
October 2024

We tested
Intel’s AMX CPU
accelerator for AI.
Here’s what we learned

Running AI/ML workloads
on CPUs have gained a new
advantage: stronger security

The latest Confidential VMs we’ve developed with
Intel have a built-in CPU accelerator on by default.
This makes it easier for customers to secure their
inference, fine tuning, and small-to-medium sized
training jobs.

Confidential computing is the protection of data
in-use through hardware-based technologies.
Google Cloud offers Confidential VM, a type of
Compute Engine VM that uses Confidential
Computing to ensure data and applications stay
private and encrypted even while in use.

Confidential VM is available with a confidential
computing technology called Intel Trust Domain
Extensions (Intel TDX). Confidential VM with Intel
TDX can help safeguard against insider attacks
and software vulnerabilities and ensure data and
code confidentiality and integrity.

These Confidential VMs, like all C3 VMs, have
Intel Advanced Matrix Extensions (Intel AMX)
enabled. Intel AMX improves the performance of
deep-learning training and inference on the CPU,
and is ideal for workloads including natural-
language processing, recommendation systems,
and image recognition.

To harness the full potential of Intel AMX, existing
machine learning (ML) pipelines and frameworks
must be optimized to support its capabilities. Intel
has undertaken extensive efforts to optimize
popular ML frameworks, such as TensorFlow,
PyTorch, and JAX, for Intel AMX utilization (see
here for details). Intel has also provided guidance
on how an AI pipeline can be optimized and how a
PyTorch extension on GitHub can be used to
accelerate many large language models (LLMs).

2

“We are excited to partner with Google,
delivering Confidential Computing and
AI acceleration on C3 instances with
Intel TDX and Intel AMX and software
acceleration available in the popular AI
libraries, to democratize access to
secured, accelerated computing,”

Andres Rodriguez
Intel Fellow and datacenter AI architect

https://cloud.google.com/security/products/confidential-computing
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://cloud.google.com/compute/docs/general-purpose-machines#c3_series
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-amx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/tuning-guide-for-ai-on-the-4th-generation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/tuning-guide-for-ai-on-the-4th-generation.html
https://github.com/intel/intel-extension-for-pytorch

We conducted ML training and inference
experiments to evaluate the performance of
Confidential VMs with Intel TDX and Intel AMX.
In general, workloads running in Confidential
VMs with Intel TDX may experience some
performance overhead due to the memory
encryption and integrity protection provided and
the additional changes required in the software
stack to enable confidential computing.

Configurations and settings

We ran our experiments with an Ubuntu 22.04
LTS guest OS image. To reduce experiment
noise, we disabled hyperthreading on all VMs.
Performance impact can vary greatly depending
on the optimization library used and software
stack changes in the guest and host kernel.

For our experiments, we compared three VMs that were the largest machine types by vCPU available:

Performance testing
AI/ML workloads on
Confidential VMs

3

N2 VM

N2 machine series
VMs that do not have Intel
AMX or Intel TDX enabled.

C3 VM

C3 machine series
VMs that have Intel
AMX enabled.

C3+TDX VM

C3 machine series
VMs have Intel TDX
and Intel AMX enabled.

01 02 03

https://cloud.google.com/compute/docs/general-purpose-machines#n2_series
https://cloud.google.com/compute/docs/general-purpose-machines#c3_series
https://cloud.google.com/compute/docs/general-purpose-machines#c3_series

Training time by virtual machine in minutes (lower is better)

We trained RoBERTa, a LLM that provides improvement
on BERT and is widely used in natural language processing
(NLP) applications. We fine-tuned RoBERTa on its ability
to answer questions with the Stanford Question Answering
Dataset (SQuAD) for one epoch. We used the HuggingFace
Trainer and PyTorch frameworks to run the evaluation
and to use their smooth integrations with Intel Extension
for PyTorch (IPEX) software acceleration and Intel AMX
hardware acceleration.

Note that you could use other popular ML frameworks
such as TensorFlow to do this evaluation.

