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Summary 
In the second and third quarters of 2025, Google collaborated with Intel to conduct a security 
assessment of Intel® Trust Domain Extensions (TDX®), extending Google’s previous review and 
covering major changes since Intel TDX Module 1.0 – namely support for Live Migration and 
Trusted Domain (TD) Partitioning (nested VMs within TDs). Intel provided guidance and 
support, including documentation and updated TDX 1.5 source code. Unlike the previous 
review, this time, we had access to a compute node capable of running TDX to develop a 
toolkit for live testing and Proof-of-Concept (PoC) generation. Furthermore, we integrated 
Gemini for analysis and NotebookLM to efficiently navigate complex specifications. 

This assessment resulted in the discovery of one vulnerability that enables a VMM to fully 
compromise a TD, and four vulnerabilities that enable a malicious VMM or TD to leak 
confidential memory of the Intel TDX Module. Several other security weaknesses and/or bugs 
were identified but not categorized as vulnerabilities despite having some impact on security. 

Beyond presenting the technical details of multiple bugs and vulnerabilities in this report, 
these findings underscore that confidential computing, like other security measures, requires 
iterative refinement and complementary security controls to harden it, in line with a 
defense-in-depth approach. 

Intel TDX provides the fundamental building blocks to create Trusted Execution Environments 
(TEEs) with a minimized Trusted Computing Base (TCB) for customers relying on a Cloud 
Service Provider (CSP). This means they can construct an environment with effective layers of 
protection, especially against insider risk. The trustworthiness of an environment is 
established only after the customer attests to it and confirms it meets their unique 
security policy. 

While customers can delegate verification to third-party services (such as Intel® Tiber™ 
Trust Authority or Google Cloud Attestation), they must ultimately own that decision. To this 
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https://googleprojectzero.blogspot.com/2023/04/technical-report-into-intel-tdx.html
https://www.intel.com/content/www/us/en/security/trust-authority.html
https://www.intel.com/content/www/us/en/security/trust-authority.html
https://cloud.google.com/confidential-computing/docs/attestation
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end, it is the customer’s responsibility to decide if a confidential computing environment is 
trustworthy enough for their workloads. 

Unless otherwise stated, the vulnerabilities and bugs disclosed were present in the latest 
production release of the Intel TDX Module at the time of this security assessment (Q2-Q3 
2025). 

Intel has informed us that at the time of publication all vulnerabilities identified in this report 
have been remediated in versions 1.5.24/1.5.25 & 2.0.14 of the Intel TDX Module onwards 
(versions depend on the specific Intel platform). Intel may address other items (e.g. bugs and 
security weaknesses) identified in this report in subsequent releases. 

We have verified that there has been no evidence of active exploitation of these 
vulnerabilities among Google CVM customers. 

Introduction 
Intel TDX version 1.5 supports several new features including Live Migration and TD 
Partitioning (nested VMs within TDs), which increase the TCB for Intel TDX. These features 
require new Application Programming Interfaces (APIs), workflows, and complex states, 
adding 34,862 lines of code to the Intel TDX module firmware compared to the 1.0 version. 
Within that total, 8,034 lines of code are dedicated to defining TD metadata, CPUID 
configurations, and the state tables required for migration. As of the time of writing, the latest 
Intel 1.5 specifications can be found on the Intel Trust Domain Extensions webpage. 

For this project, we focused our efforts on a thorough API review (prioritizing differences since 
TDX 1.0) augmented by static analysis and Large Language Model (LLM) tools. Additionally, 
we developed a Python-based experimentation framework which was used to build a deeper 
understanding of complex Intel TDX flows, run experiments to test edge cases, and develop 
PoC exploits for discovered vulnerabilities. Similar to the previous review, we used Frama-C 
and CodeQL for static analysis of the code but uncovered limited findings. As LLM capabilities 
have significantly improved since our previous review, we used this project as an opportunity 
to investigate how they can assist with vulnerability discovery and variant analysis. 

Previous security assessments by Google and Intel [Intel Trust Domain Extensions (TDX) 
Security Review] identified several vulnerabilities and weaknesses in the 1.0 version of Intel 
TDX. A report from Microsoft and Intel similarly focused on version 1.5 with support for Live 
Migration [Technical Report of Joint Security Review By Microsoft and Intel TDX 1.5], and 
identified several vulnerabilities in the Intel TDX module firmware. 

Additionally, several research papers have been published developing side-channel attacks on 
Intel TDX modules [TDXdown, TDXploit] and bypassing defense-in-depth mitigations aimed 
for countering single-stepping attack techniques. 

https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://frama-c.com
https://codeql.github.com
https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/intel_tdx_joint_security_review_with_microsoft.pdf
https://dl.acm.org/doi/pdf/10.1145/3658644.3690230
https://www.usenix.org/system/files/usenixsecurity25-rauscher.pdf
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Our work contributes to the ongoing community effort to secure the critical components in 
the confidential computing space and led to the discovery of several new vulnerabilities and 
bugs. 

Scope 
In this work, we primarily focused on Intel TDX Module version 1.5 with support with Live 
Migration and TD Partitioning with a brief review of the Non-Persistent and Persistent SEAM 
Loader (NP/P-SEAMLDR). Other software components such as Intel® Software Guard 
Extensions (Intel® SGX) quoting enclave, and Host/Guest-related code (e.g., Linux KVM, 
device drivers, or specific applications) were considered outside the scope.  

We did not review the MigTD as it wasn’t considered ready, nor MCHECK source code 
because it was not available. Despite the known risk of side-channel attacks, attacks that leak 
memory access patterns of TDs were also outside the scope of this assessment. 

Background 
The Intel TDX threat model is primarily concerned with safeguarding Trust Domains (TDs) 
against a malicious or compromised host environment. This includes the Virtual Machine 
Manager (VMM), Operating System (OS), Basic Input/Output System (BIOS), System 
Management Mode (SMM), legacy Virtual Machines (VMs), other TDs, and non-TD software. 
Despite an attacker’s privileged control, Confidentiality and Integrity are maintained 
through a combination of architectural features, platform verification, and secure initialization.​
​
Availability is not included in the security objectives because a host VMM can simply deny 
the Intel TDX Module and TDs the platform resources required for operation. 

Key components are introduced below, with the Intel Trust Domain Extensions White Paper 
providing a more comprehensive description of the overall architecture. 

Secure Arbitration Mode (SEAM): Hosts the persistent SEAM Loader and Intel TDX Module 
providing protection from the host VMM, other system software, and direct-memory access 
(DMA) from devices using a reserved memory space identified by the SEAM Range Register 
(SEAMRR). New x86 Instruction Set Architecture (ISA) instructions are introduced to enter & 
exit, and perform SEAM operations (i.e SEAMCALL, SEAMOPS, SEAMRET, and TDCALL). 

Total Memory Encryption, Multi-Key (TME-MK): Provides memory encryption and integrity 
protection. The host VMM assigns a Host Key Identifier (HKID) and the Intel TDX Module 
programs a private key for that HKID into hardware, using the PCONFIG instruction. Only the 
Intel TDX Module and the TD itself are allowed to read/write associated memory. 

MCHECK: Performs platform configuration verification (e.g., checks correct setup of SEAM 
Range Register and Convertible Memory Ranges); secure information storage (e.g., stores 

https://github.com/intel/MigTD
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
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Convertible Memory Range [CMR] table in the SEAMRR SEAMCFG region); CPU feature 
validation (e.g., compatible features provided by all cores and packages on a platform). This 
operation is undocumented, closed source, and complex. It is initiated as part of a µCode 
patch by writing the IA32_BIOS_UPDT_TRIG Model Specific Register (MSR). 

SEAM Loader (SEAMLDR): The NP-SEAMLDR is an Authenticated Code Module (ACM) 
responsible for verification and loading of the P-SEAMLDR. The P-SEAMLDR runs in a 
subrange of the SEAMRR and is responsible for verification and loading or updating of the 
Intel TDX Module. 

Intel TDX Module: Software that runs in SEAM and used by a VMM to support TD operations. 
This runtime software is responsible for providing TD security. 

TD Attestation Software: TD software can request a local attestation report (TDReport) 
which provides information on platform configuration and software measurements that can be 
used to establish trust of the execution environment. An Intel SGX enclave (TDQuoting 
Enclave) is used to sign TDReports and generate a remote attestation report (TDQuote). 
These reports are also used for Live Migration to establish trust between source and 
destination Intel TDX Modules. Intel provides general-certification infrastructure to verify that 
a TDQuote was generated by a genuine Intel platform, but customers are expected to verify 
the content of the attestation report to establish trust based on their security policy. 

With the introduction of Live Migration, the Intel TDX Module is now required to maintain 
Confidentiality and Integrity of TDs not just on the platform running the TD, but between 
multiple platforms, and during the migration process. Private memory, non-memory state, and 
control state of a TD must not be disclosed or modified by untrusted software, which is used 
extensively to facilitate TD movement. Additionally, only a single instance of the TD being 
migrated is allowed to run at any point in time. 

Components inside the Intel TDX TCB (e.g., Intel TDX Module, SEAM Loaders, and CPU 
Hardware) are each assigned a Security Version Number (SVN). These are included in 
attestation and verified at startup to be greater than or equal to some threshold value. 

In the case where vulnerabilities are discovered in TCB components, they are fixed and the 
associated SVN is updated. Depending on the severity of the issue and other factors, a 
process known as TCB-Recovery (TCB-R) can be performed to ensure that older versions of 
components reflect their reduced security level via an attestation process. Intel’s Trusted 
Computing Base Recovery of Intel Trusted Execution Environments web page describes the 
process in detail. 

Next, we describe components of the Intel TDX Module that are the most relevant to our work. 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-computing-base-recovery.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-computing-base-recovery.html
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State Machines 
The Intel TDX Module uses two primary state machines for a TD: lifecycle and operation.  

Lifecycle State: Tracked in the Trust Domain Root (TDR) management fields as lifecycle_state 
and has the following states: TD_HKID_ASSIGNED, TD_KEYS_CONFIGURED, TD_BLOCKED, and 
TD_TEARDOWN. Most of a TD’s lifetime is spent in the TD_KEYS_CONFIGURED state. 
TD_HKID_ASSIGNED is the initial state when the TD is first created and 
TD_BLOCKED/TD_TEARDOWN are used during resource reclamation.  

Operation State: Tracked in the Trust Domain Control Structure (TDCS) management fields 
as op_state. This state machine is more complex and is primarily checked with 
check_state_map_tdcs_and_lock throughout the codebase. A full breakdown of the APIs 
allowed in each op_state is provided in Appendix A. This state machine is largely used to 
restrict API access unless a TD is in an acceptable op_state. 

The Secure Extended Page Tables (SEPT) entries also include a state to ensure that a given 
operation is only allowed if an entry is in a given state. This is usually checked with the 
sept_state_is_seamcall_leaf_allowed function. 

TD Migration 

 

Figure 1: TD Migration Components and Process 
(Adapted from Figure 2.2 in the Intel TDX Module Architecture Specification: TD Migration) 

TD migration enables the secure relocation of an executing TD between Intel TDX platforms in 
an untrusted environment. CSPs utilize this feature to relocate TDs and meet customer 

https://www.intel.com/content/www/us/en/content-details/839200/intel-tdx-module-architecture-specification-td-migration.html
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Service Level Agreements (SLAs) while maintaining the ability to perform critical maintenance 
tasks (e.g., upgrade software, replace hardware, and patch firmware). 

The figure above shows the components and processes of a migration. Regardless of the 
migration type: cold (i.e. TD is suspended, transferred, and resumed) or live (i.e. TD remains 
running with a brief blackout period) a similar process is performed with live migration having 
a few distinct phases for memory transfer: In-Order Memory, Blackout, and Out-Of-Order 
Memory. 

In-Order Memory Migration Phase: Occurs while the Source TD (srcTD) may continue to run 
and modify its memory and non-memory state. Order is critical in this phase to ensure that 
exports of the same memory are imported in the correct order (i.e. oldest first and newest 
last). 

Blackout Period: The srcTD is stopped and the mutable non-memory state (e.g., TD, and 
VCPUs) are transferred. 

Out-of-Order Memory Migration Phase: Occurs after the Blackout Period and the 
Destination TD (dstTD) can start executing. Memory can be transferred in any order and 
allows on-demand (e.g., EPT violation prioritization) based memory transfers. 

The host VMM is responsible for managing resources for the TDs and during a migration 
interacting with the Intel TDX Module to export and import migration bundles. Migration 
bundles are private memory or non-memory state for a TD, and are both encrypted and 
integrity protected. Before migration bundles can be sent, the Destination VMM (dstVMM) 
creates a template TD to import the migration bundles into. This is accomplished with multiple 
calls to the Intel TDX Module via the Intel TDX Host Interface (i.e. using the SEAMCALL 
instruction) to assign an HKID, assign memory, and initialize data structures. 

Before the Target TD (tgtTD) can be migrated, a Migration TD (migTD) is created by both the 
Source VMM (srcVMM) and dstVMM. This TD plays a critical role in enabling secure and 
verifiable relocation of the tgtTD by examining the Intel TDX Module’s capabilities and 
attestation evidence. This information is checked on both platforms against the migration 
policy and includes: acceptable TD attributes, allowed SVNs, and supported migration 
protocol version. The migTDs each communicate a Migration Session Key (MSK), which are 
AES-GCM-256 keys generated by the Intel TDX Module, to the other. When the destination 
migTD receives the MSK it sets it in the dstTD via the Intel TDX Guest Interface (i.e. using the 
TDCALL instruction). 

The tgtTD is the TD being migrated, the srcTD is running pre-migration and the dstTD is 
running post-migration. The migTD is bound to the srcTD before TD measurements are 
finalized during TD initialization. The tgtTD doesn’t perform any special activities during a 
migration and is unaware of the process taking place. 
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This process is similar to but considerably more complex than the migration of a legacy VM. 
With a legacy migration the host VMM is included in the VM’s TCB and has full access to 
memory and non-memory state. Because of this the srcVMM and dstVMM can perform the 
migration without additional software (i.e. the migTD and Intel TDX Module). Instead the host 
VMMs perform the necessary verification and authentication and provide a secure channel to 
communicate migration activities. 

Note: The purpose of TD migration is to enable relocation of a TD across physical platforms 
but technically these activities could take place on a single platform. 

Creation Workflows 
TD migration introduces an additional path for constructing TDs where import API are used 
(e.g., tdh_import_state_immutable, tdh_import_state_td, and tdh_import_state_vp) 
instead of the initialization API (e.g., tdh_mng_init and tdh_vp_init). 

 

Figure 2: Uninitialized Build Sequence 

Figure 3: Uninitialized Import Sequence 
(Adapted from Figure 2.4 in the Intel TDX Module Architecture Specification: TD Migration) 

The traditional Build Sequence, shown in Figure 2, and the Import Sequence, shown in Figure 
3, start the same way with a call to tdh_mng_create with a Host Physical Address (HPA) for 
the TDR and HKID supplied as parameters. The TDR page is initialized and the HKID is set to 
KOT_STATE_HKID_ASSIGNED. tdh_mng_key_config is used to program the HKID and 
encryption key into the TME-MK. tdh_mng_addcx is then called multiple times to add pages 
and initialize them to be used for the TD Control Structures (TDCS). 

Build Sequence 

The Build Sequence at this point diverges from the common flow by calling tdh_mng_init to 
initialize the global-scope of the TD and TD-scope state shared by the Virtual Processors 
(VPs) (e.g., L2 Virtual Machine [VM] count, owner measurement fields, CPUID configuration, 
Virtual Machine eXtensions [VMX] controls, and MSR bitmap). Data to populate the TD 
originates from td_module_global_t and td_module_local_t structures located inside the 
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Intel TDX Module as well as a td_params_t structure supplied by the host VMM. Upon 
successful completion of that call the op_state of the TD is set to OP_STATE_INITIALIZED. 

