

Complexity: High | Impact: Medium

An architect should also consider the coding style adhered to by the
development team.

Whilst different languages might be more optimal from a compute perspective,
utilizing a “Lean Coding” approach forces the developer to use the minimum
amount of processing required to deliver the application. The developer is
responsible for refactoring redundant code that is not embedded into the
application through unused libraries. The developer should ensure care is
considered regarding wasteful loops that process data unnecessarily and are overly
broad in their scope. Linting scripts can be deployed into the CI/CD pipeline to
detect verbose code, loops that may not terminate and unused libraries.

Programming language strategy

12

G
o G

reen Soft
w

are - A
 guide for A

rchitects

Over the last few years I have spoken to far more early stage
companies who want to ensure they are building their company and
products in a sustainable way. Working with the developers we are able
to share best practices at inception and ideation stages.

Neil Lock
Customer Engineering Manager, UK Digital Natives and Startups

cloud.google.com

http://cloud.google.com
http://cloud.google.com

A guide for
DevOps and Site
Reliability Engineers

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

2

Contents
Introduction	 3

Cleaning up unused resources	 5

Resource scheduling	 7

Region movement	 10

Follow the sun and wind	 15

Rightsizing	 17

Footnotes	 22

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

3

This involves many tasks that happen continuously as new
software versions are shipped, such as continuous deployment,
A/B testings or canary approaches, efficient execution, and
real-time monitoring and resolution of issues and outages.

DevOps Engineers and Site Reliability Engineers
(SREs), as Google calls them, typically perform these
tasks. These two roles have similar concepts and cover
roughly the same tasks described above. Both roles
are closely aligned with software engineering.

Introduction

As soon as the software has been coded, tested, built and packaged it is
ready for development and execution in the cloud.

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

4

Today, instead of simply throwing software over the fence to the operations
teams, these teams get involved early and can influence the software itself.
Google aims for SREs to have engineering backgrounds so they can work on code
that can simplify operating the software with high reliability and availability. They may
also be tasked with building tools to simplify the entire operations process.

This aspect of their work is also essential to greener operations. Today, it takes
motivation, knowledge and technical skills to implement strategies and mechanisms
to run software more sustainably in the cloud. SREs and DevOps Engineers need to be
engineers interested in implementing tools and automations to achieve these gains.

Running and operating the software is one of the major sources of CO2 emissions.
The main driver is the electricity the application consumes, but the other factors such as
hardware and cooling also play a role. Operations teams in the cloud have a reasonable
toolbox that they can use to deploy and run a given software, with
a given resource consumption profile, in a greener manner. DevOps
or Site Reliability Engineers are also in the position of measuring
and analyzing the data about CO2 emissions caused by their overall
operations. Both together (ie the measurement and the optimization
towards more sustainable software operations) is what we at
Google see as the core of GreenOps. Let’s look at this toolbox.

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

5

Cleaning up unused resources
Complexity: Easy | Impact: Medium | Scope: 20 - 30% of workloads

The easiest starting point for GreenOps is often cleaning up unused resources.
In the cloud, where every resource is consumed with a single one click, it’s easily for
resources to go unused. Identifying these components can be challenging, and it
can be difficult to determine if they are needed by external or internal users.

An example of a tool that can be used to help with cleaning
up unused resources is Google Cloud’s unattended
project recommender1 that identifies projects with low
usage over the last 90 days. For a more detailed analysis,
custom tools can be built using existing data sources
in Google Cloud. The asset inventory API2 allows users
to export all resources in Google Cloud to a BigQuery
dataset. These resources can be combined with either
audit logs, which list the operations performed on a
resource (e.g. start, configure, deploy) or monitoring
metrics, which show the usage of a given resource.

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

6

Step by step guide

Check the unattended project recommender

Gather and export the list of assets
or resources to BigQuery

Gather more data about the usage of resources

Implement reports to identify unused
resources in your organization

Inform involved stakeholders about
the plan to retire resources

Keep backups for data

Cleanup these resources

1

2

3

4

5

6

7

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

7

Complexity: Easy | Impact: Large | Scope: 30 - 50% of workloads

One of the benefits of Google Cloud is that it’s easy and quick to start and stop
resources, such as Kubernetes clusters, as needed. This means there is no need to occupy
resources when you don’t need them, which can save you money and reduce your carbon
footprint. However, if IT organizations are coming from an on-premise world, they may see all
compute resources as given and not consider scheduling their occupancy.