We compared the training time (in minutes) on the
aforementioned N2, C3, and C3+TDX VMs. Compared
to the N2 VM, the C3 VM provided a 4.54x speedup on
training time whereas the C3+TDX VM provided a 4.14x
speedup on training time for one workload, with the
same hyperparameters such as global batch size and
on-par quality metrics.

Training findings

4

0
N2 C3 C3+TDX

25

50

75

100

125

Tr
ai

ni
ng

 ti
m

e
(m

s)

VM

https://arxiv.org/abs/1907.11692
https://aclanthology.org/N19-1423/
https://huggingface.co/datasets/rajpurkar/squad
https://huggingface.co/datasets/rajpurkar/squad
https://huggingface.co/docs/transformers/en/main_classes/trainer
https://pytorch.org/
https://www.tensorflow.org/

The C3 machine series has multiple
cores so you can use distributed
training techniques like Distributed
Data Parallel (DDP) to improve CPU
utilization. In DDP, you can control
the number of processes for data
parallelism and number of threads in
each process for intra-op parallelism.
The choice of these parameters
trades off compute utilization and
communication cost and affects
training time. When the number of
threads is small, some cores may be
idle, so CPU utilization may not be
saturated. On the other hand, a large
number of processes has a higher
communication overhead and is more
prone to be delayed by stragglers.

C3 VM shapes are optimized for
the underlying NUMA architecture
to deliver consistent performance.
For C3 VMs that have less than
44 vCPUs, there will be one NUMA
node. For C3 VMs that have 44 to
88 vCPUs, there will be two NUMA
nodes. For C3 VMs that have more
than 88 vCPUs, there will be four
NUMA nodes. Spreading threads
across different NUMA nodes can
impact the memory access latencies
and performance. Therefore,
depending on the workload needed,
there should be at least one process
per node that groups a set of threads
and binds them to the vCPUs on the
same NUMA node.

Intel AMX is an accelerator that
resides on each physical CPU core
and is placed near system memory.
C3 VM shapes have Simultaneous
Multithreading (SMT) enabled by
default but running more threads
than the number of Intel AMX
accelerators may be inefficient.
We recommend limiting the number
of worker threads to be less than
half of the number of available
vCPU to avoid oversubscription and
resource contention. Alternatively,
SMT features can be disabled when
creating a C3 VM. To learn how to
disable hyperthreading, click here.

Our investigations gave us many insights on optimizing performance.
To optimize training performance on the C3 machines series, consider the following:

Considerations to optimize training

5

0301 02

In our training experiments, we obtained good
results with 8 processes, each with 10 threads on
our C3 machine with 176vCPU, 4 NUMA nodes,
and hyperthreading disabled. We also configured
“CCL_WORKER_AFFINITY=auto”, which pins the
communication worker to the last cores of the pin
domains. Open MPI’s default settings largely take
care of process pinning. To learn more about
Open MPI process pinning, click here.

ML training parameters

Generally, a greater batch size may speed up training.
When Intel TDX is enabled, a greater batch size also
reduces the Intel TDX overhead. This is due to reduced
memory encryption cost involved in I/O operations,
given the same amount of ingested data. However,
empirically, a greater batch size may compromise model
quality, so this is a tradeoff you need to consider. In this
experiment, we use a global batch size of 256.

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://cloud.google.com/blog/products/compute/c3-machine-series-on-intel-sapphire-rapids-now-ga
https://cloud.google.com/compute/docs/instances/set-threads-per-core#gcloud
https://www.open-mpi.org/
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-reference-linux/2021-8/process-pinning.html

We ran a text generation task on two LLMs, Llama-
2-7B and Llama-2-13B. Using the aforementioned
N2, C3, and C3+TDX VMs, we evaluated task
performance based on two metrics:

We compared the N2 VM to C3 and C3+TDX
VMs and found that Intel AMX on the C3 VM and
C3+TDX VM provided a speedup of approximately
a three-fold improvement in latency (TPOT)
and approximately a seven-fold increase in
throughput (with a batch size of six). All inference
experiments were run with DeepSpeed and
averaged over 50 runs. See table.