Figure 4: Initialized Build Sequence 
 

From the OP_STATE_INITIALIZED state the host VMM can proceed to create and initialize VPs 
using a sequence of calls to tdh_vp_create, tdh_vp_addcx, and tdh_vp_init. Private 
memory is added with a series of calls to tdh_mem_sept_add to construct the paging 
hierarchy and tdh_mem_sept_add to add a memory page and populate the contents. 
tdh_mr_extend is used to extend the TD measurement with the contents of the added pages. 
Adding VPs and memory can be done in any order and does not need to be performed by the 
same LP. Completion of TD initialization occurs when tdh_mr_finalize is called which sets 
the op_state to OP_STATE_RUNNABLE. 

Import Sequence 

The Import Sequence is more complex requiring a migTD to be bound to the tgtTD using 
tdh_sertd_bind or tdh_servtd_prebind and creating Migration Stream Contexts (MigSCs) 
with tdh_mig_stream_create. With that completed, the migTDs on the source and 
destination exchange MSKs as described in the TD Migration section. After the exchange is 
completed the dstVMM receives encrypted migration bundles to initialize the dstTD by calling 
tdh_import_state_immutable. This API performs similar initialization to tdh_mng_init but 
using encrypted migration bundles passed by the dstVMM. As this can be complex and 
time-consuming (e.g., decrypting the migration bundle, importing metadata lists, and 
processing additional authenticated data) the Intel TDX Module checks for pending interrupts 
during operation. When a pending interrupt is present the migsc_t structure is used to 
preserve state and return execution to the host VMM. The host VMM can process interrupts, 
perform other activities, and resume the import at a later time by calling 
TDH_IMPORT_STATE_IMMUTABLE. When the import activity is resumed the migsc_t structure is 
used to restore state and check that other Intel TDX Module import activities have not taken 
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place. Once the immutable state is completely imported the op_state of the TD is set to 
OP_STATE_MEMORY_IMPORT. 

 

Figure 5: Memory Import Sequence 
(Adapted from Figure 2.4 in the Intel TDX Module Architecture Specification: TD Migration) 

 

This op_state starts what is known as the “In-Order Memory Import Phase”. Secure EPT 
structures are created and memory is imported using tdh_import_mem. Each page imported 
is decrypted and copied into the TD. Page attributes and the location are verified to ensure 
they are also the same between source and destination. Up to this point the srcTD is in the 
live export state, allowed to run, and change TD memory and non-memory state. Mutable 
TD-scope state can only be exported during the Intel TDX-imposed Blackout which is started 
when tdh_export_pause is called on the srcTD which prevents the srcTD from running. 
tdh_import_state_td can then be used to import the mutable TD state and change the 
op_state to OP_STATE_STATE_IMPORT upon completion. Both APIs are considered 
time-consuming and support interruption similar to tdh_import_state_immutable. Shared 
memory is migrated using traditional host VMM workflows. 

 

Figure 6: State Import Sequence 
(Adapted from Figure 2.4 and 2.5 in the Intel TDX Module Architecture Specification: TD Migration) 

 

During OP_STATE_STATE_IMPORT VP-scope state is imported using tdh_import_state_vp 
and memory can continue to be imported using tdh_import_mem. This op_state can continue 
to create Secure EPT structures as necessary to perform the memory import activities. With 
the TD in the Intel TDX-imposed Blackout, memory marked dirty during the source TD’s live 
export phase is re-migrated. tdh_import_track consumes a migration epoch token created 
by tdh_export_track on the source and either starts a new epoch leaving the TD in the 
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current state or changes to the OP_STATE_POST_IMPORT op_state when the start token is 
received. 

 

Figure 7: State Import Sequence 
(Adapted from Figure 2.5 in the Intel TDX Module Architecture Specification: TD Migration) 

 

The OP_STATE_POST_IMPORT op_state starts the “Out-of-Order Memory Import Phase” and 
is used to support post-copy migration. At this point the srcTD is no longer runnable and 
memory no longer needs to be tracked for freshness. Memory can continue to be imported 
and when tdh_import_commit completes the Intel TDX-Imposed Blackout is over. This means 
that the dstTD can be run. Post-copy migration allows the dstTD to start executing before all 
memory pages have been transferred. After tdh_import_commit the op_state is changed to 
OP_STATE_LIVE_IMPORT and memory can continue to be imported. If the TD attempts to use 
non-present memory an EPT violation occurs and the dstVMM can decide how to prioritize 
the remaining pages to be migrated. The “Out-of-Order Memory Import Phase” ends along 
with the migration when tdh_import_end is called. This changes the TD op_state to 
OP_STATE_RUNNABLE. 

Migration Bundles 
During a migration, bundles are created by the Intel TDX Module through the export API (i.e. 
tdh_export_state_immutable, tdh_export_state_td, tdh_export_state_vp, and 
tdh_export_mem) and provided to the host VMM. These bundles include Migration Bundle 
Metadata (MBMD) and migration data. The MBMD is integrity protected and the migration 
data is encrypted to preserve confidentiality. The migration data consists of one or more 
migration pages and each page is represented as a Metadata List. 
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Figure 8: Non-Memory State Migration List 
(Adapted from Figure 7.1 in the Intel TDX Module Architecture Specification: TD Migration) 

 

The md_list_header_t includes the list_buff_size as a uint16_t and num_sequences as 
a uint16_t. list_buff_size is the total number of bytes for the md_list_t and includes the 
size of md_list_header_t. The Intel TDX Module constrains the size of the md_list_t at 
runtime to be less than or equal to _4KB. The md_list_header_t and md_list_t, as defined 
by the Intel TDX Module, are provided below. 

typedef union md_list_header_u { 

  struct { 

    uint16_t list_buff_size; 

    uint16_t num_sequences; 

    uint32_t reserved; 

  }; 

  uint64_t raw; 

} md_list_header_t; 

 

typedef union md_list_u { 

  struct { 

    md_list_header_t hdr; 

    uint8_t body[_4KB - sizeof(md_list_header_t)]; 

  }; 

  uint8_t raw[_4KB]; 

} md_list_t; 

 

After the header is an array of md_sequence_t structures, located in the body of the 
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md_list_t above, each starting with a sequence_header. The sequence_header is of type 
md_field_id_t, and the figure below provides a simplified layout. 

typedef union md_field_id_u { 

... 

  struct { 

    uint32_t field_code : 24;    // Bits 0:23 

    uint32_t reserved_0 : 8;     // Bits 24:31 

  }; 

... 

  struct { 

    uint32_t element_size_code      : 2;    // Bits 33:32 

    uint32_t last_element_in_field  : 4;    // Bits 37:34 

    uint32_t last_field_in_sequence : 9;    // Bits 46:38 

    uint32_t reserved_1             : 3;    // Bits 49:47 

    uint32_t inc_size               : 1;    // Bit 50 

    uint32_t write_mask_valid       : 1;    // Bit 51 

    uint32_t context_code           : 3;    // Bits 54:52 

    uint32_t reserved_2             : 1;    // Bit 55 

    uint32_t class_code             : 6;    // Bits 61:56 

    uint32_t reserved_3             : 1;    // Bit 62 

    uint32_t ignored                : 1;    // Bit 63 

  }; 

... 

} md_field_id_t; 

 

Important fields are in bold with field_code, context_code, and class_code being used to 
uniquely identify an entry to be imported. The last_field_in_sequence and 
write_mask_valid fields are used during import to determine how many entries are 
represented in a sequence and if the first element in the sequence should be used as a 
write_mask when importing values. 

Identified Vulnerabilities 
The following table highlights the findings that were confirmed as vulnerabilities. Out of the 5 
reported vulnerabilities, we discovered one high severity vulnerability that enables a VMM to 
fully compromise a TD, and four vulnerabilities that enable a malicious VMM or TD to leak 
confidential memory of the Intel TDX Module. We also found several other security 
weaknesses that were not attributed to Common Vulnerability and Exposures (CVE) identifiers 
despite some impact on security, which are discussed in the next section. 
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Identifier Type Score Description 

CVE-2025-30513 Time-of-Check 
/ Time-of-Use 

7.9 Migratable TD can become debuggable 
during migration 

CVE-2025-32007 Out-of-bounds 
Read 

4.4 Metadata sequence parsing leads to an 
integer underflow 

CVE-2025-27572 Speculative 
Out-of-bounds 
Read 

4.1 Speculative out-of-bounds read in guest 
RDMSR and WRMSR handlers 

CVE-2025-32467 Speculative 
Out-of-bounds 
Read 

4.1 Speculative out-of-bounds read in host 
HKID free and VP flush API 

CVE-2025-27940 Speculative 
Out-of-bounds 
Read 

4.1 Speculative out-of-bounds read in host 
API to prebind and bind a service TD 

 

Intel provided an updated Intel TDX Module with all identified vulnerabilities addressed 
to customers as part of Intel Platform Update (IPU) 2026.1 or other product sustaining 
releases between September and December 2025. 

After the planned February 10, 2026 public disclosure of these issues, Intel will initiate a TCB 
Recovery process that enables relying parties to verify whether the latest updates have been 
deployed on the platform they are using, make security decisions, and establish or 
re-establish trust with the platform. 

Vulnerability 1: Migratable TD can Become Debuggable During Migration 
Intel Technical Advisory for CVE-2025-30513: In certain Intel TDX modules, the 
TDH.MNG.INIT API may be executed after the TDH.IMPORT.STATE.IMMUTABLE state is 
initiated, potentially enabling an exploit in which a migratable TD is imported as a debuggable 
TD. 
 
Attack Scenario: A compromised dstVMM participates in the migration of a tgtTD. The tgtTD 
is correctly configured by an uncompromised srcVMM, had attestation verified, and was 
provided with confidential user data. The TD is migratable and a trusted migTD has been 
bound to it, the TD is not debuggable. 
 
In this situation a dstVMM can exploit a Time-of-Check to Time-of-Use vulnerability to change 
the TD’s attributes from migratable to debug as the TD’s immutable state is being imported! 
 

https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:N
https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N
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Exploitation of this attack breaks confidentiality and integrity of a migratable TD. Once 
the TD is marked debuggable the host VMM is given complete access to the TD’s private 
memory and non-memory state. 
 
Interrupting a tdh_import_state_immutable operation and interleaving a call to 
tdh_mng_init allows a TD’s immutable state, including the attributes, to be modified after 
being imported. The import operation can then be resumed with the Intel TDX Module 
unaware of any modification. The rest of this section details the root cause of the vulnerability 
and provides a proof-of-concept exploit. 
 
The attributes field within a TD is a critical 64-bit bitmap that is used to specify various 
characteristics and is included in attestation. Three groupings defined: 

●​ TD Under Debug (TUD): Any bit set in this group renders the TD untrusted. Only the 
debug flag is defined and when set provides the host VMM access to TD state, VCPU 
state and private memory. 

●​ Security (SEC): Bits in this group impact TD security and include the migratable flag. 
●​ Other (OTHER): Bits in this group do not impact TD security. The perfmon flag is 

defined and allows the TD to use performance monitoring capabilities. 
 
The Creation Workflows section describes the similarities and differences between building 
and importing a TD. In either situation the TD has an op_state of OP_STATE_UNINITIALIZED 
allowing tdh_mng_init or tdh_import_state_immutable to be called. 
 

// tdh_mng_init.c 

check_lock_and_map_explicit_tdr(tdr_pa, OPERAND_ID_RCX, TDX_RANGE_RW, 

TDX_LOCK_EXCLUSIVE, PT_TDR, &tdr_pamt_block, &tdr_pamt_entry_ptr, &tdr_locked_flag, 

&tdr_ptr); 

... 

check_state_map_tdcs_and_lock(tdr_ptr, TDX_RANGE_RW, TDX_LOCK_NO_LOCK, false, 

TDH_MNG_INIT_LEAF, &tdcs_ptr); 

 

// tdh_import_state_immutable.c 

check_lock_and_map_explicit_tdr(tdr_pa, OPERAND_ID_RCX, TDX_RANGE_RW, 

TDX_LOCK_EXCLUSIVE, PT_TDR, &tdr_pamt_block, &tdr_pamt_entry_ptr, &tdr_locked_flag, 

&tdr_p}; 

... 

check_state_map_tdcs_and_lock(tdr_p, TDX_RANGE_RW, TDX_LOCK_NO_LOCK, false, 

TDH_IMPORT_STATE_IMMUTABLE_LEAF, &tdcs_p); 

 
Each API uses check_lock_and_map_explicit_tdr to take an exclusive lock on the TDR and 
map it into the TDX module’s linear address space. Next, they call 
check_state_map_tdcs_and_lock to ensure the op_state is valid for the called API. 
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tdh_import_state_immutable breaks the supplied migration bundle up into multiple 
md_list_t structures and iterates over each md_list calling md_write_list to write entries 
into the TDR and TDCS. When md_write_list returns it checks if pending host interrupts are 
present using is_interrupt_pending_host_side. If true the state is saved into migsc_p 
and execution is returned to the host VMM with a status code of 
TDX_INTERRUPTED_RESUMABLE. The op_state is not modified when an interruption occurs. 
 

api_error_type tdh_import_state_immutable(uint64_t target_tdr_pa, uint64_t 

hpa_and_size_pa, uint64_t page_or_list_pa, uint64_t migs_i_and_cmd_pa) { 

  ... 

  page_list_info.raw = page_or_list_pa; 

  ... 

  do { 

    md_list_pa.raw = page_list_p[page_list_i].raw; 

    ... 

    md_list_hdr_p = (md_list_header_t*)map_pa(md_list_pa.raw_void, TDX_RANGE_RO); 

    if (aes_gcm_decrypt(&migsc_p->aes_gcm_context, (uint8_t*)md_list_hdr_p, 

(uint8_t*)&md_list, _4KB) != AES_GCM_NO_ERROR) { 

      fatal_error(FATAL_ERROR_ID_150, FATAL_INFO_FORMAT_BASIC_INFO, NULL); 

    } 

    ... 

    if (!sys_imported) { 

      ... 

      return_val = md_write_list(MD_CTX_SYS, field_id, ...); 

      ... 

    } 

    else { // Import the TD metadata list: 

      return_val = md_write_list(MD_CTX_TD, field_id, ...); 

    } 

    ... 

    if ((page_list_i <= page_list_info.last_entry) && 

is_interrupt_pending_host_side()) { 

      ... 

      return_val = TDX_INTERRUPTED_RESUMABLE; 

      goto EXIT; 

    } 

  } while ((uint64_t)page_list_i <= page_list_info.last_entry); 

  ... 

  tdcs_p->management_fields.op_state = OP_STATE_MEMORY_IMPORT; 

  return_val = TDX_SUCCESS; 

EXIT: 

  ... 

  return return_val; 

 



 

​ Page 16 of 84 

At the time of writing, the immutable state metadata bundle is 12KB (composed of three 
md_list_t structures). A simplified version is shown in Figure 5. 

 

Figure 9: Simplified Immutable State Metadata Bundle 

The first md_list contains fields associated with the TDX module (e.g., BUILD_NUM, 
VENDOR_ID, and TDX_FEATURES0) and does not consume an entire 4KB page (remaining space 
is filled with zeros). The second and third md_list structures contain fields associated with 
the TD (e.g., TD_UUID, NUM_VCPUS, ATTRIBUTES, and X2APIC_IDS). This provides two 
interruption points with everything except the X2APIC_IDS describing the TD being located in 
the second md_list. 

The TD attributes are imported with an import_mask of (-1ULL & 0xFFFFFFFFFFFFFFFFULL) 
but has .special_wr_handling set to true as shown below. This means that any bit in the 
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64bit field can be set but additional processing occurs before the value is actually written into 
the TD. 

// ATTRIBUTES // 15 

.field_id = { .raw = 0x1110000300000000 }, 

... 

.export_mask = (-1ULL & 0xFFFFFFFFFFFFFFFFULL), .import_mask = (-1ULL & 

0xFFFFFFFFFFFFFFFFULL), 

.special_rd_handling = false, .special_wr_handling = true, 

.mig_export = MIG_MB, .mig_import = MIG_MB 

 

The special write handling that takes place in md_td_write_field is used to call 
verify_td_attributes. If this function returns false, the write does not occur and instead 
returns TDX_METADATA_FIELD_NOT_VALID. 

api_error_code_e md_td_write_field(md_field_id_t field_id, const md_lookup_t* 

entry, md_access_t access_type, 

  ... 

      case MD_TDCS_ATTRIBUTES_FIELD_ID: 

        ... 

        td_param_attributes_t attributes; 

        attributes.raw = value[0] & combined_wr_mask; 

        if (!verify_td_attributes(attributes, is_import)) { 

          return TDX_METADATA_FIELD_VALUE_NOT_VALID; 

        } 

        break; 

  ... 