The math is simple. If a development or test landscape is
only needed during usual working hours, its schedule can
be reduced from 24/7 to 10/5, saving 70% in resource
usage and CO2 emissions.

Resource scheduling

01
1 23 45 6 7

8 91 01 11 21 3 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 12 34

56 78 91 01 1

SUN MON TUE WEDT HU FRI SAT

JANUARY

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

8

Depending on the Google Cloud services used to run these applications, there are
several ways to easily schedule resource usage:

•	 Combine Cloud Functions with Cloud Scheduler to run commands to start and stop other
resources.

•	 Use Compute Engine’s automatic schedule feature to define CRON-based patterns to start
and stop instances3

•	 For Google Kubernetes Engine (GKE), you can either remove and re-provision an entire
Kubernetes cluster, use more advanced approaches to configure GKE for “scale to almost
zero”4

•	 Infrastructure-as-code is a great way to enable this flexibility. For example, you can use
Terraform to destroy an entire environment after 6pm and re-apply it the next morning.

•	 When working with serverless options like Cloud Run, you can usually configure “scale to
zero instanced” to perform this scheduling.

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

9

Step by step guide

Identify environments and software parts that are not required to run 24/7.

Define the strategy and mechanisms to schedule the involved cloud services.

Implement optimization and measure impact.

1

2

3

In addition to the scheduling, your users (most likely internal users such as engineers)
could benefit from advanced features that give them control and consistency. A self-
service portal allows users to delay a scheduled shutdown or request a restart.

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

10

Complexity: Medium | Impact: Large | Scope: 40 - 80% of workloads

In Google Cloud, choosing where to deploy your software is as easy as selecting a region
from a dropdown menu. However, this decision can have a large impact on your carbon
footprint.

Region movement

Electricity grids and their carbon
intensity vary between countries
and regions, and the mix of
energy is influenced by many
factors. Watching these grids,
such as on app.electricitymaps.
com, can help you understand the
differences and see which regions
are using more sustainable energy
sources like wind, solar and hydro.

https://app.electricitymaps.com/
https://app.electricitymaps.com/

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

11

Image: app.electricitymaps.com

https://app.electricitymaps.com/

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

12

Using this knowledge, operations experts can identify regions with a greener footprint to
run their software in the most sustainable way. Google Cloud provides the necessary annual
data to support this decision-making5 process, as well as a tool called Region Picker6.

While organizations should consider carbon emissions when choosing a region, it’s important to
note that there are other factors that can heavily influence the ability to move a workload:

Outgoing traffic: Many software applications are consumed by users (internal or
external), so you need to consider latency and data requirements when choosing
a green region. To make a good decision, you need a rough understanding of how
much data will travel over the network and what latency you need to achieve.

Ingoing traffic: Software modules no longer exist in isolation. They
rely on other applications and services to function. For example,
they may load data from somewhere or call other APIs. This is also
important to estimate and evaluate when making a decision.

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

13

Data locality/privacy: Consider whether the data involved has strict data
locality requirements. This may be due to data privacy regulations or because
it is impractical to store a large amount of data in parallel in two locations.

Price: Google Cloud region prices typically vary. When moving to a
more sustainable region, any of the following scenarios are possible:
prices stay the same, prices decrease, or prices increase.

Consider these and other factors before moving an existing application to a different region.
However, a simple region move is a powerful way to improve the carbon footprint of an
application or entire system.

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

14

Step by step guide

Identify software modules that could qualify for a
move to another region based on their current size and
their carbon footprint (if already measurable).

Evaluate other criteria, like the outgoing and incoming
traffic and the data locality needs. Use a simple
classification like low, medium, high for now.

Select one or two applications to get started with.

Identify the Google region in your geography that ideally fits your needs.

