Google Cloud

Inference Model

Serving with
Cross-Cloud
Network

Infra for Agentic A

Py

dgantic l‘--_--'l
Wiarkdoads

Koy

- Maodel-as-a-5ervEce (natromilird party)

@

|
TCloud Load Balancing
AP Management
Al Guardrais
Moda Routing

: GKE Inference Gateway

¢ E '
MICP Taals MCP servers Agents Cross-Cloud
&-5-B i party o) Metwork

Storage far Al

Al Optimized

— Farallel File Systems

I Fr -
AIML Infra for Data Ingestion Lumtra FUEE

ul r Traffic Steering
GFUMTPU Metworking
Storage & Compute VPC
ip—— 2

= Cloud Interconnects & VPP Peerings

= db

q Cloud Sbarage

[GPUITPU Clustars @
P N e S R e N, Y
| %) =) e g =)

Data:
Slructured,
unstructured.
laT

For more information visit cloud.google.com

= | romaveciic

Solution overview

Optimizing Al inference with Cross-Cloud Network

Organizations deploying Al models for inference seek the normalization of the infrastructure patterns
by which models are deployed and scaled while maximizing model performance and minimizing costs.
The following objectives are commonly pursued when serving models for inference:

01 02 03 04 05
Minimize Optimize Unified API for Consolidated Consolidated
response GPU/TPU all models API Al guardrails &

latency utilization management security
Optimize user Reduce GPU Accelerate Common API Safety and
experience and idle time and its deployment authentication, security
application associated velocity, and authorization, governance
performance costs; re-use enhance and and policy
computations portability and management enforcement
(prefix-cache) modularity services and
and deployed policies for all
GPUs (dynamic models
LoRA); and
elastically
adapt to
resource
demand

Google Cloud offers a comprehensive network solution for Al inference model serving. A unified
inference model endpoint enables access to all models with consolidated APl management and Al
guardrail services. The solution enables the use of the OpenAl API as the normalized API for all models
and integrates the full variety of model runtime form factors: GKE, Cloud Run, on-prem/multicloud,
Vertex Al, and SaaS. Form factors deployed in Google Cloud, such as GKE and Vertex Al, benefit from
the Al optimized scaleout mechanisms delivered by the GKE Inference Gateway, where GPU specific
metrics are leveraged to enable least loaded replica selection and prefix-cache routing. All runtime
form factors benefit from the high performance connectivity delivered by Google’s global network. GKE
delivers differentiated performance for gen Al applications with the addition of new inference
capabilities. These capabilities reduce serving costs by up to 30%, tail latency by up to 60% and

For more information visit cloud.google.com

increases throughput by up to 40% compared to other managed and open source Kubernetes offerings
based on our internal benchmarks.

The Al inference scaleout architecture is developed and specified in the Kubernetes Inference Gateway
project and lim-d open source software communities with significant guidance and contributions from
Google Cloud. This architecture is implemented and offered as a managed service through the GKE
Inference Gateway. By offering these optimizations as a turnkey managed service accessible via the
GKE Gateway API inference extensions, Google Cloud enables enterprises and model-as-a-service
providers to focus their resources in their core competencies rather than the assembly of the multiple
open source components required to achieve these optimizations.

The solution is illustrated in the following figure. The network infrastructure plays a critical role in
optimizing the performance of each replica of a model, scaling out the service with multiple replicas,
routing to different models with a unified API and streamlining the deployment of Al guardrails and API
management functions common to all models. The solution proposed effectively creates a unified
endpoint to access all models for inference. Let’s explore the different aspects of this multi-model
endpoint starting with the Al specific optimizations delivered by the GKE Inference Gateway to
efficiently scale out multiple model replicas for maximum performance and optimal GPU/TPU utilization,
enabling the creation of the best performing model replicas and providing a consolidated surface for
routing, enforcement of guardrails, security, APl management, and observability.