 

verify_td_attributes when called by the write handler and has is_import set to true 
which ensures that the migratable flag is set and that debug and perfmon flags are clear. 

bool_t verify_td_attributes(td_param_attributes_t attributes, bool_t is_import) 

  ... 

  if (attributes.migratable) { 

    // A migratable TD can't be a debug TD and does not support PERFMON 

    if (attributes.debug || attributes.perfmon) { return false; } 

  } 

  else if (is_import){ 

        // TD must be migratable on import flow 

        return false; 

  } 

  ... 

  return true; 
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} 

 

Looking at the other initialization path, tdh_mng_init uses the host VMM supplied 
td_params_t structure called td_params_ptr to initialize a TD. 
read_and_set_td_configurations is used to validate and write parameters into it. If that 
function returns a value other than TDX_SUCCESS then goto EXIT is executed and returns the 
error code to the host VMM. The op_state is not modified when an error occurs. 

api_error_type tdh_mng_init(uint64_t target_tdr_pa, uint64_t target_td_params_pa, 

uint64_t event_filters_info_params) { 

  ... 

  td_params_pa.raw = target_td_params_pa; 

  ... 

  td_params_ptr = (td_params_t *)map_pa((void*)td_params_pa.raw, TDX_RANGE_RO); 

  ... 

  return_val = read_and_set_td_configurations(tdr_ptr, tdcs_ptr, td_params_ptr); 

  if (return_val != TDX_SUCCESS) { 

    TDX_ERROR("read_and_set_td_configurations failed\n"); 

    goto EXIT; 

  } 

  ... 

  tdcs_ptr->management_fields.op_state = OP_STATE_INITIALIZED; 

EXIT: 

  ... 

  return return_val; 

 

The first parameter that read_and_set_td_configuration checks is the attributes. It uses 
verify_td_attributes with is_import set to false. This allows a TD to be configured with 
the debug and/or perfmon flags set as long as the migratable flag is clear. If 
verify_td_attributes returns true the tmp_attributes are assigned to the TD. 

static api_error_type read_and_set_td_configurations(tdr_t * tdr_ptr, 

  ... 

  tmp_attributes.raw = td_params_ptr->attributes.raw; 

  if (!verify_td_attributes(tmp_attributes, false)) { 

    return_val = api_error_with_operand_id(TDX_OPERAND_INVALID, 

OPERAND_ID_ATTRIBUTES); 

    goto EXIT; 

  } 

  tdcs_ptr->executions_ctl_fields.attributes.raw = tmp_attributes.raw; 

 

  tdcs_ptr->executions_ctl_fields.td_ctls.pending_ve_disable = 

tmp_attributes.sept_ve_disable; 
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  tmp_xfam.raw = td_params_ptr->xfam; 

  if (!check_xfam(tmp_xfam)) { 

    return_val = api_error_with_operand_id(TDX_OPERAND_INVALID, OPERAND_ID_XFAM); 

    goto EXIT; 

  } 

  ... 

 

If a later check, for example check_xfam, fails the TD’s attributes have already been 
modified, are not restored, and the op_state is left as OP_STATE_UNINITIALIZED. 

To summarize the root causes of this vulnerability that lead to exploitation: 

1.​ tdh_mng_init does not modify the op_state on failure but does modify TD state 
2.​ tdh_import_state_immutable is interruptible but does not correctly validate 

imported state after the entire migration bundle is imported (relying instead on 
md_td_write_field checks during the import of each field) 

3.​ tdh_import_state_immutable only modifies the op_state after the entire migration 
bundle is imported 

4.​ migsc_t is used to track migration state in the migration API but other APIs are 
unaware of it 

A compromised dstVMM can exploit these conditions to convert a migratable TD to a 
debuggable TD by performing the following steps: 

1.​ Create an interrupt storm targeting the LP that will perform the immutable state import 
2.​ Call tdh_import_state_immutable with the immutable state and MBMD 

a.​ Goto step 3 if the Intel TDX module returns TDX_INTERRUPTED_RESUMABLE 
b.​ Goto step 4 if it completes with TDX_SUCCESS and step 3 was previously 

executed 
3.​ Call tdh_mng_init with attributes.debug set and an invalid xfam value 

a.​ Intel TDX module returns with TDX_OPERAND_INVALID - OPERAND_ID_XFAM 
b.​ Goto step 2 

4.​ Call tdh_mng_rd to read the MIG_DEC_WORKING_KEY 

At this point the migration can be continued but with the dstVMM having complete access to 
the dstTD. The dstVMM can use the MIG_DEC_WORKING_KEY, which is only allowed to be read 
by the dstVMM when the TD is debuggable, to decrypt migration bundles received by the 
srcVMM and modify them before performing additional import operations. 

As the migration bundles represent the entire state of the TD (e.g., non-memory state and 
private memory) and because the dstVMM can decrypt them, the TD’s confidentiality is 
compromised. 
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One side effect of calling tdh_mng_init is that num_vcpus is initialized to 0 before the 
attributes are set which prevents VP import. The dstTD can still transition through expected 
operation states without issue because the tdh_import_track API only verifies 
num_migrated_vcpus and num_vcpus are equal. 

Even with that side effect Integrity is compromised because the migration can be completed 
with the dstTD in a different state than the srcTD. Furthermore, an attacker can proceed to 
impact integrity by: 

1.​ Using the migration bundles to construct another TD and destroy the dstTD once 
completed 

2.​ Abort the migration and use the confidential data to attack the srcTD (e.g., extract 
credentials, persistent storage keys, or encrypted connection details). 

A simplified attack scenario where the srcVMM and dstVMM are the same platform is 
also possible. In this case the complexity of exploitation is reduced and provides an 
additional live monitoring capability. In this case the host VMM initiates a migration but does 
not complete it. Instead, it stays in the OP_STATE_LIVE_EXPORT op_state, using 
tdh_export_mem to access private memory as needed. 

The PoC, shown in Figures 10 and 11, performs the attack described above to extract the 
MIG_DEC_KEY, using the TDXplore Toolkit. A single host VMM and migTD was used as both the 
source and destination to simplify demonstration. 
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Figure 10: Uncompromised Setup and Export Operations 

Note: An animated version of the figure is provided here. 

Figure 10 includes a terminal for the migTD (top) and host VMM (bottom). The host VMM is 
not part of the TCB and only used to perform expected resource management activities. The 
migTD is bound to both the srcTD and dstTD and completes the required keys exchange 
within its context. 

https://services.google.com/fh/files/misc/intel_tdx_1.5-figure_10.gif
https://services.google.com/fh/files/misc/intel_tdx_1.5-figure_10.gif
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Figure 11: Exploited Import Operations Making the TD Debuggable 

Note: An animated version of the figure is provided here. 

Figure 11 contains a terminal on the host VMM and is used to run the exploit. Once the exploit 
completes it proceeds to print the attributes showing the imported TD has the debug flag 
set and prints the MIG_DEC_KEY, using the tdh_mng_rd API. The MIG_DEC_KEY field is only 
accessible to the host VMM when the TD is marked debuggable. 

Remediation: This vulnerability was fixed by introducing a new op_state, called 
START_IMPORT, to prevent the non-import path from being taken after an immutable import 
has been started. 

This vulnerability is only exploitable when a Trust Domain (TD) is configured to be migratable. 
Until this fix is fully deployed, customers should check their attestation report to verify 
CVMs are built with migration support disabled. Even after the fix is deployed, customers 
should continue to carefully review their migration policy and environment configuration. This 
is to ensure they meet the minimum Security Version Number (SVN) and the specific 
confidentiality requirements for their use case and threat model. A misconfigured migration 
policy could allow a CVM to be moved to a host with a vulnerable environment, exposing it to 
known threats. 

https://services.google.com/fh/files/misc/intel_tdx_1.5-figure_11.gif
https://services.google.com/fh/files/misc/intel_tdx_1.5-figure_11.gif
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Vulnerability 2: Metadata Sequence Parsing Leads to an Integer Underflow 
Intel Technical Advisory for CVE-2025-32007: In certain scenarios, a VMM may generate a 
migration stream that interacts with the Intel TDX Module in a way that could lead to memory 
access beyond allocated boundaries. This condition may result in unintended reads of system 
memory, potentially revealing privileged information. 
 
Attack Scenario: A compromised host VMM creates a template TD to import migration 
bundles into. A malicious migTD is created and bound to the template TD. The MSK is provided 
by the migTD to the host VMM so it can construct and encrypt migration bundles for import. 
 
In this situation, the host VMM can exploit an integer underflow condition that occurs during 
import, allowing up to 8KB of Out-Of-Bounds (OOB) data to be read from the current LP’s 
stack in the Intel TDX Module. 
 
Exploitation of this vulnerability allows OOB reads of data in the Intel TDX Module. With 
this an attacker is able to: bypass Address Space Layout Randomization (ASLR), leak the 
global stack canary, read the contents of the LP’s shadow stack, and read data from an 
adjacent LP’s stack in the Intel TDX Module. 
 
There are three APIs used to import non-memory TD state in the Intel TDX Module: 
tdh_import_state_immutable, tdh_import_state_td, and tdh_import_state_vp. These 
APIs share a similar flow and the vulnerability is reachable by any of them. 
tdh_import_state_vp will be used to describe how to reach the root cause of the 
vulnerability and demonstrate a PoC exploit. 
 

api_error_type tdh_import_state_vp(uint64_t target_tdvpr_pa, ...uint64_t 

hpa_and_size_pa, uint64_t page_or_list_pa, uint64_t migs_i_and_cmd_pa) { 

  ... 

  md_list_header_t *md_list_hdr_p = NULL; 

  ... 

  md_list_t md_list; 

  ... 

  page_list_pa.raw = 0; 

  page_list_pa.page_4k_num = page_list_info.hpa; 

  page_list_p = (pa_t *)map_pa(page_list_pa.raw_void, TDX_RANGE_RO); 

  ... 

  do { 

    ... 

    md_list_pa.raw = page_list_p[page_list_i].raw; 

    md_list_hdr_p = (md_list_header_t *)map_pa(md_list_pa.raw_void, TDX_RANGE_RO); 

   

    if (aes_gcm_decrypt(&migsc_p->aes_gcm_context, (uint8_t*)md_list_hdr_p, 

(uint8_t*)&md_list, _4KB) != AES_GCM_NO_ERROR) {​
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    ... 

    if (md_list.hdr.list_buff_size > _4KB) { 

      ... 

      md_list.hdr.list_buff_size = _4KB; 

    } 

    ... 

    return_val = md_write_list(MD_CTX_VP, field_id, _4KB, true, true, page_list_i 

== page_list_info.last_entry, md_ctx, &md_list.hdr, MD_IMPORT_MUTABLE, access_qual, 

&next_field_id, tmp_ext_error_info, true);​
    ... 

    if (return_val != TDX_SUCCESS) { 

      if (migsc_p->interrupted_state.status == TDX_SUCCESS) { 

        migsc_p->interrupted_state.status = return_val; 

        migsc_p->interrupted_state.extended_err_info[0] = tmp_ext_error_info[0]; 

        migsc_p->interrupted_state.extended_err_info[1] = tmp_ext_error_info[1]; 

      } 

    }​
    field_id = next_field_id; 

    page_list_i++; 

    ...​
  } while ((uint64_t)page_list_i <= page_list_info.last_entry); 

  ... 

  if (migsc_p->interrupted_state.status != TDX_SUCCESS) { 

    local_data_ptr->vmm_regs.rcx = migsc_p->interrupted_state.extended_err_info[0]; 

    local_data_ptr->vmm_regs.rdx = migsc_p->interrupted_state.extended_err_info[1]; 

    tdcs_p->management_fields.op_state = OP_STATE_FAILED_IMPORT; 

    return_val = api_error_fatal(migsc_p->interrupted_state.status); 

    goto EXIT; 

  }​
... 

 

When tdh_import_state_vp is called by the host VMM it is passed a list of HPAs pointing to 
4KB md_list_t structures, that make up the migration bundle, as the page_of_list_pa 
parameter (See the Migration Bundles section for additional details about the md_list_t 
structure). 
 
After some initial validation the function proceeds to loop through each md_list_t structure 
by decrypting and copying the contents to a stack-based md_list buffer. The 
md_list.hdr.list_buff_size is checked to ensure it is less than or equal to _4KB. This is 
passed to md_write_list as &md_list.hdr, and with a fixed size of _4KB. If md_write_list 
does not return TDX_SUCCESS and a previous error doesn’t already exist, 
tmp_ext_error_info[0] is saved to extended_err_info[0]. Once all md_list entries have 
been imported, tdh_import_state_vp checks the integrity of the migration bundle by 
comparing the computed MAC with the one located in the MBMD. If validation passes but an 
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error is encountered during the import extended_err_info is copied to RCX and RDX and the 
TD op_state is set to OP_STATE_FAILED_IMPORT preventing future import activities. 
 

api_error_code_e md_write_list(md_context_code_e ctx_code, md_field_id_t 

expected_field, uint16_t buff_size, ..., md_context_ptrs_t md_ctx, 

md_list_header_t* list_header_ptr, ...) { 

  ... 

  remaining_buff_size = list_header_ptr->list_buff_size - sizeof(md_list_header_t); 

  sequence_buffer_ptr = (uint8_t*)(list_header_ptr) + sizeof(md_list_header_t); 

 

  for (uint32_t i = 0; i < list_header_ptr->num_sequences; i++) { 

    sequence_ptr = (md_sequence_t*)sequence_buffer_ptr; 

 

    if (sequence_ptr->sequence_header.context_code != expected_field.context_code) 

{ 

      ext_err_info[0] = sequence_ptr->sequence_header.raw; 

      return api_error_with_l2_details(TDX_METADATA_FIELD_ID_INCORRECT, 0xFFFF, 

(uint16_t)i); 

    } 

    ... 

    retval = md_write_sequence(sequence_ptr, md_ctx, (uint32_t)remaining_buff_size, 

access_type, access_qual, &elements_read, &lkp_iter, skip_non_writable, 

ext_err_info, is_import); 

     ...​
     remaining_buff_size -= (sizeof(md_field_id_t) + (elements_read * 

sizeof(uint64_t))); 

     sequence_buffer_ptr += (sizeof(md_field_id_t) + (elements_read * 

sizeof(uint64_t)));​
    ... 

 

md_write_list uses list_header_ptr->num_sequences to iterate through the sequences of 
an md_list. After performing some initial checks to make sure the sequence_header contains 
either the expected_field or the next non-optional field md_write_sequence is called. 

In cases where a check fails information about the failure is returned in ext_err_info. For 
example, sequence_header.context_code is checked against the 
expected_field.context_code and if this check fails the raw uint64_t value in 
sequence_ptr->sequence_header is set to ext_err_info[0] and an error code constructed 
with api_error_with_l2_details is returned. 

static api_error_code_e md_write_sequence(md_sequence_t* sequence_ptr, 

md_context_ptrs_t md_ctx, uint32_t buff_size, md_access_t access_type, 

md_access_qualifier_t access_qual, uint32_t* elements_read, lookup_iterator_t* 

lkp_iter, bool_t skip_non_writable, uint64_t ext_err_info[2], bool_t is_import) { 
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  ... 