Move these applications to a green region. Depending on
the deployment environment it either can be moved (e.g.
like in Google Compute Engine7) or redeployed.

Measure the impact on carbon emissions but also all
other metrics of the application that can be monitored,
especially response latency, egress data, etc.

1

2

3

4

5

6

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

15

Complexity: Medium - High | Impact: Medium - Large | Scope: 20 - 30% of workloads

As we learned earlier, one of the major factors that influences an application’s footprint is the
grid’s carbon intensity. While moving an application to a different region can optimize it in the
long term, there are also opportunities to further improve it in the short term. The idea of
“follow the sun and wind” is to move workloads to times and places where there is a lot of
renewable energy.

This can be a complex approach that requires accurate real-time data, but it can also be as
simple as running batch jobs at noon, when the sun’s capacity is highest.

One starting point for this practice is batch jobs, which are software modules that can perform a
task relatively independent of an end user need. Batch jobs typically process data or execute
individual steps as part of a regular task. For batch jobs, there are two variables that you
can control:

•	 The time by which the job must be started and finished

•	 The region in which the job is run.

Follow the sun and wind

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

16

For other services, APIs and applications, optimization is more complex and requires
more data. These software pieces have to run all the time and serve end-user traffic, so the
only dimension for improvement is the region. An optimized plan could be to deploy them in the
morning to Switzerland (because hydro storages are full), move them during noon to Madrid
(because sun is shining) and move them in the evening to Finland (where the wind is blowing).

Step by step guide

Identify software modules that would qualify for a dynamic movement in
time and place.

Evaluate them against criteria like the incoming and outgoing traffic, data
locality, time criticality and others to identify the most suitable ones.

Select one or two examples to get started with.

Specify the strategy and its complexity:
Level 1: Schedule and deploy the job-alike software based on a rough data
foundation, like yearly averages of the hourly energy mix in certain regions.
Level 2: Gather more detailed hourly data to determine the
right times and places to deploy and run these jobs.
Level 3: Leverage the detailed data to determine a strategy
for end user facing APIs and applications.

1

2

3

4

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

17

Complexity: Low - Medium | Impact: Medium - Large | Scope: 30 - 60% of workloads

One of the green software development practices is for software engineers to be fully aware
of the resource consumption profile of their software and to optimize and document that
profile. This is mostly focused on CPU and memory resources.

If this practice is not in place, operations teams have to run software that might use resources
unevenly or request too many resources. This can happen with software that runs on pure VMs,
but also with K8s-based workloads or even serveless solutions. Let’s dive into the details of
these three areas:

Rightsizing

For VM-based workloads: Operations teams (in alignment with the
engineering team) have to select upfront a size of the VM to run the software
upfront. With Google Cloud, this can be done by selecting a machine family,
which is a curated set of processor and hardware configurations optimized
for specific workloads, and a machine type, which is typically a predefined

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

18

For K8s-based workloads: K8s experts or software engineers typically specify
the resource needs of a container in the K8s YAML configuration. Two data points
must be provided: resource requests and limits. The first one specifies the lower
limit, or the minimum amount of resources while the second specifies the upper
limit8. Both can be specified for CPU and memory. If this specification is inaccurate,
missing, or too high, then resources will again be used inefficiently.

For serverless workloads: There is typically also the need to specify a rough
profile of resource needs for serverless workloads. In Cloud Run, for example, the
amount of vCPUs and GB memory can be configured freely. In Cloud Functions,
only the GB memory has to be chosen.

configuration of CPU and memory. Additionally, Google Cloud offers
custom machine types, which allow a flexible selection of CPUs and
memory. Based on these options, the team decides what size to choose. If
the profile of the application is unknown, or very spiky, then the VM might
be chosen too big, and a lot of unused resources will be occupied.

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

19

All these scenarios demonstrate that if the resource profile of an application is not clear,
operations teams have a hard time operating that piece of software efficiently and will likely use
more resources than needed. This leads to the idea of rightsizing.

Rightsizing involves observing a workload over a longer period of time to retrospectively
identify whether the amount of requested resources is too high. For VMs, Google Cloud
already offers this as a built-in feature that highlights recommendations per VM9.