(5}
Front End Cloud Load Balancing Mo

i 2 Internal Armoe
Multi-Model Routing |-F 4 R . .
API Management Load ik Apiges Unified Inference Endpaint

1
Al Guardrails Balancer | 1
Semantic Caching
i ‘ : T
* Maodel-as-a-Service inativelIrd party) Iy | II D G“E lm"ﬂ“ G\atmﬂ? I
s [=
T 1, ! ._g Scaleout serving of LLMs an K8s(1 | Model REpIIC—a Scaleout
d ® e Closd ©On ! 1NN Least-loaded replica picking !
Run prem ! Frefis cache-avware routing i
1]
: Compute/siarage VPG (iRDMA) H i
1] Storage Private Google Access Vi
. - P
I I Cloud Storage, Lustre ROkAA 1 .- -|- -- - |- —-——y - |- e [r
| i [1 — T [
i i i [i Ty "] i
1010 o i+ DOptimized Model Replicas

o0l ool ool |
ROMA YPC ; 4
Scakeoul DIY Moded

Model Replica Scaleout

An instance of a model server for inference is a service capable of processing a prompt to generate a
response. An instance of a model server is commonly referred to as a model server replica and
comprises an inference server, the model computation layers with its trained weights and one or more
accelerators, such as GPUs or TPUs. A replica of a model server can be optimized to maximize its
capacity. To address concurrent requests multiple replicas must be deployed and the distribution of
requests across the multiple replicas must be properly orchestrated to offer a scaleout service that
minimizes response latency while optimizing the utilization of costly GPU/TPU accelerator resources.

For more information visit cloud.google.com

Once model server replicas are optimized to operate to their full potential, they need to be scaled out
to service multiple concurrent requests of varying size and complexity. This is achieved by horizontally
scaling multiple replicas of a model to service requests in parallel and avoid conditions such as head of
line blocking that would result in slow response times or, worse yet, application deadlocks. To extract
the best performance out of these horizontally scaled replica sets, the GKE Inference Gateway in the
Cross-Cloud Network offers key functionality that is designed specifically to balance Al inference loads.
The GKE Inference Gateway combines implementations of the Kubernetes open source inference
gateway architecture with the Cloud Load Balancing infrastructure to offer a managed service that
meaningfully enhances the GKE load balancing layer to route traffic based on Al inference specific
application processing behavior.

Al inference workloads present a resource utilization profile that may be easily misinterpreted when
using traditional server utilization metrics for load balancing and traffic routing. GPU specific metrics
such as kv_cache_utilization and model server queue depth provide a better data point on the
utilization level of GPUs in an inference replica and its ability to accept and service new jobs. Through
the delivery of the GKE Inference Gateway, Google Cloud has enhanced the load balancing
infrastructure in the Cross-Cloud Network to leverage these metrics in custom load balancing
algorithms to optimize the overall response of inference replica sets by being able to pick the least
loaded replica in a given set. Benchmark tests show up to a 60% tail latency improvement when using
the GKE Inference Gateway’s least-loaded-replica picking algorithms.

An inference scheduler, integrated with the load balancing infrastructure as part of the GKE Inference
Gateway implementation, allows for an extensible set of functions that also include the ability to
evaluate a prompt and make routing decisions based on the length of the prompt and whether a similar
prompt has been processed previously. With prefix cache routing, the inference scheduler can match a
prompt with a model replica that may have processed a similar request earlier and send it to that
replica. This functionality referred to as prefix cache-based routing allows requests to be serviced
without having to run them through a full prefill stage, but, in combination with paged-attention
memory management in the inference server, allows the prefill stage to be shortened. The result of
combining least loaded replica picking and prefix cache-based routing are faster and more numerous
successful responses with optimal resource utilization. Benchmark tests show an improvement of up to
40% in throughput when using the GKE Inference Gateway prefix-cache aware routing.

One important function delivered by the GKE Inference Gateway implementation of the inference
scheduler is the ability to extract information from the payload of the request to influence the routing
of the request. This is known as body-based routing and is used primarily to extract the model identifier
from the body of requests that use the OpenAl API. Routing on model identifiers is fundamental to
serving dynamic LoRA adapters. When using dynamic LoRA adapters, a replica of the model will have
multiple LoRA adapters active in memory (and some on standby on local disk or external storage). Each
LoRA adapter has its own model identifier. Any requests must be routed to a replica that hosts the LoRA
adapter specified in the model identifier. More importantly, the inference scheduler has knowledge of
which specific LoRA adapters are active in memory on the different model replicas to make a more
efficient routing decision that considers load metrics, prefix caches as well as the active or standby
status of the target LoRA adapter on the different replicas.