Inference findings

6

Time per output token (TPOT)

Time to generate an output token for a single
request. This metric corresponds to how a user
would perceive the "speed" of the model. For
example, a TPOT of 100 milliseconds per token
would be approximately 450 words per minute
(WPM), which is faster than an average person’s
reading speed.

Throughput (token per sec)

The number of output tokens per second an
inference server can generate for batch requests.

Time per output token speedup (ratio)

C3 VM C3+TDX

LLaMA2-7B 2.7x 2.7x

LLaMA2-13B 3.0x 2.9x

Throughput speedup (ratio)

C3 VM C3+TDX

LLaMA2-7B 7.7x 7.3x

LLaMA2-13B 7.5x 7.1x

Time per output token by virtual machine
(lower is better)

Throughput by virtual machine (higher is better)

0
llama-7b llama-13b

100

200

300

0

50

100

150

200

250

llama-7b llama-13b

Ti
m

e
pe

r o
ut

pu
t t

ok
en

 (m
s)

Th
ro

ug
hp

ut
 (t

ok
en

 p
er

 s
ec

)

Models

Models

N2 C3 C3+TDX

N2 C3 C3+TDX

https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-13b
https://github.com/microsoft/DeepSpeed

Unset

// Code snippet for creating a TDX VM (for more
information see public documentation)
gcloud beta compute instances create <instance_name> \
 --machine-type=c3-standard-176 \
 --threads-per-core=1 \
 --confidential-compute-type=TDX \
 --maintenance-policy=TERMINATE \
 --image-family=ubuntu-2204-lts \
 --image-project=tdx-guest-images
//

// Sample code snippets for training

// Create a new virtual environment.
python3 -m venv amx-exp
source amx-exp/bin/activate

// Install pytorch, ipex and oneccl.
pip3 install torch torchvision torchaudio --index-url
https://download.pytorch.org/whl/cpu
// Sanity check with python -c "import torch;
print(torch.__version__)"
pip install intel-extension-for-pytorch
python -m pip install oneccl_bind_pt --extra-index-url
https://pytorch-extension.intel.com/release-whl/stable/
cpu/us/

// Install HuggingFace from source which is required to
run examples.
git clone https://github.com/huggingface/transformers.
git
cd transformers
pip install .

// Install question answering task specific
requirements.
cd examples/pytorch/question-answering
pip install -r requirements.txt

// Setup OneCCL.
oneccl_bindings_for_pytorch_path=$(python -c "from
oneccl_bindings_for_pytorch import cwd; print(cwd)")
source $oneccl_bindings_for_pytorch_path/env/setvars.sh

// Run!
export CCL_WORKER_COUNT=1 && \
export CCL_WORKER_AFFINITY=auto && \
export MASTER_ADDR=127.0.0.1 && \
mpirun -n 8 -genv OMP_NUM_THREADS=10 \
python run_qa.py \
 --model_name_or_path FacebookAI/roberta-base \
 --dataset_name squad \
 --do_train \
 --do_eval \
 --per_device_train_batch_size 32 \
 --per_device_eval_batch_size 128 \
 --learning_rate 3e-5 \
 --num_train_epochs 1 \
 --max_seq_length 384 \
 --doc_stride 128 \
 --output_dir /tmp/debug_squad/ \
 --no_cuda \
 --ddp_backend ccl \
 --bf16=True --use_ipex=True

Considerations to
optimize inference

Try Intel AMX
on Confidential
VMs today

7

We found that DeepSpeed, a deep learning
optimization software suite, improves inference
performance. In our inference experiment on C3
machines series, using DeepSeed reduced TPOT
by down to 65.20% and improved throughput by
up to 2.9x.

You can collect benchmarks for LLMs by
following the Intel® Extension for PyTorch
instructions. For training, here is a code snippet
to get you started.

https://github.com/microsoft/DeepSpeed
https://github.com/intel/intel-extension-for-pytorch/tree/llm_feature_branch/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/llm_feature_branch/examples/cpu/inference/python/llm