Rightsizing
recommendation for
VMs in Google Cloud

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

20

For other workloads (K8s, serverless and more) this needs to be implemented as part of
monitoring the software. Cloud Monitoring provides a foundation for this by automatically
gathering monitoring metrics about CPU/memory limit and request utilization from
containers running on Google Kubernetes Engine.

Step by Step Guide

Check the rightsizing recommendation of VMs.

Configure monitoring dashboards to observe the resource utilization over time.

Implement regular reviews with the engineering teams to evaluate
the resource requirements of a software modules.

Adapt the configuration and realize improvements.

Measure and communicate the improvements in CO2 emissions.

1

2

3

4

5

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

21

More businesses are interested in building and re-building sustainably
due to various external and internal pressures. I’ve introduced the
concept of Green Software principles to numerous DevOps teams of
multinational businesses that have their applications on Google Cloud.
From explaining the basic terms such as what carbon intensity is to
how to measure and then optimizing applications for low carbon.

Khulan Davaajav
Solutions Consultant, Google Cloud

G
o G

reen Soft
w

are - A
 guide for D

evO
ps/SR Engineers

22

1 How ML-fueled recommendations help developers optimize security, price-
performance, and carbon reduction, Google blog, October 2021

2 Introduction to Cloud Asset Inventory, Google Cloud product document

3 Scheduling a VM instance to start and stop, Google Cloud Compute Engine guide

4 Scale your kubernetes cluster to (almost) zero with GKE autoscaler, Medium, Alfanso Palacios, December 2019

5 Carbon free energy for Google Cloud regions, Google Cloud

6 Google Cloud Region Picker, Google Cloud tool

7 Move a VM instance between zones or regions, Google Cloud Compute Engine guide

8 Resource Management for Pods and Containers,
Kubernetes configuration resource

9 Save money, improve performance with new VM Rightsizing
Recommendations, blog, Google Cloud, July 2016

Footnotes

https://cloud.google.com/blog/products/management-tools/exciting-updates-on-active-assist-from-google-cloud-next22
https://cloud.google.com/blog/products/management-tools/exciting-updates-on-active-assist-from-google-cloud-next22
https://cloud.google.com/asset-inventory/docs/overview
https://cloud.google.com/compute/docs/instances/schedule-instance-start-stop
https://medium.com/google-cloud/scale-your-kubernetes-cluster-to-almost-zero-with-gke-autoscaler-9c78051cbf40
https://cloud.google.com/sustainability/region-carbon
https://cloud.withgoogle.com/region-picker/
https://cloud.google.com/compute/docs/instances/moving-instance-across-zones
https://cloud.google.com/blog/topics/sustainability/ovo-energy-builds-greener-software-with-google-cloud
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://cloud.google.com/blog/products/gcp/save-money-improve-performance-with-new-vm-rightsizing-recommendations
https://cloud.google.com/blog/products/gcp/save-money-improve-performance-with-new-vm-rightsizing-recommendations

cloud.google.com

http://cloud.google.com
http://cloud.google.com

A guide for Software
Developers/Engineers

G
o G

reen Soft
w

are - A
 guide for Soft

w
are D

evelopers/Engineers

2

Contents
Introduction	 3

Use cloud resources to reduce CO2e	 4

Software considerations during lifetime

of development or engineering	 6

Developer daily activities	 8

Engineer or Developer observation	 10

Footnotes	 13

G
o G

reen Soft
w

are - A
 guide for Soft

w
are D

evelopers/Engineers

3

When reading each section, use and validate the
impact in your own environments. Using Carbon
Footprint can be a way to understand the positive
impact overtime on your decisions over time.

Introduction

Software Engineers and Developers have the ability to reduce carbon
emissions through a number of practical steps. This section covers
four domains which guide developers on use of resources, the developer
experience, daily activities and observations in production.

http://Carbon Footprint
http://Carbon Footprint

G
o G

reen Soft
w

are - A
 guide for Soft

w
are D

evelopers/Engineers

4

Use cloud resources to reduce CO2e
Complexity: Easy | Impact: Large

Every business aims to reduce the use of resources, as it has the potential to reduce emissions
and costs. These actions can bring long lasting benefits and value to a business, which goes
way beyond just the software development.