The inference scheduler can evaluate the length of a prompt that isn’t cached and determine if it
should be routed to a dedicated set of prefill nodes to minimize resource contention by keeping the
computationally intensive prefill tasks separate from the memory I/0 demanding decode tasks of the
inference process. This optimization is known as prefill/decode (P/D) disaggregation and its

For more information visit cloud.google.com

effectiveness depends on the ability of the network (by means of an inference scheduler) to identify
prompts that are candidates for P/D disaggregation.

The inference scheduler's implementation, including its algorithms, heuristics, and interactions with
load balancing, adheres to the architecture of the open-source Kubernetes Inference Gateway project.
This functionality is available as a managed service through Google Cloud’s GKE Inference Gateway.

Certain optimizations such as P/D disaggregation imply the distribution of inference tasks (prefill and
decode) across separate nodes. The transfer of the KV cache contents from the prefill stage to
dedicated decode nodes demands very high performance lossless connectivity across nodes to be
truly effective. To complement the sophisticated Al-specific routing necessary to scale out multiple
model replicas into a service, high speed networking between accelerator nodes and to storage is a
fundamental aspect of a complete infrastructure stack to support high performance Al inference. Let’s
explore the optimization of connectivity for the model replicas.

Optimized Model Replicas

The compute, storage, and network infrastructure must support the optimization of each individual
model replica so that the model can perform to its maximum potential. Each model replica requires
optimal connectivity to other services, to storage, and between accelerators.

Google Cloud offers powerful compute form factors with optimized network connectivity to maximize
throughput and minimize the latency for lossless GPU communications across nodes, storage access
and connectivity to external networks. The Cross-Cloud Network supports remote direct memory
access (RDMA) for lossless, high bandwidth and low-latency GPU communications. In conjunction with
kernel bypass techniques, such as GPUDirect, the RDMA-enabled network allows GPU communications
to happen without involving the CPU or the operating system kernel, effectively reducing
communications latency and accelerating the inference process. With the CPU no longer burdened by
network processing tasks, it can dedicate its cycles to other essential operations, such as preparing
new inference requests. This enhanced efficiency allows the entire system to handle a greater volume
of requests simultaneously, thereby increasing the overall throughput in terms of tokens per second.

RDMA connectivity between GPUs and storage, in standard VPCs, accelerates operations dependent
on efficient storage access such as: checkpointing, model weight uploads, retrieval augmentation, and
storage-enabled key value caching.

The RDMA VPC enables access to a massive rail-aligned physical network with RDMA over converged
ethernet (RoCEv2) designed for lossless communications with ultra-low latency and high bandwidth.
The RDMA VPC accelerates GPU to GPU communications necessary for the synchronization of
inference computation, the transfer of activations and Key Value cache synchronization between GPUs
in models that are parallelised across multiple nodes. The benefits of RDMA are most pronounced in
tensor parallelism. Tensor parallelism is a model parallelization strategy that splits individual layers of
the model across multiple GPUs. This approach is communication-heavy, as it requires frequent and
high-bandwidth data exchanges between GPUs to synchronize the results of the split computations. In
such scenarios, the lossless and low latency communications enabled by RDMA can lead to substantial
improvements in throughput and reduced inference times. This optimized GPU to GPU communication
also plays a critical role in enabling optimizations such as prefill-decode disaggregation, which require
the fast transfer of large Key Value cache tensors between prefill nodes and decode nodes.

For more information visit cloud.google.com

TPU to TPU communications use the inter-chip interconnect (ICI) and optical circuit switching to offer
adaptable topologies that enable meaningful training and inference speedup for different types of
model parallelism.

To reap the benefits of this network infrastructure, workloads must be properly orchestrated. GKE
offers a series of functions that are key to the successful deployment of model replicas and replica
sets. GKE Horizontal Pod Autoscaling (HPA) enables the elastic provisioning of model replicas within a
replica set. GKE HPA monitors GPU utilization metrics to trigger autoscaling based on the effective
utilization of the accelerator resources. GKE leader worker sets are instrumental in the deployment of
very large models that span multiple nodes. GKE multi-networking enables pods to access the
aggregate bandwidth of multiple GPU interfaces connecting an inference compute node to an RDMA
VPC. With 8 x 400 Gbps GPU NICs per server, this capability translates into 3.2 Tbps of connectivity to
a rail aligned network. For serverless deployments, Cloud Run offers fully managed autoscaling for
single node models.