  IF_RARE (buff_size < (sizeof(md_field_id_t) + sizeof(uint64_t))) { 

    ext_err_info[0] = lkp_iter->field_id.raw; 

    return api_error_with_l2_details(TDX_METADATA_LIST_OVERFLOW, 0xFFFF, 0); 

  } 

  ... 

  uint32_t num_fields = sequence_ptr->sequence_header.last_field_in_sequence + 1; 

  buff_size -= sizeof(md_field_id_t); 

  

  for (uint32_t i = 0; i < num_fields; i++) { 

    entry = &lkp_iter->lookup_table[lkp_iter->table_idx]; 

    if (sequence_ptr->sequence_header.write_mask_valid) { 

      wr_mask = sequence_ptr->element[0]; 

      sequence_idx++; 

      buff_size -= sizeof(uint64_t); 

    } else { wr_mask = (uint64_t)-1; } 

 

    if ((uint64_t)buff_size < ((uint64_t)entry->num_of_elem * sizeof(uint64_t))) { 

      ext_err_info[0] = lkp_iter->field_id.raw; 

      return api_error_with_l2_details(TDX_METADATA_LIST_OVERFLOW, 0xFFFF, 0); 

    } 

 

    if (!skip_non_writable || is_required_or_optional_entry(entry, access_type)) { 

      retval = md_write_field_with_entry(ctx_code, lkp_iter->field_id, access_type, 

access_qual, md_ctx, &sequence_ptr->element[sequence_idx], wr_mask, entry, 

is_import, sequence_ptr->sequence_header.write_mask_valid); 

 

      if (retval != TDX_SUCCESS) { 

        if (!((retval == TDX_METADATA_FIELD_NOT_WRITABLE) && skip_non_writable)) { 

          ext_err_info[0] = lkp_iter->field_id.raw; 

          return retval; 

        } 

      } 

    } 

    buff_size -= (entry->num_of_elem * sizeof(uint64_t)); 

    sequence_idx += entry->num_of_elem; 

    ... 

    if ((i < (num_fields - 1)) && (is_null_field_id(lkp_iter->field_id) || 

(lkp_iter->field_id.class_code != prev_class_code))) { 

      ext_err_info[0] = sequence_ptr->sequence_header.raw; 

      return TDX_METADATA_FIELD_ID_INCORRECT; 

    } 

    ... 

 

md_write_sequence starts by checking that buff_size is greater than or equal to 
(sizeof(md_field_id_t) + sizeof(uint64_t). It then parses the sequence_header to 
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capture the num_fields and adjusts buff_size before entering the loop to process the 
sequence elements. The loop starts by checking if the sequence_header.write_mask_valid 
flag is set and sets the wr_mask to sequence_ptr->element[0] and adjusts buff_size. Then 
there is a check to ensure buff_size is large enough to hold the number of elements in the 
entry. Finally, md_write_field_entry is called to write the elements in the sequence into the 
associated metadata field. When that returns buff_size is updated to reflect the remaining 
size by subtracting entry->num_of_elem * sizeof(uint64_t). 

buff_size passed to this function is indirectly controlled by the host VMM because 
remaining_buff_size is initialized from list_header_ptr->list_buff_size in 
md_write_list. The loop in md_write_sequence works correctly on the first iteration but 
subsequent iterations become problematic if sequence_header.write_mask_valid flag is 
set and buff_size is less than sizeof(uint64_t). In this situation, buff_size subtracts 
sizeof(uint64_t) and causes an integer underflow. As buff_size is a uint32_t the value 
after the subtraction would be close to 4GB but other restrictions reduce the distance of the 
OOB access: 

1.​ sequence_header must be a valid entry to be imported 
2.​ num_of_elem is not attacker controlled and the largest had a value of 6 
3.​ num_fields is computed from last_field_in_sequence + 1 which is limited to a 

value between 1 and 512 
4.​ class_code and context_code between entries must match to be in the same 

sequence 

After some examination it was found that the largest OOB access for tdh_import_state_vp 
is achieved with X2APIC_IDS, XBUFF, L2_MSR_BITMAPS, L2_MSR_BITMAPS_2, and 
L2_MSR_BITMAPS_3 fields because their num_of_fields value is greater than or equal to 512. 

// XBUFF in tdvps_fields_lookup.c 

.field_id = { .raw = 0x1220000300000000 },  

.num_of_fields = 1536, .num_of_elem = 1, .offset = 0x3000, .attributes = { .raw = 

0x0 }, 

.prod_rd_mask = (0ULL & 0xFFFFFFFFFFFFFFFFULL), .prod_wr_mask = (0ULL & 

0xFFFFFFFFFFFFFFFFULL), 

.dbg_rd_mask = (-1ULL & 0xFFFFFFFFFFFFFFFFULL), .dbg_wr_mask = (-1ULL & 

0xFFFFFFFFFFFFFFFFULL), 

.guest_rd_mask = (0ULL & 0xFFFFFFFFFFFFFFFFULL), .guest_wr_mask = (0ULL & 

0xFFFFFFFFFFFFFFFFULL), 

.export_mask = (-1ULL & 0xFFFFFFFFFFFFFFFFULL), .import_mask = (-1ULL & 

0xFFFFFFFFFFFFFFFFULL), 

.special_rd_handling = false, .special_wr_handling = true, 

.mig_export = MIG_ME, .mig_import = MIG_ME 
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If tdh_import_state_td was used to perform the OOB read, the X2APIC_IDS field would 
provide the largest access. 

// X2APIC_IDS in tdr_tdcs_fields_lookup.c 

.field_id = { .raw = 0x9C10000200000000 },  

.num_of_fields = 576, .num_of_elem = 1, .offset = 0x1100, .attributes = { .raw = 

0x0 }, 

.prod_rd_mask = (-1ULL & 0xFFFFFFFFULL), .prod_wr_mask = (0ULL & 0xFFFFFFFFULL), 

.dbg_rd_mask = (-1ULL & 0xFFFFFFFFULL), .dbg_wr_mask = (0ULL & 0xFFFFFFFFULL), 

.guest_rd_mask = (0ULL & 0xFFFFFFFFULL), .guest_wr_mask = (0ULL & 0xFFFFFFFFULL), 

.migtd_rd_mask = (-1ULL & 0xFFFFFFFFULL), .migtd_wr_mask = (0ULL & 0xFFFFFFFFULL), 

.export_mask = (-1ULL & 0xFFFFFFFFULL), .import_mask = (-1ULL & 0xFFFFFFFFULL), 

.special_rd_handling = false, .special_wr_handling = false, 

.mig_export = MIG_MB, .mig_import = MIG_MBO 

 

There are two options for retrieving the data read from the OOB access. Regardless of the 
approach the greatest range is achieved by placing a sequence_header and wr_mask at the 
end of a sequence. Given the restrictions the range of the OOB access is limited to 
(sizeof(uint64_t) * 2) * num_of_fields or 8KB. This is achieved by having: 

1.​ write_mask_valid set in the sequence_header each field effectively skips one 
element from the wr_mask assignment 

2.​ num_of_elem = 1 so each field consumes another element 
3.​ last_field_in_sequence set to 511 (i.e., num_fields is equal to 512) 

Figure 12 provides a detailed layout of how data is organized on the stack when the 
vulnerability is triggered. 
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Figure 12: Malicious Metadata List Used To Read OOB data 
Option 1: Use ext_err_info[0] to return 64bit OOB value in RCX to the host VMM. By 
aligning the end of the malicious sequence to right before the data to leak, md_write_list 
interprets the out-of-bounds sequence_header as the next one (See Figure 12). When the 
context_code check fails the value sequence_ptr->sequence_header.raw is assigned and 
the function returns. There is a possibility that the context_code would match and not fail but 
in this case the attacker can alternate between the tdh_import_state_vp and 
tdh_import_state_td API as their context codes are different (i.e., MD_CTX_TD is 1 and 
MD_CTX_VP is 2). The value of i returned in the error code and the error code itself can be 
used to determine if the API failed at the correct point to leak data.  

if (sequence_ptr->sequence_header.context_code != expected_field.context_code) { 

  ext_err_info[0] = sequence_ptr->sequence_header.raw; 

  return api_error_with_l2_details(TDX_METADATA_FIELD_ID_INCORRECT, 0xFFFF, 

(uint16_t)i); 

 

Option 2: Because the TD being imported is under complete control of the attacker, use it to 
extract the OOB data from the imported state. All data from the malicious sequence to the 
out-of-bounds sequence_header will be copied into an attacker-controlled portion of XBUFF 
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(See Figure 12). num_sequences is controlled to ensure md_write_list returns after 
completing the import of OOB data into XBUFF. After the import is completed tdh_vp_enter 
can be used to extract the data with a custom bootloader. 

A variation of this would be to use X2APIC_IDS, which is restricted to 32bit values (i.e. would 
only save 4 of every 8 bytes), to load the OOB data. This field could be directly read by the 
host VMM using the tdh_mng_rd API. 

ASLR is defeated because the leaked stack data includes: return address to 
tdx_vmm_dispatcher, address of tdx_module_local_t local_data when it is pushed to the 
stack by the tdh_import_state_vp prolog, and the contents of the shadow stack. 
Stack-smashing protection defeated because global stack canary is leaked. 

LP data stacks are co-located, 12KB in size, with a 4KB shadow stack between them. The 
shadow stack is readable with normal memory accesses, but protected from normal write 
operations with Control-Flow Enforcement Technology (CET). There is no guard page to 
isolate an adjacent LP’s stack. Even with a guard page present Option 1 wouldn’t have been 
stopped because a write_mask_valid could be set with a wr_mask of 0 effectively skipping 
the accesses. 
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Figure 13: Exploited Import Operation Leaking Stack Data 

Note: An animated version of the figure is provided here 

The PoC, shown in Figure 13, performs Option 1 using the TDXplore Toolkit. The host VMM 
and migTD are both compromised and cooperating to build a custom metadata bundle and 
correctly encrypt it for import. The leaked information is returned in extended error 
information 1, which in this case is a canonical address from the TDX module. 

Remediation: This vulnerability was fixed by moving the block of code that checks the 
valid_write_mask and wr_mask to before the loop. 

Vulnerability 3: Speculative Out-of-Bounds Read in Guest RDMSR and 
WRMSR Handlers 
Intel Technical Advisory for CVE-2025-27572: In certain Intel TDX modules, an 
out-of-bounds read condition may occur under specific microarchitectural conditions 
allowing speculative execution and potentially result in information exposure through 
side-channel analysis. 
 

https://services.google.com/fh/files/misc/intel_tdx_1.5-figure_13.gif
https://services.google.com/fh/files/misc/intel_tdx_1.5-figure_13.gif
http://tdxplore
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Attack Scenario: A malicious guest TD can execute WRMSR and RDMSR to train branch 
predictors and cause OOB memory accesses in the speculative execution domain, which are 
later processed by encoding gadgets inside the Intel TDX Module. A guest TD can use the 
prime+probe or flush+flush attack technique (the latter colluding with the host VMM) to 
extract the secret information. 
 
The exit handlers for WRMSR and RDMSR inside the Intel TDX Module relies on the 
rd_wr_msr_generic_checks subroutine to sanity check the user input, and this subroutine 
has code gadgets that are vulnerable to speculative OOB reads.  
The execution of certain privileged instructions inside a TD is emulated by the Intel TDX 
Module. In particular, when a TD executes wrmsr/rdmsr instructions, it gets interrupted by the 
Intel TDX Module, which emulates the execution of these instructions via td_wrmsr_exit and 
td_rdmsr_exit. The subroutine rd_wr_msr_generic_checks is responsible for checking if 
the requested 32-bit MSR address is within a valid range that is allowed by an internal bitmap 
structure: 

// Access to any MSR not in the bitmap ranges results in a #VE 

if (!is_msr_covered_by_bitmap(msr_addr)) { 

  return 

construct_msr_status_with_ve_category(TD_MSR_ACCESS_MSR_NON_ARCH_EXCEPTION, 

VE_INFO_NON_CONFIG_PARAVIRT); 

} 

 

if ((vm_id > 0) && 

get_msr_bitmap_bit((uint8_t*)tdvps_p->l2_vm_ctrl[vm_id-1].l2_shadow_msr_bitmaps, 

msr_addr, wr)) { 

  return TD_MSR_ACCESS_L2_TO_L1_EXIT; 

} 

 

In the above code snippet, speculative execution of the conditional check for 
is_msr_covered_by_bitmap can result in invalid MSR addresses to be processed by the 
following subroutines. Later get_msr_bitmap_bit speculatively extracts a single bit of such 
OOB memory based on the provided MSR address, which is then used in another conditional 
code that depends on a single bit of leaked memory. Consequently, a malicious TD can steal a 
single bit of secret memory of the Intel TDX Module by probing the cache state of the second 
conditional code. By repeating this attack for different MSR addresses, the attacker can 
potentially leak the Intel TDX Module memory content one bit at a time.  

Remediation: This vulnerability was fixed by adding an lfence after the OOB check in 
is_msr_covered_by_bitmap. 

Vulnerability 4: Speculative Out-of-Bounds Read in Host HKID Free and VP 
Flush API 

https://eprint.iacr.org/2005/271.pdf
https://gruss.cc/files/flushflush.pdf
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Intel Technical Advisory for CVE-2025-32467: In some Intel TDX modules, improper 
initialization may lead to speculative execution behaviors, which under specific 
microarchitectural conditions, could result in limited information disclosure. 
 
Attack Scenario: A malicious host VMM executes tdh_mng_key_freeid and 
tdh_mng_vpflushdone with arbitrary addresses injected into the unutilized variable on the 
stack. These values result in OOB access and partial information leakage, which can be 
recovered by flush+flush attack technique. 
 
In various Intel TDX Module APIs, tdr_ptr is not initialized by default. In some 
tdh_mng_key_freeid and tdh_mng_vpflushdone, this uninitialized pointer can be used to 
access OOB data during speculative execution.  
These APIs can be executed by a malicious VMM at different stages of managing a TD. The 
API tdh_mng_key_freeid is responsible for marking the guest TD's HKIDs in the Key 
Ownership Table (KOT) as HKID_FREE. Similarly, tdh_mng_vpflushdone is responsible for 
marking the TD's HKID in the KOT as HKID_FLUSHED. 
 
At the beginning of these subroutines, the TDR has to be mapped using 
check_lock_and_map_explicit_tdr subroutine. A malicious VMM can provide invalid inputs 
to this subroutine so it fails. Upon failure, tdr_ptr won’t be initialized, as a result picking up 
attacker chosen values from on the stack. Speculative execution of the check for the return 
code: if (return_val != TDX_SUCCESS) allows these subroutines to have forward progress 
in the speculative execution domain. 
 

return_val = check_lock_and_map_explicit_tdr(tdr_pa, OPERAND_ID_RCX, TDX_RANGE_RW, 

TDX_LOCK_EXCLUSIVE, PT_TDR, &tdr_pamt_block, &tdr_pamt_entry_ptr, &tdr_locked_flag, 

&tdr_ptr); 

if (return_val != TDX_SUCCESS) { 

  TDX_ERROR("Failed to check/lock/map a TDR - error = %lld\n", return_val); 

  goto EXIT; 

} 

 

Later, as we see in the following code snippet, an attacker who controls the tdr_ptr can craft 
arbitrary HKID values that results in accessing OOB data relative to the KOT. 

curr_hkid = tdr_ptr->key_management_fields.hkid; 

 

if (global_data_ptr->kot.entries[curr_hkid].wbinvd_bitmap != 0) { 

  TDX_ERROR("CACHEWB is not complete for this HKID (=%x)\n", curr_hkid); 

  return_val = TDX_WBCACHE_NOT_COMPLETE; 

  goto EXIT; 

} 



 

​ Page 34 of 84 

 

The OOB data is later used in various conditional code blocks to leak partial information about 
the content of memory. This leaked data can be accessed by an attacker who is able to probe 
the cache state of the TDX module. For example, kot.entries[curr_hkid].state is 
checked which leak if a single byte of the stolen data is zero or not. Such partial information 
leak is particularly useful for attacking cryptographic keys that are mapped into the linear 
address space of the TDX module, which include TD private memory, which sometimes even 
partial information leaks can result in complete compromise of a cryptography.  

Both tdh_mng_key_freeid and tdh_mng_vpflushdone expose this vulnerable code pattern 
when they try to update the KOT. 

Remediation: This vulnerability was fixed by ensuring all local pointers are initialized. 

Vulnerability 5: Speculative Out-of-Bounds Read in Host API to Prebind 
and Bind a service TD 
Intel Technical Advisory for CVE-2025-27940: In certain Intel TDX modules, an 
out-of-bounds read condition may occur under specific microarchitectural conditions may 
allow speculative execution and potentially result in information exposure through 
side-channel analysis. 
 