An important principle is to make the most of the infrastructure being used. Even
when compute and storage are operationally active, free space in resources will
still have a carbon footprint. Ensuring that each area is reviewed and inactive usage
areas are removed is considered a key aspect of software development.

•	 Development environment: Developers can set up their development experience within
a cloud to run Integrated Development Environments (IDE) and other tools, enabling the
utilization for Carbon Free Energy (CFE) regions. An example of a unique approach to reducing
carbon emissions is provided by the combination of a Chromebook and Cloud Workstation.

•	 Physical resources: In any development or project, the focus should be on how physical
resources are maximized, especially when it comes to compute and storage. For example,
Tensor Processing Units (TPUs) can be used for specific machine learning processes.

G
o G

reen Soft
w

are - A
 guide for Soft

w
are D

evelopers/Engineers

5

•	 Limiting space: When parameters for resource profiles are being defined, it’s essential to think
about “unused space”, particularly in deployment models such as containers or virtual environments.

•	 Resource vs concentration risk: A careful balance is struck between maximizing
utilization and concentration risk. However, making the most of a single resource
will be more sustainable when combined with high availability architectures.

•	 Engineered stack: Many examples of services that enhance utilization and reduce the
usage of resources like energy can be found within Google. Some instances include Tensor
Processing Units (TPUs), which are optimized hardware modules for AI workloads, BigQuery has
separate resource pools for compute and storage that provides dynamic workload handling.
Other Common services that help decrease emissions are AlloyDB, which scales PostgreSQL
workloads, reducing processing time and resources, and Cloud Run which automatically halts
services when they’re not in use. It is crucial for developers or engineers to seek out services
designed with a lower carbon footprint as the default through integrated design. Reviewing
suitable cloud services is an important area for developers and engineers to explore.

•	 Usage of spot VM instances: Preemptive instances are a great way to reduce
costs and use less resources for non-production workloads. Google has
researched how to optimize the usage of physical resources with preemptive
instances, which can help reduce capacity. This is defined in the paper
“Machine Learning Applications for Data Center Optimisation4”

•	 Fetch only what is required: When working with large datasets, use
features like partition tables to access smaller subsets of data for
processing or to transform data during ingestion via pipelines.

G
o G

reen Soft
w

are - A
 guide for Soft

w
are D

evelopers/Engineers

6

Complexity: Easy | Impact: Large

Developers use libraries, extensions, and content management systems to build solutions.
It is not uncommon for software to serve a mature enterprise for a decade or more.

During this lifecycle, engineers and developers are constantly adapting and changing the
environment. Considering the following approaches can provide opportunities to reduce CO2e.

•	 Machine Learning: When developing machine learning, it is
critical to keep the footprint of data and code required to a
minimum. An recent paper “Carbon Emissions and Large Neural
Network Training5”, provides valuable insights into the impact
on carbon footprint. Here are a few ways to reduce your carbon
footprint when developing machine learning models: Use only the
data and code that is needed, place machine learning workloads
in regions with higher carbon-free energy, and limit the number of
cycles in training the models.

Software considerations during lifetime
of development or engineering

G
o G

reen Soft
w

are - A
 guide for Soft

w
are D

evelopers/Engineers

7

•	 Remove unused code: Over time, as code is developed and changed, research has shown
that up to 45% of features in legacy applications are never used. There are open source tools
that can validate library and code usage, such as pyflakes and pylint for Python. Once unused
code is identified, a backlog can be developed to remove it when the next functional change
occurs, which can help reduce CO2 emissions. For example, Node.js installations often
include many duplicate dependencies that can be removed.

•	 Libraries with high overhead can be identified by tracing execution and understanding
execution time. This will help to find libraries that are slowing down the applications, and
alternatives can be seen if they can be used. For example, in Python, trace
modules can be used to investigate execution time. Resource usage is
affected by any execution, so reducing the overhead of libraries can also help
to reduce overall resource usage.