Unified Inference Endpoint

Organizations are keen to simplify their API structure and presenting a single endpoint for the
consumption of all the different models is compelling to many organizations. A variety of replica sets
hosting different models can be organized as backend services to a unified load balancer that can
enforce routing to different models using a unified API for all models. This is the basis for offering a
variety of models using a single service endpoint. The load balancer at the front end of such a service
endpoint must be able to route traffic to different models based on model identifier metadata present
in the request payload. We refer to the ability to extract model information from the request body and
route on it as body based routing. Body based routing enables the normalization of the API calls to one
scheme across all models by using a combination of url/path translations and service extension
plug-ins for the extraction of the model identifiers. One viable API for the normalization is the OpenAl
API, which includes the model identifier information in the request body/payload. Alternatively, Apigee
can be inserted as a callout from the load balancer and both the body based routing and URL/path
translation can be executed by Apigee. This has the advantage of also including all the API
management functionality that Apigee provides.

With the access to the unified model endpoint under a common load balancer for the different model
types, the enforcement of Al guardrails can be done in the network as a Service Extensions callout from
the load balancer to the Al guardrails service. The network insertion of the guardrails allows
organizations to ensure that access to the diverse models is governed by a consolidated guardrail
policy that is common to all applications consuming the models. This solution supports a growing
ecosystem of guardrails inclusive of Google Cloud’s Model Armor and NVIDIA NEMO Guardrails.

API management and authentication can also be delivered as a Service Extensions callout from the
load balancer. The Apigee extension processor allows callouts to Apigee to fulfill required API
authentication, authorization, and management. One important function of this APl management layer
is semantic caching. With semantic caching, previously generated responses are cached in the context
of the prompts they address. The semantic cache function identifies whether a prompt is semantically
similar to one of the cached prompts and if there is a match it will respond with the stored response.
This functionality can offload a large number of requests from the model inference servers, saving
expensive GPU cycles, and dramatically reducing response latency.

For more information visit cloud.google.com

Network Deployment Patterns

Google Cloud collaborates with a broad ecosystem of partners like NVIDIA, Anthropic, OpenAl, and
open source communities such as vLLM and Kubernetes. Many efforts are driven through these
partnerships to converge on architectures, APIs, protocols, and the implementation of relevant metrics
and memory handling mechanisms in leading inference server implementations. The architecture for a
scaleout multi-model endpoint such as the one described in this document is the product of consensus
in the Kubernetes open source community, specifically the gateway APl inference extension project and
the lIm-d.ai community that focuses on the aspects of disaggregated serving. All components of this
architecture are implemented and offered as a managed service in the GKE Inference Gateway. This
includes body based routing for model identifier routing, replica picking, and disaggregation heuristics
optimized for Al inference. Cloud Load Balancing enhances this architecture with Service Extensions that
enable the insertion of APl management functions, semantic caching, security enforcement, and Al
guardrails. These functions are ideally deployed at the load balancer where the model routing is being
enforced. For deployments in which all models are deployed on GKE runtimes, the load balancing can be
implemented in a single tier that is fully managed through the GKE Gateway API (inclusive of the
inference extensions). When other runtimes, such as Vertex Al, serverless, or replicas outside of Google
Cloud, need to be integrated as part of the model inference endpoint, a front-end standalone load
balancer is used to implement the body based routing function along with the Service Extensions. Both
of these patterns are illustrated in the following figure. Replica picking optimizations are always deployed
at the load balancing layer immediately above the model replicas, which results in a two tier load
balancing pattern.