Attack Scenario: A malicious host VMM executes tdh_servtd_prebind or tdh_servtd_bind 
with OOB servtd_slot after training the affected branch predictor, which results in OOB 
access followed by code gadgets that leak information about this memory access. The host 
VMM can use a flush+flush attack technique to recover the leaked secret.  
 
The user input servtd_slot in tdh_servtd_bind and tdh_servtd_prebind APIs can bypass 
range checks during speculative execution and results in accessing OOB data.  
These APIs are responsible for binding a new service TD (currently only migration TD) to a 
target TD. Although currently only a single MAX_SERVTDS is supported, Intel TDX Module data 
structures support more than one service TD potential for future use cases. As a result, these 
APIs check if the requested servtd_slot is not more than the currently supported service TD 
(MAX_SERVTDS = 1). 
 

if (servtd_slot >= MAX_SERVTDS) { 

  return_val = api_error_with_operand_id(TDX_OPERAND_INVALID, OPERAND_ID_R8); 

  goto EXIT; 

} 

 

However, the speculative execution of the above check allows a malicious VMM to access 
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OOB data based on the servtd_bindings_table. 

tdcs_p->service_td_fields.servtd_bindings_table[servtd_slot] 

 

This OOB memory is later processed by several branches and subroutines that may leak the 
value via cache. A possible scenario is this tdx_memcmp that would compare the OOB value 
against a known hash, which the attacker can construct. As a result, an attacker can learn 
what the OOB value is depending on the tdx_memcmp timing / side channel. 

if 

(!tdx_memcmp(tdcs_p->service_td_fields.servtd_bindings_table[servtd_slot].info_hash

.qwords,servtd_info_hash.qwords, sizeof(servtd_info_hash))) 

 

Both tdh_servtd_prebind and tdh_servtd_bind are equally affected by this vulnerable 
code pattern.  

Remediation: This vulnerability was fixed by adding a serialization instruction after the 
servtd_slot bounds checking.  

Bugs & Code Improvements 
The table below lists additional bug findings, Defense in Depth (DiD) suggestions, and code 
improvements that have been identified throughout the review process. As Intel does not 
consider these items to be security vulnerabilities, they may elect to address them in one or 
more future sustaining releases. 
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# Type Description 

1 Out-of-bounds Read Metadata list parsing leads to an integer underflow 

2 Uninitialized Data Usage Required metadata entries are skippable 

3 Improper Initialization Illegal, stale, and unsorted TD event filter initialization 

4 Out-of-bounds Read Out-of-bounds array indexing when locating the next entry in 
the CPUID lookup array 

5 Missing Inline Assembly 
Constraints 

Multiple inline assembly blocks incorrectly exclude RCX 
from the clobber list 

6 Information Leakage Binding handles can leak TDR HPAs for any TD 

7 Denial of Service Invalid VMCS revision identifier leads to SEAM shutdown 

8 Resource Leak HKID reservation exhaustion 

9 Improper Address Check Improper HPA and GPA checks on metadata import 

10 Memory Corruption Improper validation of host physical addresses in debug API 

11 Other Spectre Gadgets Multiple spectre gadgets allow for out-of-bounds read but 
can not be extracted 

Bug 1: Metadata List Parsing Leads to an Integer Underflow 
Prerequisites: host VMM creates a template TD to import migration bundles into. The MSK is 
known and the host VMM can craft a metadata bundle and correctly encrypt it. 
 
This bug is similar to Vulnerability 2, but with a different root cause, as it can trigger an integer 
underflow condition by calling the tdh_import_state_immutable, tdh_import_state_td, 
and tdh_import_state_vp API with attacker crafted metadata bundles. OOB data is returned 
via RCX or written into TD non-memory state. tdh_import_state_td is used here to describe 
how the bug can be reached and its root cause. 
 

api_error_type tdh_import_state_td(uint64_t target_tdr_pa, uint64_t 

hpa_and_size_pa, uint64_t page_or_list_pa, uint64_t migs_i_and_cmd_pa) { 

  ... 

  md_list_header_t *md_list_hdr_p = NULL; 

  ... 

  md_list_t md_list; 

  ... 

  page_list_pa.raw = 0; 



 

​ Page 37 of 84 

  page_list_pa.page_4k_num = page_list_info.hpa; 

  page_list_p = (pa_t *)map_pa(page_list_pa.raw_void, TDX_RANGE_RO); 

  ... 

  do { 

    ... 

    md_list_pa.raw = page_list_p[page_list_i].raw; 

    md_list_hdr_p = (md_list_header_t *)map_pa(md_list_pa.raw_void, TDX_RANGE_RO); 

   

    if (aes_gcm_decrypt(&migsc_p->aes_gcm_context, (uint8_t*)md_list_hdr_p, 

(uint8_t*)&md_list, _4KB) != AES_GCM_NO_ERROR) { 

    ... 

    if (md_list.hdr.list_buff_size > _4KB) { 

      ... 

      md_list.hdr.list_buff_size = _4KB; 

    } 

    ... 

   return_val = md_write_list(MD_CTX_TD, field_id, _4KB, true, true, page_list_i == 

page_list_info.last_entry, md_ctx, &md_list.hdr, MD_IMPORT_MUTABLE, access_qual, 

&next_field_id, tmp_ext_error_info, true); 

    ... 

    if (return_val != TDX_SUCCESS) { 

      if (migsc_p->interrupted_state.status == TDX_SUCCESS) { 

        migsc_p->interrupted_state.status = return_val; 

        migsc_p->interrupted_state.extended_err_info[0] = tmp_ext_error_info[0]; 

        migsc_p->interrupted_state.extended_err_info[1] = tmp_ext_error_info[1]; 

      } 

    } 

    field_id = next_field_id; 

    page_list_i++; 

    ... 

  } while ((uint64_t)page_list_i <= page_list_info.last_entry); 

  ... 

  if (migsc_p->interrupted_state.status != TDX_SUCCESS) { 

    local_data_ptr->vmm_regs.rcx = migsc_p->interrupted_state.extended_err_info[0]; 

    local_data_ptr->vmm_regs.rdx = migsc_p->interrupted_state.extended_err_info[1]; 

    tdcs_p->management_fields.op_state = OP_STATE_FAILED_IMPORT; 

    return_val = api_error_fatal(migsc_p->interrupted_state.status); 

    goto EXIT; 

  } 

... 

 

Each md_list_t in the metadata bundle is decrypted and copied to a stack based buffer 
called md_list. The md_list_hdr.list_buff_size is checked to be less than _4KB and then 
md_write_list is called. 
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api_error_code_e md_write_list(md_context_code_e ctx_code, md_field_id_t 

expected_field, uint16_t buff_size, ..., md_context_ptrs_t md_ctx, 

md_list_header_t* list_header_ptr, ...) { 

  ... 

  uint16_t remaining_buff_size; 

  ... 

  remaining_buff_size = list_header_ptr->list_buff_size - sizeof(md_list_header_t); 

  sequence_buffer_ptr = (uint8_t*)(list_header_ptr) + sizeof(md_list_header_t); 

 

  for (uint32_t i = 0; i < list_header_ptr->num_sequences; i++) { 

    sequence_ptr = (md_sequence_t*)sequence_buffer_ptr; 

  ... 

 

md_write_list proceeds to initialize remaining_buff_size, a uint16_t, to 
list_header_ptr->list_buff_size - sizeof(md_list_header_t). As 
list_header_ptr->list_buff_size was never checked to be greater than or equal to 
sizeof(md_list_header_t) an integer underflow could occur. md_list_header_t has a size 
of 8 bytes so a value less than this, such as 0, causes remaining_buff_size to be initialized 
to a value close to 64KB, which is greater than the 4KB stack allocated md_list pointed to by 
list_header_ptr. 

Each sequence is parsed by md_write_sequence and can contain a maximum of 512 fields 
making the maximum size (512 * sizeof(uint64_t)) + sizeof(sequence_header) or 
4104 bytes. 

In addition to returning OOB data via RCX to the host VMM or writing it into the TD 
non-memory state, 8 bytes of stale stack data could be accessible. This is because during the 
prolog of tdh_import_state_immutable, tdh_import_state_td, and tdh_import_state_vp 
an alignment operation is performed before allocating space for local variables (i.e. AND RSP, 
-0x10, as shown in Figure 14). 

 

Figure 14: Stale or Uninitialized Stack Locations 
 

tdx_vmm_dispatcher performs the same alignment operation, allocates 0x20 bytes of 
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storage for local variables and then calls other API, such as tdh_import_state_immutable. 
The stack upon entry to the callee is only 8 byte aligned because of the return address 
pushed to the stack by the call instruction. The callee prolog then pushes six registers (i.e. 
RBP, R15, R14, R13, R12, and RBX) to the stack leaving RSP only 8 byte aligned. The align 
operation is then performed effectively allocating 8 bytes of uninitialized data on the stack. 

Before leaking out-of-bounds data with this bug the LP could have interacted with another TD 
populating the 8 byte uninitialized region with what would become accessible stale data. 

Implications of this stale stack data were not investigated further to understand if TD specific 
confidential information would be present. Even without this the bug breaks ASLR, leaks the 
global stack canary, and the contents of a shadow stack in the Intel TDX Module. 

This bug was not classified as a security vulnerability by Intel’s Product Security & Incident 
Response Team (PSIRT) and not assigned a CVE identifier. The leakable data is confined to the 
current LP data stack and adjacent LP shadow stack. Additionally, Intel considers ASLR and 
stack canaries, especially when CET is enabled, DiD mechanisms. 

Remediation: This bug was fixed in the updated Intel TDX Module. 

Bug 2: Required Metadata Entries are Skippable 
Prerequisites: A host VMM creates a template TD to import migration bundles into. The host 
VMM is given the MSK, crafts a metadata bundle, and encrypts it for import. 
 
tdh_import_state_immutable, tdh_import_state_td, and tdh_import_state_vp call 
md_write_list with skip_non_writable set to true. For each sequence in the metadata list 
md_write_sequence is called. A sequence can specify, via the write_mask_valid flag in the 
sequence_header, whether element[0] holds a wr_mask. 
 

static api_error_code_e md_write_sequence(md_sequence_t* sequence_ptr, ..., bool_t 

skip_non_writable, 

  ... 

    if (sequence_ptr->sequence_header.write_mask_valid) { 

      wr_mask = sequence_ptr->element[0]; 

      ... 

    } 

    ... 

    if (!skip_non_writable || is_required_or_optional_entry(entry, access_type)) { 

      retval = md_write_field_with_entry(ctx_code, lkp_iter->field_id, access_type, 

access_qual, md_ctx, &sequence_ptr->element[sequence_idx], wr_mask, entry, 

is_import, sequence_ptr->sequence_header.write_mask_valid); 

      if (retval != TDX_SUCCESS) { 

        if (!((retval == TDX_METADATA_FIELD_NOT_WRITABLE) && skip_non_writable)) { 

          ext_err_info[0] = lkp_iter->field_id.raw; 
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          return retval; 

        } 

... 

 

If write_mask_valid is true and element[0] is 0 then md_write_field_with_entry returns 
early with TDX_METADATA_FIELD_NOT_WRITABLE. When skip_non_writable is true the field 
is skipped and no error is returned allowing any required entry to be skipped. 

api_error_code_e md_vp_write_element(md_field_id_t field_id, const md_lookup_t* 

entry, md_access_t access_type, 

  ... 

  if (combined_wr_mask == 0) { 

        return TDX_METADATA_FIELD_NOT_WRITABLE; 

  } 

  ... 

 

Processing required entries is extremely important because some have special handling, 
perform verification, do initialization, and in some cases are assumed valid when subsequent 
entries are imported. When these entries are skipped, they are left in their tdh_mng_add_cx 
initialized state. Because verification and initialization are performed as entries are imported 
there are multiple instances where entries are not checked when the overall import 
completes. For example, the MD_TDCS_EPTP is initialized in md_td_write_field because it has 
special_wr_handling set to true. 

// EPTP // 19 

.field_id = { .raw = 0x1110000300000004 },  

.num_of_fields = 1, .num_of_elem = 1, .offset = 0x0098, .attributes = { .raw = 0x0 

}, 

.prod_rd_mask = (-1ULL & 0xFFFFFFFFFFFFFFFFULL), .prod_wr_mask = (0ULL & 

0xFFFFFFFFFFFFFFFFULL), 

.dbg_rd_mask = (-1ULL & 0xFFFFFFFFFFFFFFFFULL), .dbg_wr_mask = (0ULL & 

0xFFFFFFFFFFFFFFFFULL), 

.guest_rd_mask = (0ULL & 0xFFFFFFFFFFFFFFFFULL), .guest_wr_mask = (0ULL & 

0xFFFFFFFFFFFFFFFFULL), 

.migtd_rd_mask = (18442240474082185215ULL & 0xFFFFFFFFFFFFFFFFULL), .migtd_wr_mask 

= (0ULL & 0xFFFFFFFFFFFFFFFFULL), 

.export_mask = (18442240474082185215ULL & 0xFFFFFFFFFFFFFFFFULL), .import_mask = 

(18442240474082185215ULL & 0xFFFFFFFFFFFFFFFFULL), 

.special_rd_handling = false, .special_wr_handling = true, 

.mig_export = MIG_MB, .mig_import = MIG_MB 
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When imported this calls verify_and_set_td_eptp_controls to validate and set the 
tdcs_ptr->executions_ctl_fields.eptp field. 

api_error_code_e md_td_write_field(md_field_id_t field_id, const md_lookup_t* 

entry,md_access_t access_type, 

  ... 

  if (combined_wr_mask == 0) { 

   return TDX_METADATA_FIELD_NOT_WRITABLE; 

  } 

  ... 

    case MD_TDCS_EPTP_FIELD_ID: 

      ... 

      eptp.raw = value[0] & combined_wr_mask; 

      if (!verify_and_set_td_eptp_controls(md_ctx.tdr_ptr, md_ctx.tdcs_ptr, 

md_ctx.tdcs_ptr->executions_ctl_fields.gpaw, eptp)) { 

        return TDX_METADATA_FIELD_VALUE_NOT_VALID; 

      } 

      write_done = true; 

      break; 

      ... 

 

As a side note, this function is also responsible for validating that 
tdcs_ptr->executions_ctl_fields.gpaw is consistent with the state of ept_pwl. 
tdcs_ptr->executions_ctl_fields.gpaw and tdcs_ptr->executions_ctl_fields.eptp 
could be configured inconsistently by first setting the gpaw to true and the ept_pwl to 
LVL_PML5 and then restarting the immutable import and setting gpaw to false and skipping 
the MD_TDCS_EPTP field. 

bool_t verify_and_set_td_eptp_controls(tdr_t* tdr_ptr, tdcs_t* tdcs_ptr, bool_t 

gpaw, ia32e_eptp_t eptp) 

  ... 

  if (gpaw && (eptp.fields.ept_pwl < LVL_PML5)) { 

    return false; 

  } 

 

  tdcs_ptr->executions_ctl_fields.gpaw = gpaw; 

  ... 

  pa_t sept_root_pa; 

  sept_root_pa.raw = tdr_ptr->management_fields.tdcx_pa[SEPT_ROOT_PAGE_INDEX]; 

 

  eptp.fields.base_pa = sept_root_pa.page_4k_num; 

 

  tdcs_ptr->executions_ctl_fields.eptp.raw = eptp.raw; 
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  return true 

} 

 

When skipped, tdcs_ptr->execution_ctl_fields.eptp is left with its initialization value of 
SEPTE_L2_INIT_VALUE, which is 0, from tdh_mng_add_cx. Once 
tdh_import_state_immutable completes, the op_state is switched to 
OP_STATE_MEMORY_IMPORT and API to perform SEPT walks are allowed. 