•	 Data access with a cursor for loop can be inefficient. It is always more
efficient to let the database engine handle as much of the database
interaction as possible. Consider the style of code used for database
library execution. If large arrays of data are being fetched in execution loops,
consider processing the data closer to its resting place.

•	 Consideration for API: One concept to consider is putting the CO2
emissions of an API call in the invoking function return. In a DevOps
ecosystem, API discoverability and addressability are essential, so why not
also provide CO2 emissions on execution?

G
o G

reen Soft
w

are - A
 guide for Soft

w
are D

evelopers/Engineers

8

Complexity: Easy | Impact: Large

Improving developer ergonomics when building software or solutions can be a low-
effort way to reduce CO2 emissions. Here are some easy areas to investigate.

•	 Use laptops for development: Today, it is possible to develop successfully on a laptop,
even a chromebook with Linux Beta. This gives developers more mobility and reduces
the number of machines needed. Research has shown a laptop consumes 20-50 watts,
while a desktop consumes 80-150 watts.

•	 Turning off7 hardware: Use it or snooze it! This is especially important in a hybrid work
environment, where technology can be left on at both home and the office.

•	 Widescreen vs multi-screen: The modern ultra widescreen can provide the same
developer experience as multi-screen, so consider reducing energy by using a single
ultra widescreen. For example, the Dell P3421W has a lifetime CO2 footprint of 688 kg,
while two Dell P2423 monitors have a lifetime CO2 footprint of 1170 kg.

Developer daily activities

https://www.dell.com/en-us/dt/corporate/social-impact/advancing-sustainability/sustainable-products-and-services/product-carbon-footprints.htm#tab0=2&pdf-overlay=//www.delltechnologies.com/asset/en-us/products/electronics-and-accessories/technical-support/p3421w-monitor-pcf-datasheet.pdf
https://www.dell.com/en-us/dt/corporate/social-impact/advancing-sustainability/sustainable-products-and-services/product-carbon-footprints.htm#tab0=2&pdf-overlay=//www.delltechnologies.com/asset/en-us/products/electronics-and-accessories/technical-support/p2423-monitor-pcf-datasheet.pdf

G
o G

reen Soft
w

are - A
 guide for Soft

w
are D

evelopers/Engineers

9

•	 Extend +1 year: Extending your equipment by an additional year
or simply reducing the refresh point for developer workstation can
reduce your carbon footprint. Embodied carbon in manufacturing
can account for approximately 80% of a device’s lifetime carbon
emissions. Using an external keyboard and mouse with a laptop
can extend the life of a laptop by reducing physical wear. In some
cases, an earlier refresh is a good way to reduce emissions if the
new device has a lower CO2 emissions.

•	 Recycle workstations, laptops, and other equipment at end
of life to contribute to a circular economy and reduce mineral
extraction: Google developed circular economy principles for data
centers and many aspects can be applied to the developer local
ecosystem.

https://circularcomputing.com/news/carbon-footprint-laptop/
https://sustainability.google/operating-sustainably/stories/circular-economy/#:~:text=A%20circular%20economy%20model%20is,%2C%20repaired%2C%20reused%20and%20recycled.

G
o G

reen Soft
w

are - A
 guide for Soft

w
are D

evelopers/Engineers

10

Complexity: Medium | Impact: Large

Monitoring and sustainability are just as equally important as any form of operational
inspection. When using CI/CD pipelines, maintenance needs to be considered to reduce
carbon footprint.

•	 Define Sustainability Budgets: Site Reliability Engineers have error budgets to monitor
breaches and act accordingly. There is no reason why we can’t set carbon footprint budgets
for development teams for the end-to-end solutions, provide companies with visibility into the
carbon usage of projects, and monitor across all solutions.

•	 Constant reviews and observing carbon footprint is essential: Sustainability
monitoring should be equal to other operational aspects, and siloed thinking should
be avoided.

•	 Batch processing: When performing batch processing, consider choosing a time
when the carbon intensity is lowest, such as early morning or evening, to reduce the
compute and data pipeline carbon footprint.

