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We tested  
Intel’s AMX CPU 
accelerator for AI. 
Here’s what we learned



Running AI/ML workloads 
on CPUs have gained a new 
advantage: stronger security

The latest Confidential VMs we’ve developed with 
Intel have a built-in CPU accelerator on by default. 
This makes it easier for customers to secure their 
inference, fine tuning, and small-to-medium sized 
training jobs. 

Confidential computing is the protection of data 
in-use through hardware-based technologies. 
Google Cloud offers Confidential VM, a type of 
Compute Engine VM that uses Confidential 
Computing to ensure data and applications stay 
private and encrypted even while in use. 

Confidential VM is available with a confidential 
computing technology called Intel Trust Domain 
Extensions (Intel TDX). Confidential VM with Intel 
TDX can help safeguard against insider attacks 
and software vulnerabilities and ensure data and 
code confidentiality and integrity. 

These Confidential VMs, like all C3 VMs, have 
Intel Advanced Matrix Extensions (Intel AMX) 
enabled. Intel AMX improves the performance of 
deep-learning training and inference on the CPU, 
and is ideal for workloads including natural-
language processing, recommendation systems, 
and image recognition.

To harness the full potential of Intel AMX, existing 
machine learning (ML) pipelines and frameworks 
must be optimized to support its capabilities. Intel 
has undertaken extensive efforts to optimize 
popular ML frameworks, such as TensorFlow, 
PyTorch, and JAX, for Intel AMX utilization (see 
here for details). Intel has also provided guidance 
on how an AI pipeline can be optimized and how a 
PyTorch extension on GitHub can be used to 
accelerate many large language models (LLMs).
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“We are excited to partner with Google, 
delivering Confidential Computing and  
AI acceleration on C3 instances with  
Intel TDX and Intel AMX and software 
acceleration available in the popular AI 
libraries, to democratize access to  
secured, accelerated computing,” 

Andres Rodriguez  
Intel Fellow and datacenter AI architect

https://cloud.google.com/security/products/confidential-computing
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://cloud.google.com/compute/docs/general-purpose-machines#c3_series
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-amx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/tuning-guide-for-ai-on-the-4th-generation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/tuning-guide-for-ai-on-the-4th-generation.html
https://github.com/intel/intel-extension-for-pytorch


We conducted ML training and inference 
experiments to evaluate the performance of 
Confidential VMs with Intel TDX and Intel AMX. 
In general, workloads running in Confidential 
VMs with Intel TDX may experience some 
performance overhead due to the memory 
encryption and integrity protection provided and 
the additional changes required in the software 
stack to enable confidential computing.  

Configurations and settings

We ran our experiments with an Ubuntu 22.04 
LTS guest OS image. To reduce experiment 
noise, we disabled hyperthreading on all VMs. 
Performance impact can vary greatly depending 
on the optimization library used and software 
stack changes in the guest and host kernel. 
 

For our experiments, we compared three VMs that were the largest machine types by vCPU available:

Performance testing 
AI/ML workloads on 
Confidential VMs
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N2 VM

N2 machine series 
VMs that do not have Intel  
AMX or Intel TDX enabled.

C3 VM

C3 machine series  
VMs that have Intel  
AMX enabled.

C3+TDX VM

C3 machine series  
VMs have Intel TDX  
and Intel AMX enabled. 
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https://cloud.google.com/compute/docs/general-purpose-machines#n2_series
https://cloud.google.com/compute/docs/general-purpose-machines#c3_series
https://cloud.google.com/compute/docs/general-purpose-machines#c3_series


Training time by virtual machine in minutes (lower is better)

We trained RoBERTa, a LLM that provides improvement  
on BERT and is widely used in natural language processing 
(NLP) applications. We fine-tuned RoBERTa on its ability  
to answer questions with the Stanford Question Answering 
Dataset (SQuAD) for one epoch. We used the HuggingFace 
Trainer and PyTorch frameworks to run the evaluation 
and to use their smooth integrations with Intel Extension 
for PyTorch (IPEX) software acceleration and Intel AMX 
hardware acceleration. 