A tdcs_ptr->execution_ctl_fields.eptp of 0 is interpreted as: 

1.​ ept_ps_mt - paging-structure memory type of MT_UC 
2.​ ept_pwl - page-walk length of LVL_PT 

a.​ VMEntry requires the value to be LVL_PML5 or LVL_PML4 
3.​ enable_ad_bits - set accessed and dirty flags is false 
4.​ enable_sss_control - supervisor shadow stack control is false 
5.​ base_pa - physical address of the root paging structure as 0 

ia32e_sept_t* secure_ept_walk(ia32e_eptp_t septp, pa_t gpa, uint16_t private_hkid, 

  ... 

  ia32e_sept_t *pte; 

  ... 

  ept_level_t requested_level = *level; 

  ept_level_t current_lvl; 

  ... 

  pt_pa.raw = septp.raw & IA32E_PAGING_STRUCT_ADDR_MASK; 

  current_lvl = septp.fields.ept_pwl; 

  for (;current_lvl >= LVL_PT; current_lvl--) { 

    pt_pa = set_hkid_to_pa(pt_pa, private_hkid); 

    pt = map_pa((void*)(pt_pa.full_pa), TDX_RANGE_RW); 

    pte = &(pt->sept[get_ept_entry_idx(gpa, current_lvl)]); 

 

    cached_sept_entry->raw = pte->raw; 

    *level = current_lvl; 

 

    if (current_lvl == requested_level) { 

      break; 

    } 

    ... 

  } 

  return pte; 

} 

 

secure_ept_walk maps HPA 0 with the TD HKID and proceeds to try and walk the SEPT table. 
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current_lvl is initialized from septp.fields.ept_pwl to LVL_PT when pte is dereferenced 
a Machine Check Exception (#MCE) is triggered because private memory wasn’t properly 
initialized, leading to a SEAM shutdown. 

The table below provides additional fields that are non-optional (i.e. have a mig_import value 
of MIG_MB or MIG_ME), are skippable because of this bug, and would leave a TDCS or TDVPS 
fields in invalid states. While other fields beyond this table can be skipped, their pre-initialized 
value is either valid or the field has no effect (e.g., a mig_import value of MIG_CB). Beyond the 
MD_TDCS_EPTP field discussed above only the MD_TDVPS_XCR0 was found to have impact 
beyond that of the TD being imported. 

Field Identifier Description 

MD_TDVPS_XCR0 guest_state.xcr0 when skipped has a value of 0 but expects 
x87_fpu_mmx (i.e., bit 0) to be set. This is checked by 
check_guest_xcr0_value called when the field is written.  

tdvps_ptr->guest_state.xcr0 is loaded by ia32_xsetbv in 
restore_guest_td_state_before_td_entry. This is called 
from tdh_vp_enter and would raise a #GP(0) exception leading 
to a SEAM shutdown. 

MD_TDCS_NUM_VCPUS management_fields.num_vcpus when skipped has a value of 
0. When written during an import by md_td_write_field this 
value is verified to be greater than 0 and less than 
MAX_VCPUS_PER_TD. 

An imported TD could be switched to the 
OP_STATE_POST_IMPORT state without any imported VPs. 
tdh_import_track only checks that 
tdcs_p->migration_fields.num_migrated_vcpus != 

tdcs_p->management_fields.num_vcpus. 

MD_TDCS_TSC_FREQUENCY executions_ctl_fields.tsc_frequency when skipped has a 
value of 0. When written during an import by 
md_td_write_field this value is verified to be between 
VIRT_TSC_FREQUENCY_MIN (4) and VIRT_TSC_FREQUENCY_MAX 
(400). This value is later used by calculate_tsc_virt_params 
when the MD_TDCS_VIRTUAL_TSC field is imported. 
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MD_TDCS_VIRTUAL_TSC This field when skipped leaves tsc_multiplier and 
tsc_offset with values of 0. This is later used by 
calculate_virt_tsc when MD_TDVPS_TSC_DEADLINE fields are 
imported. 

MD_TDCS_HP_LOCK_TIMEOUT executions_ctl_fields.hp_lock_timeout when skipped has 
a value of 0. When written during an import by 
md_td_write_field this value is verified to be greater than 
between  MIN_HP_LOCK_TIMEOUT_USEC (10000) and 
MAX_HP_LOCK_TIMEOUT_USEC (100000000). 

MD_TDCS_EXPORT_COUNT migration_fields.export_count has a .import_mask of 
(-1ULL & 0xFFFFFFFFULL) meaning any 32-bit value is 
allowed. MAX_EXPORT_COUNT as checked in 
tdh_export_state_immutable expects the value to be less 
than MAX_EXPORT_COUNT (0x7FFFFFFF) but import does not 
provide a similar check or constraint. 

 

The MD_TDCS_EPTP and MD_TDVPS_XCR0 were found to induce SEAM shutdowns and variants 
from the table above were not exhaustively analyzed. 

Exploitation requires a compromised host VMM and migTD (both non-Intel managed 
components) working in cooperation to construct, encrypt, and transfer metadata bundles to 
the Intel TDX Module. 

As the threat model for Intel TDX does not include Availability, this bug was not classified as a 
security vulnerability by Intel PSIRT. 

Remediation: Intel has confirmed the bug, and indicated it would be fixed in a future release. 

Bug 3: Illegal, Stale, and Unsorted TD Event Filter Initialization 
Prerequisites: The Intel TDX Module has been configured and initialized on the platform. 
 
The tdh_mng_init API is used during the Build Sequence when creating a TD. It initializes the 
global-scope of the TD and TD-scope state shared by its VPs. It’s callable with a TD op_state 
of OP_STATE_UNINITIALIZED and only changes the state to OP_STATE_INITIALIZED on 
success. In the case where an error is called the TD is left in OP_STATE_UNINITIALIZED. 
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api_error_type tdh_mng_init(uint64_t target_tdr_pa, uint64_t target_td_params_pa, 

uint64_t event_filters_info_params) {​
  ... 

  bool_t event_filtering = target_tdr_pa & BIT(0); 

  ... 

  event_filter_info_t event_filters_info = { .raw = event_filters_info_params }; 

 

  if (event_filtering && tdcs_ptr->executions_ctl_fields.attributes.perfmon) { 

    ... 

    tdcs_ptr->executions_ctl2_fields.event_filters_num = 

event_filters_info.event_filters_num; 

 

    event_filters_p = (event_filter_t*)map_pa((void*)(event_filters_info.raw & 

~BITS(11, 0)), TDX_RANGE_RO); 

 

    for (uint16_t i = 0; i < event_filters_info.event_filters_num; i++) { 

      event_filter_t event_filter = event_filters_p[i]; 

      if (event_filter.reserved_0 || event_filter.umask > 0xFF || 

event_filter.negative || event_filter.umask_mask != 0xFFFF) { 

        TDX_ERROR("Illegal event filter [%d] = 0x%lx\n", i, event_filter.raw); 

        return_val = api_error_with_operand_id(TDX_EVENT_FILTER_INVALID, i); 

        goto EXIT; 

      } 

       

      event_filter_internal.event_select = (uint8_t)event_filter.event_select; 

      event_filter_internal.umask = (uint8_t)event_filter.umask; 

 

      if ((i != 0) && (tdcs_ptr->event_filters_internal[i - 1].raw >= 

event_filter_internal.raw)) { 

        TDX_ERROR("Event filters array must be sorted\n"); 

        return_val = api_error_with_operand_id(TDX_EVENT_FILTER_ORDER_INVALID, i); 

        goto EXIT; 

      } 

 

      tdcs_ptr->event_filters_internal[i] = event_filter_internal; 

     } 

     ... 

 

This API accepts a parameter called event_filters_info_params which is used to initialize 
the tdcs_ptr->event_filters_internal array when event_filtering is true and the 
perfmon flag is set.  

The initialization loop checks to ensure that each event_filter is supported and the array is 
sorted. Neither condition is correctly enforced and 
tdcs_ptr->executions_ctl2_fields.event_filters_num can be incorrectly initialized. 
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The event_filters_internal array and event_filters_num are later used by 
is_event_allowed and performs a binary search of the array. 

Multiple calls to tdh_mng_init can be used to allow illegal, stale, and unsorted data into the 
event_filters_internal array. Because event_filters_num is assigned before processing 
entries, an illegal event filter would cause a check in the loop to fail resulting in a goto EXIT; 
statement being executed. event_filters_num is not reset and already processed event 
filters are left with their initialized state. 

To do this, n calls could be crafted to fail after partially initializing fewer event filter entries 
each time. The next call could set event_filters_num to a value greater than what was 
initialized by any prior call, but less than MAX_EVENT_FILTERS, and fail. The last call could 
completely skip event filter initialization by setting event_filtering to false. In this 
situation: 

1.​ Stale event filters exist because entries from prior calls are not removed 
2.​ Unsorted event filters exist because event_filters_num was set to include the stale 

entries which didn’t didn’t pass the sort check 
3.​ Illegal event filters exist because event_filters_num was set to include uninitialized 

entries and would hold an initialization value of SEPTE_L2_INIT_VALUE, which is 0, set 
by tdh_mng_add_cx call 

Even though the event_filters_internal array is used later, these conditions did not lead 
to an exploitable condition for a few reasons: 

1.​ event_filters_num was constrained to be less than MAX_EVENT_FILTERS 
2.​ wrmsr_ia32_perfevtsel which calls is_event_allowed checks to make sure 

event_filters_num is not equal to zero 
3.​ is_event_allowed can’t go OOB and only uses the entries for a comparison 

Remediation: Intel has confirmed the bug, categorized it as a functional issue, and is fixing it 
in a future release. 

Bug 4: Out-of-Bounds Array Indexing When Locating the Next Entry in the 
CPUID Lookup Array 
Prerequisites: A TD is in an op_state where the metadata APIs are accessible from the host 
VMM. 
 
The md_get_next_cpuid_value_entry function is used to find the next valid entry in the 
cpu_lookup array. This function can be called by by md_get_next_item_with_iterator 
when the context_code is MD_CTX_TD and class_code of MD_TDCS_CPUID_CLASS_CODE for 
the lookup_context->field_id. At a higher level this function is used by md_write_list 
and md_dump_list during the import and export of TD non-memory state. 
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const cpuid_lookup_t cpuid_lookup[MAX_NUM_CPUID_LOOKUP] = { 

... 

  [78] = { .leaf_subleaf = {.leaf = 0x80000002, .subleaf = 0xffffffff}, 

  .valid_entry = true, 

  .fixed1 = { .eax = 0x65746e49, .ebx = 0x58204454, .ecx = 0x6c202020 }, 

  .fixed0_or_dynamic = { .eax = 0x9a8b91b6, .ebx = 0xa7dfbbab, .ecx = 0x93dfdfdf, 

.edx = 0xffffffff }, 

  .config_index = CPUID_CONFIG_NULL_IDX 

  }, 

... 

}; 

 

The cpuid_lookup array has a size of MAX_NUM_CPUID_LOOKUP or 79 entries. The last entry in 
the array is present with the valid_entry field set to true. 

static md_field_id_t md_get_next_cpuid_value_entry(md_field_id_t field_id, bool_t 

element) { 

  ... 

  uint32_t leaf, subleaf; 

  md_cpuid_field_id_get_leaf_subleaf(field_id, &leaf, &subleaf); 

  uint32_t index = get_cpuid_lookup_entry(leaf, subleaf); 

 

  do { 

    index = index + 1; 

  } while (!cpuid_lookup[index].valid_entry); 

 

  IF_RARE (index >= MAX_NUM_CPUID_LOOKUP) { 

    return (md_field_id_t)MD_FIELD_ID_NA; 

  } 

  ... 

 

md_get_next_cpuid_entry uses get_cpuid_lookup_entry to get the index to start looking 
for the next valid entry from. If leaf was 0x80000002 and subleaf was 0xffffffff then 78 
would be returned and used to initialize index. The loop starts by incrementing index and 
then checking to see if valid_entry is true and continues until it is reached. Once the next 
entry is found, index is checked to make sure it's less than MAX_NUM_CPUID_LOOKUP but at 
this point the loop already performed one or more out-of-bounds indexing and dereference 
operations to get the value of valid_entry. 
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Remediation: Analysis concluded the bug is unexploitable and there is no impact to the 
overall security of the Intel TDX Module. Intel was aware of the issue when reported and is 
fixing it in an upcoming release. 

Bug 5: Multiple Inline Assembly Blocks Incorrectly Exclude RCX from the 
Clobber List 
Prerequisites: Not Applicable. 
 
The REP and REPE prefix are used to repeat an instruction which implicitly uses RCX, ECX, or CX 
as a counter to indicate how many times to repeat an instruction. This counter is decremented 
with each iteration of the instruction. Multiple API on the Intel TDX module and SEAMLDR 
improperly exclude this implicit register from the clobber list, which under certain 
circumstances and compiler optimizations could lead to memory corruption. 

_STATIC_INLINE_ void tdx_memcpy(void * dst, uint64_t dst_bytes, void * src, 

uint64_t nbytes) { 

  volatile uint64_t junk_a, junk_b; 

 

  tdx_sanity_check (dst_bytes >= nbytes, FATAL_ERROR_ID_183, 1); 

 

  _ASM_VOLATILE_ ("rep; movsb;" 

                  :"=S"(junk_a), "=D"(junk_b) 

                  :"c"(nbytes), "S"(src), "D"(dst) 

                  :"memory"); 

} 

 

From the Intel TDX module tdx_memcpy, tdx_memcmp, and basic_memset are affected. From 
the SEAMLDR pseamldr_memcpy, pseamldr_memcmp, basic_memset are affected. Both are 
built using clang with the Intel TDX module using -Os and the SEAMLDR using -O2 for 
optimization. Both optimizations can exhibit the incorrect re-use after modification by inline 
assembly. -O1 also exhibits the issue while -O0 or not specifying an optimization does not. For 
-O0 this is because the tdx_memcpy function isn’t inlined and is instead executed via the CALL 
instruction. 

These functions do not include either %rcx in the clobber list or =c({variable}) in the 
output list to indicate that RCX will be modified during the inline assembly sequence. 

The exact compiled code sequence leading to an exploitable situation was not observed in 
the Intel TDX module or SEAMLDR. If unfixed future changes to the affected API, their usage, 
or changes in how the compiler performs optimization could manifest as memory corruption. 
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Variant analysis was performed with Gemini and discussed further in the Code Difference 
section. Appendix B is a source code PoC showing how the issue could have manifested. 

Remediation: Intel was aware of the issue when reported. The Intel TDX module fix has been 
made available, and the SEAMLDR aspect will be addressed in a future release. 

Bug 6: Binding Handles Can Leak TDR HPAs for any TD 
Prerequisites: A guest TD can interact with the Intel TDX module. 
 
A TD can leak the TDR HPA for any TD by calling tdg_servtd_rd and tdg_servtd_wr API and 
checking potential HPAs. Different error codes are returned depending on if the provided HPA 
is associated with a TDR or not. While these API are meant for service TDs the checks to know 
if the service TD is bound to a target TD can’t occur until after the TDR is located. 
 

typedef union servtd_binding_handle_u { 

  struct { 

    uint64_t binding_slot : 12; 

    uint64_t tdr_page     : 40; 

    uint64_t reserved     : 12; 

  }; 

  uint64_t raw; 

} servtd_binding_handle_t; 

 
The servtd_binding_handle_t holds a binding_slot and the tdr_hpa for the target TD. 
This value is used by the service TD when communicating with the Intel TDX module through 
the tdg_servtd_rd and tdg_servtd_wr APIs. Normally, the servtd_binding_handle_t is 
returned by tdh_servtd_bind, to the host VMM, and provided to a service TD so it can 
interact with metadata of a target TD. 