Engineer/Developer observation

G
o G

reen Soft
w

are - A
 guide for Soft

w
are D

evelopers/Engineers

11

•	 Developer release strategy: Observe how developers are using the CI/CD pipelines. If
constant retesting and deployment is increasing your carbon footprint, balance releasing with
functional needs, especially in early development and testing phases.

•	 Maintain and prolong: Maintain an optimized code during application lifecycle. Carefully
consider embodied carbon and technological improvements to determine whether to
refresh or extend the refresh of technology.

•	 Refurbish and remanufacture: Consider
the benefits of refurbishing code. Create a
sustainability backlog to remove unused code.

•	 Reuse and redistribute: Use APIs and data
catalogs to promote a culture of reuse. Reuse is
important because it reduces additional testing
and development, as well as the number of
components in production. All of these factors
contribute to a lower carbon footprint.

•	 Recycle: Recycle code with a low carbon
footprint across different projects. Consider
introducing sustainability testing in your
development cycles or CI/CD pipelines to
monitor improvements, especially for APIs.

G
o G

reen Soft
w

are - A
 guide for Soft

w
are D

evelopers/Engineers

12

The intersection between sustainability and technology has been
increasingly top of mind for many organisations we’ve worked with
recently. Not only has cloud raised awareness of the carbon emissions
related to infrastructure usage, but has also enabled Software
Engineers to leverage cloud-native principles and features like spot
VMs to develop in a green way.

Nikolai Donko
Technical Account Manager, Google Cloud

G
o G

reen Soft
w

are - A
 guide for Soft

w
are D

evelopers/Engineers

13

1 Google Cloud: Cloud Workstations

2 How we’re minimizing AI’s carbon footprint, Google blog, Apr 2021

3 Energy and Carbon-Efficient Placement of Virtual Machines in Distributed
Cloud Data Centers, Conference Paper from Proceedings of the 19th international
conference on Parallel Processing, ResearchGate, August 2013

4 Machine Learning Applications for Data Center Optimization, Jim Gao, Google

5 The Carbon Footprint of Machine Learning Training Will Plateau, Then
Shrink, Technology Predictions publication, February 2013

6 How Much Does Unused Code Matter for Maintenance? Research Paper, Sebastian Eder, Maximilian
Junker, Elmar Jurgens, Benedikt Hauptmann, Institute of Information at Munich University, Germany, 2012

7 Will Turning Off My Monitor Save Energy? Sciencing blog, April 2017

8 How maintenance windows affect your error budget—
SRE tips, Google blog, June 2020

Footnotes

https://cloud.google.com/workstations
https://blog.google/technology/ai/minimizing-carbon-footprint/
https://www.researchgate.net/publication/262348466_Energy_and_Carbon-Efficient_Placement_of_Virtual_Machines_in_Distributed_Cloud_Data_Centers
https://www.researchgate.net/publication/262348466_Energy_and_Carbon-Efficient_Placement_of_Virtual_Machines_in_Distributed_Cloud_Data_Centers
https://www.researchgate.net/publication/262348466_Energy_and_Carbon-Efficient_Placement_of_Virtual_Machines_in_Distributed_Cloud_Data_Centers
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/3f06b8dbb0abc8ab6fbccde0bc37647ae012956c.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/3f06b8dbb0abc8ab6fbccde0bc37647ae012956c.pdf
https://www.cqse.eu/fileadmin/content/news/publications/2012-how-much-does-unused-code-matter-for-maintenance.pdf
https://www.cqse.eu/fileadmin/content/news/publications/2012-how-much-does-unused-code-matter-for-maintenance.pdf
https://sciencing.com/turning-off-monitor-save-energy-2847.html
https://i.dell.com/sites/content/corporate/corp-comm/en/Documents/dell-laptop-carbon-footprint-whitepaper.pdf
https://cloud.google.com/blog/products/management-tools/sre-error-budgets-and-maintenance-windows
https://cloud.google.com/blog/products/management-tools/sre-error-budgets-and-maintenance-windows

cloud.google.com

http://cloud.google.com
http://cloud.google.com