Note that you could use other popular ML frameworks 
such as TensorFlow to do this evaluation.

We compared the training time (in minutes) on the 
aforementioned N2, C3, and C3+TDX VMs. Compared 
to the N2 VM, the C3 VM provided a 4.54x speedup on 
training time whereas the C3+TDX VM provided a 4.14x 
speedup on training time for one workload, with the  
same hyperparameters such as global batch size and  
on-par quality metrics.

Training findings
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https://arxiv.org/abs/1907.11692
https://aclanthology.org/N19-1423/
https://huggingface.co/datasets/rajpurkar/squad
https://huggingface.co/datasets/rajpurkar/squad
https://huggingface.co/docs/transformers/en/main_classes/trainer
https://pytorch.org/
https://www.tensorflow.org/


The C3 machine series has multiple 
cores so you can use distributed 
training techniques like Distributed 
Data Parallel (DDP) to improve CPU 
utilization. In DDP, you can control 
the number of processes for data 
parallelism and number of threads in 
each process for intra-op parallelism. 
The choice of these parameters 
trades off compute utilization and 
communication cost and affects 
training time. When the number of 
threads is small, some cores may be 
idle, so CPU utilization may not be 
saturated. On the other hand, a large 
number of processes has a higher 
communication overhead and is more 
prone to be delayed by stragglers.

C3 VM shapes are optimized for 
the underlying NUMA architecture 
to deliver consistent performance. 
For C3 VMs that have less than 
44 vCPUs, there will be one NUMA 
node. For C3 VMs that have 44 to 
88 vCPUs, there will be two NUMA 
nodes. For C3 VMs that have more 
than 88 vCPUs, there will be four 
NUMA nodes. Spreading threads 
across different NUMA nodes can 
impact the memory access latencies 
and performance. Therefore, 
depending on the workload needed, 
there should be at least one process 
per node that groups a set of threads 
and binds them to the vCPUs on the 
same NUMA node.

Intel AMX is an accelerator that 
resides on each physical CPU core 
and is placed near system memory. 
C3 VM shapes have Simultaneous 
Multithreading (SMT) enabled by 
default but running more threads 
than the number of Intel AMX 
accelerators may be inefficient.  
We recommend limiting the number 
of worker threads to be less than 
half of the number of available 
vCPU to avoid oversubscription and 
resource contention. Alternatively, 
SMT features can be disabled when 
creating a C3 VM. To learn how to 
disable hyperthreading, click here.

Our investigations gave us many insights on optimizing performance.  
To optimize training performance on the C3 machines series, consider the following:

Considerations to optimize training
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In our training experiments, we obtained good 
results with 8 processes, each with 10 threads on 
our C3 machine with 176vCPU, 4 NUMA nodes, 
and hyperthreading disabled. We also configured 
“CCL_WORKER_AFFINITY=auto”, which pins the 
communication worker to the last cores of the pin 
domains. Open MPI’s default settings largely take  
care of process pinning. To learn more about  
Open MPI process pinning, click here.

ML training parameters

Generally, a greater batch size may speed up training. 
When Intel TDX is enabled, a greater batch size also 
reduces the Intel TDX overhead. This is due to reduced 
memory encryption cost involved in I/O operations, 
given the same amount of ingested data. However, 
empirically, a greater batch size may compromise model 
quality, so this is a tradeoff you need to consider. In this 
experiment, we use a global batch size of 256.

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://cloud.google.com/blog/products/compute/c3-machine-series-on-intel-sapphire-rapids-now-ga
https://cloud.google.com/compute/docs/instances/set-threads-per-core#gcloud
https://www.open-mpi.org/
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-reference-linux/2021-8/process-pinning.html


We ran a text generation task on two LLMs, Llama-
2-7B and Llama-2-13B. Using the aforementioned 
N2, C3, and C3+TDX VMs, we evaluated task 
performance based on two metrics: 

We compared the N2 VM to C3 and C3+TDX 
VMs and found that Intel AMX on the C3 VM and 
C3+TDX VM provided a speedup of approximately 
a three-fold improvement in latency (TPOT) 
and approximately a seven-fold increase in 
throughput (with a batch size of six). All inference 
experiments were run with DeepSpeed and 
averaged over 50 runs. See table.