_STATIC_INLINE_ void break_servtd_binding_handle(servtd_binding_handle_t handle, 

uint256_t servtd_uuid, pa_t* tdr_hpa, uint64_t* slot) { 

  handle.raw -= servtd_uuid.qwords[0]; 

  tdr_hpa->raw = 0; 

  tdr_hpa->page_4k_num = handle.tdr_page; 

  *slot = handle.binding_slot; 

} 

 

break_servtd_binding_handle is used to extract the tdr_hpa and slot values from the 
handle. The servtd_uuid is the Universally Unique Identifier (UUID) of the service TD and can 
be retrieved with a call to tdg_vm_rd. 
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static api_error_type tdg_servtd_rd_wr(servtd_binding_handle_t binding_handle, 

md_field_id_t field_id, bool_t write, uint64_t wr_value, uint64_t wr_request_mask) 

{ 

  ... 

  break_servtd_binding_handle(binding_handle, 

lp->vp_ctx.tdr->management_fields.td_uuid, &target_tdr_pa, &target_slot); 

  ... 

  return_val = othertd_check_lock_and_map_explicit_tdr(target_tdr_pa, 

OPERAND_ID_TDR, write ? TDX_RANGE_RW : TDX_RANGE_RO, TDX_LOCK_SHARED, PT_TDR, 

&target_tdr_pamt_block, &target_tdr_pamt_entry_ptr, 

&target_tdr_locked_flag,&target_tdr_ptr); 

 

  if (return_val != TDX_SUCCESS) { 

    if (is_operand_busy_error_code(return_val)) { 

      TDX_ERROR("Failed to check/lock/map a Target TDR - error = %llx\n", 

return_val); 

      goto EXIT; 

    } 

    ... 

    else { 

      cross_td_trap_status = return_val; 

      goto EXIT; 

    } 

  } 

... 

  if 

(!is_equal_256bit(target_tdcs_ptr->service_td_fields.servtd_bindings_table[target_s

lot].uuid, lp->vp_ctx.tdr->management_fields.td_uuid)) { 

    cross_td_trap_status = TDX_SERVTD_UUID_MISMATCH; 

    goto EXIT; 

  } 

... 

 

This explicit usage of HPAs by a TD to interact with the Intel TDX Module provides 
unnecessary visibility into the layout of the host physical address space that wouldn't 
otherwise be accessible. 

Remediation: Restricting exposure of host physical addresses to a TD is not a security 
requirement of Intel TDX. Intel is tracking this as an architectural issue and is considering the 
return of a generic error code for this failure case. 

Bug 7: Invalid VMCS revision identifier leads to SEAM shutdown 
Prerequisites: The Intel TDX Module has been configured and initialized on the platform. 
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A host VMM can use the VMPTRLD instruction to load an HPA of a Virtual Machine Control 
Structure (VMCS) into the CPU. When this instruction executes it first validates that the HPA is 
4KB aligned, bits beyond the processor’s physical address width are 0, and the revision 
identifier is set accordingly. When these checks pass, the HPA is loaded into a special location 
known as the current-VMCS inside the LP. If a failure occurs, current-VMCS is not loaded and 
the VM failure condition is reflected in RFLAGS. 
 
The revision identifier is stored in bits 30:0 at byte offset 0 in the VMCS; bit 31 is the 
shadow-VMCS indicator. Software is required to set this to the value of bits 30:0 in the 
IA32_VMX_BASIC MSR. 
 
When SEAMCALL is executed by a host VMM the transition into SEAM is similar to a VM Exit. 
SEAM uses a Transfer VMCS to save the state of the host VMM into the guest fields and loads 
the state of SEAM from the host fields. As the host VMM is able to manage legacy VMs in 
addition to using the Intel TDX Module to run TDs the current-VMCS field is saved into the 
VMCS link pointer field in the SEAM Transfer VMCS. 
 
When SEAMRET is executed, the host VMM state is restored from the SEAM Transfer VMCS 
guest state, similar to a VM Entry. Restoration involves loading the current-VMCS with the HPA 
saved into the VMCS link pointer field. However, the HPA is first checked, much like when 
VMPTRLD is executed. If this check fails, it triggers a failed VM Entry VM Exit and causes the 
Intel TDX Module to enter a fatal error state, which leads to a SEAM shutdown. 
 
To trigger a SEAM shutdown, the host VMM can load a correctly initialized VMCS using 
VMPTRLD, modify the revision identifier to be invalid, and execute SEAMCALL. 
 
The TDX threat model does not include Availability, so this issue doesn’t impact security and 
wasn’t assigned a CVE by Intel’s PSIRT. 
 
Remediation: Intel does not plan on addressing this behavior because a malicious host could 
just as easily shut the system down or block the usage of TDX.  

Bug 8: HKID Reservation Exhaustion 
Prerequisites: The Intel TDX Module is loaded but has not yet been configured. 
 
Before the Intel TDX Module can be used to run TDs the host VMM must initialize it using a 
sequence of API calls described in section 3.1.1 of the Intel Trust Domain Extensions (Intel TDX) 
Module Base Architecture Specification. tdh_sys_config is required to be called once from a 
single LP and is used to configure the Trust Domain Memory Range (TDMR), Physical Attribute 
Metadata Table (PAMT), and reserve the HKID to be used by the Intel TDX Module. 
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api_error_type tdh_sys_config(uint64_t tdmr_info_array_pa, uint64_t 

num_of_tdmr_entries, sys_config_options_t sysconfig_options) { 

  ... 

  tdx_global_data_ptr->kot.entries[hkid].state = KOT_STATE_HKID_RESERVED; 

  tdx_global_data_ptr->hkid = hkid; 

 

  tdmr_pa_array = map_pa(tdmr_info_pa.raw_void, TDX_RANGE_RO); 

  ... 

  for(uint64_t i = 0; i < num_of_tdmr_entries; i++) { 

    tdmr_entry.raw = tdmr_pa_array[i]; 

    retval = shared_hpa_check_with_pwr_2_alignment(tdmr_entry, 

TDMR_INFO_ENTRY_PTR_ARRAY_ALIGNMENT); 

    if (retval != TDX_SUCCESS) { 

      retval = api_error_with_operand_id(retval, OPERAND_ID_RCX); 

      TDX_ERROR("TDMR entry PA is not a valid shared HPA pa=0x%llx, 

error=0x%llx\n", tdmr_entry.raw, retval); 

      goto EXIT; 

    } 

    ... 

EXIT: 

 

  if (global_lock_acquired) { 

    release_sharex_lock_ex(&tdx_global_data_ptr->global_lock); 

  } 

 

  if (tdmr_info_p_init) { 

    free_la(tdmr_pa_array); 

  } 

  return retval; 

} 

 

The specific HKID to use is specified by the host VMM through the sysconfig_options 
parameter. After some validation checking the KOT entry for the HKID is set to 
KOT_STATE_HKID_RESERVED. Next the TDMR entries are processed and if an error occurs the 
goto EXIT; statement is executed which releases and frees resources. The HKID entry in the 
KOT is never restored to the KOT_STATE_HKID_FREE state. Multiple calls to this API could be 
used to set all entries in the KOT to KOT_STATE_HKID_RESERVED and the Intel TDX Module 
after completing the initialization sequence would be unable to run a TD. 
 
This API is only available during the Intel TDX Module initialization sequence and the issue is 
isolated to being able to exhaust the KOT. 
 
Remediation: Intel has confirmed the bug, categorized it as a functional issue, and is fixing it 
in a future release. 
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Bug 9: Improper HPA and GPA Checks on Metadata Import 
Prerequisites: Not Applicable. 
 
Multiple metadata fields imported during a TD migration represent Guest Physical Addresses 
(GPAs) for the TD. md_vp_handle_field_attribute_on_wr is used to ensure that both HPAs 
and GPAs are correct based on attributes associated with the metadata entry. 
 

static api_error_code_e md_vp_handle_field_attribute_on_wr(md_field_id_t field_id, 

const md_lookup_t* entry, md_context_ptrs_t md_ctx, md_access_t access_type, 

uint64_t* wr_value) { 

  if (entry->attributes.hpa && entry->attributes.shared) { 

    uint64_t size = md_vp_get_checked_size_of_shared_hpa_range(field_id); 

 

    if (MD_IMPORT_IMMUTABLE != access_type && MD_IMPORT_MUTABLE != access_type && 

*wr_value != NULL_PA && shared_hpa_check((pa_t)*wr_value, size) != TDX_SUCCESS) { 

      return TDX_METADATA_FIELD_VALUE_NOT_VALID; 

    } 

  } 

  else if (entry->attributes.gpa && entry->attributes.prvate) { 

    if (MD_IMPORT_IMMUTABLE != access_type && MD_IMPORT_MUTABLE != access_type && 

*wr_value != NULL_PA && !check_gpa_validity((pa_t)*wr_value, 

md_ctx.tdcs_ptr->executions_ctl_fields.gpaw, PRIVATE_ONLY, 

md_ctx.tdcs_ptr->executions_ctl_fields.virt_maxpa)) { 

      return TDX_METADATA_FIELD_VALUE_NOT_VALID; 

    } 

  } 

  return TDX_SUCCESS; 

} 

 
This works as expected unless the access_type is MD_IMPORT_IMMUTABLE or 
MD_IMPORT_MUTABLE, which is the case during import operations. In this case both 
check_gpa_validity and shared_hpa_check are skipped and TDX_SUCCESS is returned. 
 
There are a few importable fields that would match .attributes = { .raw = 0x6}, which is 
gpa and prvate. Specifically, Virtual-APIC address, HLAT pointer, and PDPTEn from the 
td_l2_vmcs_fields_lookup.c would allow for writing a GPA without the 
check_gpa_validity check. Later checks in tdh_vp_enter would raise EPT violations. 
There are no importable fields that would match .attributes = { .raw = 0x9} which is 
hpa and shared because the .import_masks are effectively 0. This makes sense as HPAs as 
different platforms would instead allocate resources and perform initialization. 
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Remediation: Intel has confirmed the bug, categorized it as a functional issue, and is fixing it 
in a future release. 

Bug 10: Improper Validation of Host Physical Addresses in Debug API 
Prerequisites: Platform is running a debug version of the Intel TDX Module, which is only 
possible on Intel TDX development systems. 
 
A type confusion bug exists in the Intel TDX Module's debug printing mechanism when 
DEBUGFEATURE_TDX_DBG_TRACE is enabled and was identified independently through manual 
analysis and with Gemini. 
 

uint64_t td_debug_config(uint64_t leaf, uint64_t payload, uint64_t second_payload) 

{ 

  ... 

  if (leaf == 0) { // Set debug print target 

    print_target_e print_target = (print_target_e)payload; 

    debug_message_t* target_buffer = NULL; 

    if (print_target == TARGET_EXTERNAL_BUFFER) { 

      if (second_payload % MAX_PRINT_LENGTH) { // Check alignment 

        return TDX_OPERAND_INVALID; 

      } 

      target_buffer = (debug_message_t*)second_payload; 

    } 

    ... 

    p_ctl->print_target = print_target; 

    p_ctl->trace_buffer = target_buffer; 

    ... 

} 

 
A host VMM can configure the print target to TARGET_EXTERNAL_BUFFER via 
td_debug_config, by specifying the HPA that will be used for the p_ctl->trace_buffer field 
in the global debug_control_t structure. 
 

uint32_t dump_print_buffer_to_vmm_memory(uint64_t hpa, uint32_t 

num_of_messages_from_the_end) { 

  ... 

  while (reader_pos != p_ctl->buffer_writer_pos) { 

    char* msg_buf_ptr = p_ctl->trace_buffer[reader_pos].message; 

    vmm_buf_pos += dump_message_to_vmm_memory(msg_buf_ptr, hpa + vmm_buf_pos, 

MAX_PRINT_LENGTH); 

    reader_pos = get_advanced_reader_pos(reader_pos, 1); 

  } 

  ... 
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} 

 

_STATIC_INLINE_ uint32_t dump_message_to_vmm_memory(char* msg_buf_ptr, uint64_t 

hpa, uint32_t len) { 

  uint32_t vmm_buf_pos = 0; 

  char* vmm_buf_ptr = map_pa((void*)hpa, TDX_RANGE_RW); 

 

  for (uint32_t i = 0; msg_buf_ptr[i] != 0 && i < len; i++) { 

    if ((hpa + vmm_buf_pos) % PAGE_SIZE_IN_BYTES == 0) { 

      free_la(vmm_buf_ptr); 

      vmm_buf_ptr = map_pa((void*)(hpa + vmm_buf_pos), TDX_RANGE_RW); 

    } 

 

    vmm_buf_ptr[i] = msg_buf_ptr[i]; 

    vmm_buf_pos++; 

  } 

  ... 

} 

 

static void print_to_buffer(debug_control_t* p_ctl, char* print_buf, uint32_t 

print_len) { 

  ... 

  debug_message_t* target_debug_message = 

&p_ctl->trace_buffer[p_ctl->buffer_writer_pos]; 

 

  if (p_ctl->print_target == TARGET_EXTERNAL_BUFFER) { 

    dump_message_to_vmm_memory(print_buf, (uint64_t)target_debug_message, 

print_len, true); 

  … 

} 

 
Subsequent calls to logging functions, such as tdx_print, invoke print_to_buffer. In 
print_to_buffer, the address target_debug_message is calculated as 
&p_ctl->trace_buffer[p_ctl->buffer_writer_pos]. target_debug_message is then 
passed as the hpa argument to dump_message_to_vmm_memory. The 
dump_message_to_vmm_memory function calls map_pa to map this hpa. The map_pa function in 
keyhole_manager.c does not perform PAMT checks to prevent mapping of Intel TDX module 
private memory, if the HPA is within a TDMR. 
 
As the host VMM can choose trace_buffer HPA and control p_ctl->buffer_writer_pos, 
by triggering a controlled number of log messages, it could point this to sensitive TDX module 
data (e.g., a TDCS page, TDR page, or other private data within a TDMR). The 
dump_message_to_vmm_memory function will then write up to MAX_PRINT_LENGTH, which is 256 
bytes, of log data into this area. 
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Remediation: This code is only included in debug builds of the Intel TDX module and never in 
production binaries. Intel has opened an internal ticket and is tracking it as a low priority issue. 

Bug 11: Multiple Spectre Gadgets Enable for Out-of-Bounds Read but Are 
Unextractable 
 
Prerequisites: Not Applicable. 
 
Several subroutines accept user inputs that can result in accessing OOB data during 
speculative execution. However, since we cannot formulate a viable exploit for these gadgets, 
they are not classified as vulnerabilities, though Intel will apply DiD mitigations for them.  

The subroutine  md_read_element is used by various APIs to read the state of a TD. This 
subroutine indirectly calls md_find_entry_idx which uses the following code pattern to 
check that the user input field_id.field_code is within a valid range. 

if ((field_id.class_code == lookup_table[i].field_id.class_code) && 

    ((uint64_t)field_id.field_code >= first_element_id_in_range) && 

    ((uint64_t)field_id.field_code < last_element_id_in_range)) { 

  break; 

} 

 

Speculative execution of the above code results in accessing OOB data, which in theory is 
returned to the VMM or TD (depending if md_read_element is reached via a TDH or TDG 
interface).  

Unlike Vulnerability 3, 4, and 5 the OOB data in this case is not processed by any succeeding 
code inside the Intel TDX module, hence it is not encoded to a microarchitectural state, like 
the cache, after the execution of the API. This is also not possible past the context switching 
because SEAMRET, VMLAUNCH, and VMRESUME block speculative execution, making the gadgets 
unexploitable.  

Similarly, the following code checks if the index to the performance counter table pmc_index 
is within a valid range when emulating RDMSR execution for a TD. rdmsr_ia32_perfevtsel 
uses pmc_index to index a table and retrieve values to return to the TD via RDX and RAX. 

static uint32_t get_pmc_index_given_ia32_perfevtsel_index(const uint32_t msr_addr) 

{ 

  uint32_t invalid_idx = (uint32_t)INVALID_PERFMON_MSR_INDEX; 

 

  // Legacy range 

  if ((msr_addr >= IA32_PERFEVTSEL0_MSR_ADDR) && (msr_addr < 

IA32_PERFEVTSEL0_MSR_ADDR + NUM_PMC)) { 
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    return msr_addr - IA32_PERFEVTSEL0_MSR_ADDR; 

  } 

  ... 

} 

 

_STATIC_INLINE_ td_msr_access_status_t rdmsr_ia32_perfevtsel(tdcs_t *tdcs_p, 

tdvps_t *tdvps_p, uint32_t pmc_index, uint32_t msr_addr) { 

  ... 

  ia32_perfevtsel_t perfevtsel_value = { .raw = 

tdvps_p->guest_msr_state.ia32_pmc_gp_cfg_ax[pmc_index] }; 

  perfevtsel_value.forbidden = 0; 

 

  rdmsr_set_value_in_tdvps(tdvps_p, perfevtsel_value.raw); 

 

  return TD_MSR_ACCESS_SUCCESS; 

} 

 

Lastly, when emulating CPUID execution leaf 0x4 uses a similar pattern to ensure the 
requested subleaf is within a valid range. 

case 0x4: 

  if ((td_ctls.reduce_ve) && (subleaf < NUM_CPUID4_NATIVE)) { 

    ... 

    return_values = 

vp_ctx->tdcs->executions_ctl2_fields.cpuid4_native_values[subleaf]; 

    ... 