Infanends Prochaces VP Irderancs Producer WAL

Camrcrnibs . Guarciraile . . o
AR Mgmt " GHE Inference AF1 Mgt mfﬂ::fl:.:ll?:.:u
Gataway |
|
1 i v B FHC WG -0 o
I.-n-::'u |-|'\-r\-|l-f':.i |-|-.p-.|.-.f; » i o S L .--gn_:-i-u_- _,__:_' b Routing VPC
- a] e Erpliresiny N E —
o000 ©000 00O e o000 .
=T Ty) e Iy eum—, P ———
R Rl g Rt P e Rl Rl g g — Tt N e et |
ORI VP BORdA, VPT BORA VET A mae 5" Y '""b_'__‘ Al RDAAA WP
b s Haclds Cin-gpren § ather cloud
et
Consolidated single tier pattern for GKE runtimes Two tier pattern for heterogeneous runtimes

The resulting inference model endpoint integrates seamlessly into the service centric structure utilized to
build distributed applications in Google Cloud’s Cross-Cloud Network. The following diagram shows the
multi-model inference endpoint integrated in the Cross-Cloud Network as a published service.

https://github.com/kubernetes-sigs/gateway-api-inference-extension
http://llm-d.ai
https://cloud.google.com/kubernetes-engine/docs/concepts/about-gke-inference-gateway

Gunrdroiis

1°1 Giohs Front

e wase cpy | En (GFE)
Exorige Survices 8 -
Cloward Storage. | _ _ _ =)
Por abifalord. } P eIy Saneran Ao VPO niemet Egress VPE
Fiefimre, FLISE -————n lm
r—— - M
Wansged _ _ _
o 2
i | et
1 i
PsC ! !
1 |-l e
T
HCC
[— R 1
e — _{merees e VR Connactiity
| Infarance model mréce :- i Orchestration :
H Guardrads I | Bppdcatisn YPC
AP Wit o :
‘. .'. .'. hrr.-.i - Chosd NEmonnect
. i i i i ! . a- - —
|] ’ 1 1 1 e H—
il Rt St L N i L — |
[Rensting WP _
Saas)| ¥ oD % S o Cn-pram
wr e e o ! 1
H [reael CHE [
|| Mt-cel Repiicas " ‘ Lainall | -
[i i s - - .) N — =
ufofe ¢ 5D : _— s t?j
Cirr-premoiher cloud Wik

This architecture makes the model endpoint available for applications to call upon it efficiently, privately
and securely via the Cross-Cloud Network. Services calling upon the model endpoint include simple Al
application runtimes and agents in an agentic application that require access to different models. A
single published endpoint can be accessed from applications structured across a variety of VPCs and
projects to fulfill any inference requirements without the need for application specific custom model
deployments. The applications in turn benefit from the comprehensive set of services, security and
optimized connectivity enabled by the Cross-Cloud Network for distributed applications.

One key use case that the Cross-Cloud Network enables is the Global Front End for scalable and secure
web access to the Al application. Service Extensions in the Global Front End provide an insertion point
for additional Al guardrails that would catch non-compliant queries early on, before even burdening the
Al application runtimes.

Summary

This solution proposes a unified model endpoint using the OpenAl API to serve any model with Al
specific scale out algorithms for model performance optimization. The model endpoint fits seamlessly
in the paradigm of the Cross-Cloud Network distributed application to provide a modular model service
for the development of agentic applications. The network plays a critical role in delivering models for
inference at scale. Enhancements to replica selection algorithms introduced by the GKE Inference
Gateway are key to preventing head of line blocking events that impact model response latency and
efficient GPU saturation. The load balancing infrastructure enables model based routing and service
extensions for APl management and enforcement of Al guardrails to provide a complete solution for the
delivery of models for inference with an API normalized on the OpenAl API.

Google Cloud

For more information visit cloud.google.com

	
	Solution overview
	01
	Minimize response latency
	Optimize user experience and application performance
	02

	Optimize GPU/TPU utilization
	Reduce GPU idle time and its associated costs; re-use computations (prefix-cache) and deployed GPUs (dynamic LoRA); and elastically adapt to resource demand
	03

	Unified API for all models
	Accelerate deployment velocity, and enhance portability and modularity
	04

	Consolidated API management
	Common API authentication, authorization, and management services and policies for all models
	05

	Consolidated AI guardrails & security
	Safety and security governance and policy enforcement

	
	Model Replica Scaleout
	Optimized Model Replicas
	Unified Inference Endpoint
	Network Deployment Patterns
	Summary