Inference findings
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Time per output token (TPOT) 

Time to generate an output token for a single 
request. This metric corresponds to how a user 
would perceive the "speed" of the model. For 
example, a TPOT of 100 milliseconds per token 
would be approximately 450 words per minute 
(WPM), which is faster than an average person’s 
reading speed.

Throughput (token per sec)

The number of output tokens per second an 
inference server can generate for batch requests.

Time per output token speedup (ratio)

C3 VM C3+TDX

LLaMA2-7B 2.7x 2.7x

LLaMA2-13B 3.0x 2.9x

Throughput speedup (ratio)

C3 VM C3+TDX

LLaMA2-7B 7.7x 7.3x

LLaMA2-13B 7.5x 7.1x

Time per output token by virtual machine  
(lower is better)

Throughput by virtual machine (higher is better)
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https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-13b
https://github.com/microsoft/DeepSpeed


Unset

// Code snippet for creating a TDX VM (for more 
information see public documentation)
gcloud beta compute instances create <instance_name> \
    --machine-type=c3-standard-176 \
    --threads-per-core=1 \
    --confidential-compute-type=TDX \
    --maintenance-policy=TERMINATE \
    --image-family=ubuntu-2204-lts \
    --image-project=tdx-guest-images
//

// Sample code snippets for training

// Create a new virtual environment.
python3 -m venv amx-exp
source amx-exp/bin/activate

// Install pytorch, ipex and oneccl.
pip3 install torch torchvision torchaudio --index-url 
https://download.pytorch.org/whl/cpu
// Sanity check with python -c "import torch; 
print(torch.__version__)"
pip install intel-extension-for-pytorch
python -m pip install oneccl_bind_pt --extra-index-url 
https://pytorch-extension.intel.com/release-whl/stable/
cpu/us/

// Install HuggingFace from source which is required to 
run examples.
git clone https://github.com/huggingface/transformers.
git
cd transformers
pip install .

// Install question answering task specific 
requirements.
cd examples/pytorch/question-answering
pip install -r requirements.txt

// Setup OneCCL.
oneccl_bindings_for_pytorch_path=$(python -c "from 
oneccl_bindings_for_pytorch import cwd; print(cwd)")
source $oneccl_bindings_for_pytorch_path/env/setvars.sh

// Run!
export CCL_WORKER_COUNT=1 && \
export CCL_WORKER_AFFINITY=auto && \
export MASTER_ADDR=127.0.0.1 && \
mpirun -n 8 -genv OMP_NUM_THREADS=10 \
python run_qa.py \
  --model_name_or_path FacebookAI/roberta-base \
  --dataset_name squad \
  --do_train \
  --do_eval \
  --per_device_train_batch_size 32 \
  --per_device_eval_batch_size 128 \
  --learning_rate 3e-5 \
  --num_train_epochs 1 \
  --max_seq_length 384 \
  --doc_stride 128 \
  --output_dir /tmp/debug_squad/ \
  --no_cuda \
  --ddp_backend ccl \
  --bf16=True --use_ipex=True

Considerations to 
optimize inference

Try Intel AMX 
on Confidential 
VMs today 
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We found that DeepSpeed, a deep learning 
optimization software suite, improves inference 
performance. In our inference experiment on C3 
machines series, using DeepSeed reduced TPOT 
by down to 65.20% and improved throughput by 
up to 2.9x.

You can collect benchmarks for LLMs by 
following the Intel® Extension for PyTorch 
instructions. For training, here is a code snippet 
to get you started. 

https://github.com/microsoft/DeepSpeed
https://github.com/intel/intel-extension-for-pytorch/tree/llm_feature_branch/examples/cpu/inference/python/llm
https://github.com/intel/intel-extension-for-pytorch/tree/llm_feature_branch/examples/cpu/inference/python/llm