  } 

 

Although speculative execution of the above code sequences results in accessing OOB data, 
the speculation stops when VMLAUNCH or VMRESUME are executed, preventing a TD from being 
able to extract the data.  

Remediation: Intel plans to review each case independently to understand the risk versus 
performance impact of adding LFENCE. It is expected that most if not all will be addressed as 
DiD. The RDMSR and CPUID emulation speculation primitives are only present in the early 
release of an updated Intel TDX 1.5 provided by Intel for this review. 

Review Methodologies 
In this section, we discuss some of the techniques and tools we used for evaluation.  
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TDXplore Toolkit 
To support analysis of the Intel TDX Module the TDX Explore Toolkit (TDXplore) was developed 
to provide generic access to functionality normally reserved to ring-0 host VMM software. 
TDXplore is composed of three main components: a Linux kernel module, C/Python library, 
and a set of Python scripts that provide access to Intel TDX Module interfaces. 

The Linux kernel module was developed to expose privileged functionality to userspace. This 
includes the ability to map/unmap physical memory, read/write kernel memory, and execute 
privileged instructions (e.g., RDMSR, WRMSR, VMPTRLD, VMCLEAR, VMXON, VMREAD, VMWRITE, 
SEAMCALL, and TDCALL). Most functionality is accessed via a set of ioctl calls with access to 
physical memory being accessible through mmap and munmap. The C/Python libraries simply 
wrap the Linux kernel module to provide a more user-friendly layer of abstraction. 

Most of the Python scripts provide direct support for a specific interface in the Intel TDX 
Module. When combined or chained together they can be used to perform larger activities 
including: 

●​ TD and VP Management: Initialize or create a TD and its VPs, add private memory 
pages, and configure the TD/VPs. 

●​ TD Migration: Create a migration stream, bind a service TD to a target TD, pause a TD, 
and abort a migration. 

●​ Metadata and State Control: Read and write metadata from the host VMM, service 
TD, and guest TD context. 

●​ Metadata Manipulation: create, decrypt, parse, modify, and encrypt migration 
bundles with a provided MSK. 

The table below shows the implemented scripts and provides a brief explanation. 

Names Description 

mig_bundle_encrypt.py 
mig_bundle_decrypt.py​
mig_bundle_parse.py​
mig_bundle_edit.py 

Used to encrypt, decrypt, and interact with migration 
bundles. The MSK is provided to the encrypt and 
decrypt scripts as a parameter and the MBMD data is 
checked on decrypt and updated on encrypt. The parse 
and edit scripts work with decrypted immutable, td, and 
vp migration bundles. 
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qemu_break.py 
qemu_resume.py 
qemu_stop.py 

The break script is used to watch for and suspend a 
QEMU process before it executes a specific ioctl. This 
is primarily used to pause execution before 
KVM_TDX_FINALIZE_VM is called to support binding a 
migTD using tdh_servtd_bind.py. The resume and 
stop scripts are simple wrappers for kill using 
SIGCONT and SIGSTOP. 

tdg_md_rd.py 
tdg_md_wr.py 
tdg_servtd_rd.py 
tdg_servtd_wr.py 

Used to interact with TD metadata from within a TD. The 
md variant allows a TD to read and write its own 
metadata. The servtd variant supports reading and 
writing metadata of another TD from a service TD. 

tdh_export_abort.py 
tdh_export_pause.py 
tdh_export_state_immutable.py 
tdh_export_state_td.py 
tdh_export_state_vp.py 

Provides the ability to export migration bundles 
associated with a TD. The pause script moves a 
migration from the OP_STATE_LIVE_EXPORT to 
OP_STATE_PAUSED_EXPORT which is required to access 
TD and VP non-memory state. 

tdh_import_state_immutable.py 
tdh_import_state_td.py 
tdh_import_state_vp.py 

Provides the ability to import migration bundles to a 
previously created TD template. 

tdh_md_rd.py 
tdh_md_wr.py 

Used to interact with TD metadata from the host VMM.  

global_sys_metadata.py 
tdr_tdcs_metadata.py 
tdvmcs_metadata.py 
tdvps_metadata.py 

Metadata lookup lists are ported from 
include/auto_gen_1_5 in the Intel TDX module source 
code. These are used by various other scripts parse and 
display entries (e.g., tdh_md_rd.py, 
mig_bundle_parse.py, and tdg_servtd_rd.py). 

tdh_servtd_bind.py 
tdh_mig_stream_create.py 

Used to associate a service TD with a target TD and 
create migration stream contexts.  

tdh_mng_create.py 
tdh_mng_key_config.py 
tdh_mng_addcx.py 
tdh_mng_init.py 
tdh_vp_addcx.py 
tdh_vp_create.py 

Various scripts to create and configure a TD and the 
associated VPs. The tdh_mng_addcx.py and 
tdh_vp_addcx.py scripts add or assign pages of 
memory to be used by either the TD or its VPs. 
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tdxtend.py 
tdxamine.py 

The tdxtend.py script is a wrapper for the gateway 
script providing access to Intel TDX specific data 
structures, interfaces, and error codes. It’s also used to 
inspect processes that use KVM to extract TDR, TDCS, 
and TD VP Root (TDVPR) HPAs. 

The tdxamine.py script is used to store and lookup TD 
associated HPAs by name or PID to be used with other 
scripts. It also stores shared state created by other 
scripts. 

 

The following example demonstrates how to add a TD to the tdxamine state. The 
add_td_by_pid sub-command uses the specified QEMU PID to lookup HPAs associating it 
with the provided name when added. The print_state subcommand lists the known TDs and 
details that were populated during its addition or when running other scripts. The 
tdh_import_state_immutable script then loads an immutable migration bundle using a TDR 
HPA which was looked up using the print_tdr_pa_from_name subcommand of tdxamine. 

python tdxamine.py add_td_by_pid `pgrep -f -o qemu` mig_td 

... 

python tdh_servtd_bind.py $(python tdxamine.py print_tdr_pa_from_name dst_td) 

$(python tdxamine.py print_tdr_pa_from_name mig_td) 

 

python tdxamine.py print_state 

td: name - mig_td, tdr_ka - 0xffffffffffffffff, tdr_pa - 0x60bde35000 hkid - 

0xffffffffffffffff 

  tdvpr 0: pa -  0x60bbe9a000 

  ... 

  tdvpr 15: pa -  0x60b917f000 

  bind 0: handle - 0xe3029dce5af581d9 

  bind 0: uuid - 1f1308f0811d80bb-7c11ab60de61cabe-86f40fb10759d15a-367130596bc3cd9 

td: name - dst_td, tdr_ka - 0xff2601d300103000, tdr_pa - 0x103000 hkid - 0x10 

  tdcs 0: pa -  0x102000    ka - 0xff2601d300102000 

  ... 

  migsc 0: ka - 0xff2601d300107000, pa -  0x107000 

... 

 

python tdh_import_state_immutable.py $(python tdxamine.py print_tdr_pa_from_name 

dst_td) immutable.mbmd immutable.data 

 

Toolkit development used a bare metal C3 GCP instance with Ubuntu 24.10 following the Intel 
Trust Domain Extensions (TDX) on Ubuntu setup instructions. With this setup KVM and QEMU 

https://github.com/canonical/tdx
https://github.com/canonical/tdx
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are used to create, manage, and destroy TDs. This reduces complexity of the TDXplore 
framework while providing access to complex TD environments. 

One issue with this approach is that most Intel TDX Module API’s expect either a TDR or 
TDVPR HPA and KVM doesn’t provide this in a generic way. To overcome this the toolkit adds 
an ioctl to lookup the kernel struct file pointer for a provided FD and PID. The structures 
holding these HPAs are struct kvm and struct kvm_vcpu and pointers for these are stored in 
the private_data field of their associated struct file.  

Locating the correct FD for each can be done using /proc/$PID/fd. The FD with the 
symbolic link to anon_inode:kvm-vm contains struct kvm and 
anon_inode:kvm-vcpu:{INDEX} holds struct kvm_vcpu. 

TDXplore uses specific offsets to locate the TDR and TDVPR HPAs within these structures with 
support for Ubuntu 24.10 (tag: Ubuntu-intel-6.11.0-1008.8) and Ubuntu 24.04 (tag: 
Ubuntu-intel-6.8.0-1022.29). 

Note: the TDXplore Linux kernel module is not appropriate for production environments 
because it fundamentally undermines userspace isolation from privileged operations. 

This toolkit empowered the team to conduct security research with a production version of 
the Intel TDX Module on hardware. Support for configuring a TD into different states, 
interacting with provided interfaces, and development of proof-of-concept exploits as bugs 
were identified was extremely important to understanding how the Intel TDX Module operates. 

LLM Bug Hunting 
The Intel TDX 1.5 code review presented a good opportunity to assess the capabilities of LLMs 
(specifically Google Gemini) for identifying vulnerabilities in a complex and real world 
codebase. In particular, it had: 

●​ Limited dependencies: The Intel TDX firmware code essentially only depends on the 
Intel IPPS crypto library but otherwise encompasses an entire operating system and 
business logic. This reduces the number of assumptions the LLM needs to make about 
libraries or syscalls outside of the context window. 

●​ Clean API organization: Each API is divided into its own source file and furthermore 
VMM/TD source files are separated. This made submitting subsections of the Intel TDX 
code to the LLM trivial. 

Next, we discuss how we used LLMs for this review to identify Spectre gadgets and memory 
safety vulnerabilities, and the current limitations of our approach.  

https://github.com/intel/cryptography-primitives
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Spectre Gadgets 

Our goal here was to identify code patterns for Spectre v1 gadgets inside the Intel TDX 
Module, as one of the limitations of current processors is that there is no hardware remedy for 
mitigating this class of attacks. As a result, critical software systems such as the Linux kernel 
and Intel TDX Module firmware relies on an ad-hoc approach to only apply fixes (e.g., using a 
serialization instruction like LFENCE) to code gadgets that are identified as exploitable. Once 
an attacker finds an exploitable gadget inside the Intel TDX Module firmware, it can potentially 
leak the entirety of private memory for the module and guests, while mapped into the 
module’s linear address space. 

We used two different Gemini models in a two-step approach to identify potential Spectre 
code gadgets. For this, we first describe the conditions for a valid Spectre gadget alongside 
the source code and specification as context to Gemini in thinking mode (slow but more 
capable) to identify potential gadgets, then, we use a faster but less capable mode like 
Gemini flash to summarize the findings and highlight key aspect of the findings, as follow: 

First Query 

You are an expert vulnerability researcher who knows Spectre vulnerabilities and their 
exploitations very well. Review the API function {api} its subroutines and identify 
potential Spectre v1 gadgets that allow accessing out-of-bounds data. 
 
Such Spectre v1 gadgets have three components: a) User input: An input that is 
controlled by user, b) Branch condition that checks the user input c) secret-dependent 
memory access or branch depending on the out-of-bounds access. 
 
Check if it has already been mitigated with an LENCE. 
 
Summarize the findings and each identified vulnerability as follow: 
    - User Input: 
    - Branch Condition: 
    - Secret-Dependent Memory Access: 
    - Step-by-step analysis of the vulnerability: 
    - How Much information can be leaked: 
    - If it has already been mitigated: 
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Second Query 

Generate a summary of each discovered vulnerability with the following markdown 
format: 
      ## API Name: Vulnerability Name 
      ### User Input: 
      ### Branch Condition: 
      ### Secret-Dependent Memory Access: 
      ### Step-by-step analysis of the vulnerability: 
      ### How Much information can be leaked: 
      ### If it has already been mitigated: 

 

We used the above queries for each API of interest including the host interface (tdh_*), the 
guest interface (tdg_*), and the guest exit handlers (td_*_exit), for a total of 97 APIs. In this 
setup, each API took about 3 minutes to analyze, a total of 5 hours to execute the combined 
queries. 

As mentioned above, the clean API organization of each API having its own source file made it 
easier for us to use Gemini for this goal. However due the context window’s limit (1 million 
tokens), we could not provide the entire source code and the ABI specification for Intel TDX 
module firmware as context. Instead, we used some custom scripts to slice each API and its 
dependencies, broke the ABI specification for each API to a separate PDF file, and only 
provided relevant information for each API to it.  

Our initial strawman approach resulted in about 200 reports. After going through these 
reports, we identified the following false positives: 

●​ Duplicates: Almost half of the reports were duplicates, and easy to filter out (i.e.., 
identifying the same code pattern as vulnerable in the dependency of every API).  

●​ Loop bounds: Tens of cases of loop bounds being identified as potential Spectre 
gadgets. While these cases may theoretically be Spectre gadgets, they are hard to 
exploit in practice. 

●​ Public memory: Several gadgets would result in OOB access to memory that is 
already accessible to the host VMM or guest TD, which shows Gemini did not 
understand the memory mappings and threat model well. 

●​ Union bounds: Several gadgets were related to bounds that are implicitly enforced via 
C unions, hence the software bounds check even if bypassed speculatively does not 
result in OOB access. 

After filtering out the above cases, we identified 16 code gadgets that can potentially leak 
private memory. This process took about 3 days, however, some of it can further be 
automated by querying the LLM to filter / group findings together. Among these 16 unique 
code gadgets, we identified: 
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●​ 9 Already fixed: Mitigated with an LFENCE highlighting that they were indeed valid, but 
already mitigated. 

●​ 5 New gadgets: Acknowledged to impact security by Intel, and three CVE were 
assigned based on the root case. 

●​ 2 DiD: Only exploitable on a hardware architecture that would not serialize SEAMRET, 
VMLAUNCH, VMRESUME highlighting an additional lack of context surrounding hardware 
architecture limiting Gemini’s analysis. 

Memory Corruption 

We also spent time using Gemini to search for memory corruption and logic bugs in the C 
source code. For these problems, the LLM must correctly identify pathways for user input to 
reach unsafe operations while also meeting all necessary conditions that the code previously 
checked against. The LLM may also need to correctly reason about multi-threading race 
conditions and lock semantics depending on the bug. 

Fundamentally, we started by asking Gemini to find memory corruption bugs and iterated on 
the prompts as we found deficiencies in the results. While there is some nuance to identifying 
the best prompting and LLM settings, the fundamental bottleneck in the process is triaging 
the bug reports and verifying correctness. We found that once the settings are reasonably 
tweaked, Gemini will generate bug reports that appear to be accurate and often if 
inaccuracies are found that they are similar to mistakes human reviewers would also make – 
this makes triaging time-consuming. We should also note that Gemini sometimes still makes 
basic mistakes like skipping over lines that do bounds checks right before an array access. 

While the TDXplore toolkit that we developed could facilitate automated PoC generation, we 
did not investigate this during the review since the LLM work preceded most of the test 
framework development. Even then, setting up the Intel TDX state machine correctly and 
generating the precise inputs to trigger a vulnerability are relatively complex compared to 
other targets (e.g., a usermode binary or remote server) and we expect current LLMs to 
struggle here without extensive assistance. 

Instead of depending on the LLM to generate PoCs for its own bug reports, we instead asked 
the LLM to do an initial triage pass which filters down the reports before a human does the 
final analysis. One intuition we had is that for a given LLM conversation, the LLM seems 
resistant to changing its mind about things; e.g., that a bug exists or a bounds-check that 
does exist was skipped over. By asking the same LLM to validate the previous LLM-generated 
response, this gives each request a higher likelihood of discovering mistakes compared to just 
asking the initial LLM session to self-check. 

We essentially split the bug hunting task into this pipeline: 

●​ Identify all APIs of interest (or we can manually generate/save this list). 
●​ For each API of interest, ask the LLM to search for bugs N times. 
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○​ Deduplicate results if N > 1. 
●​ For each bug report, ask the LLM to validate the report M times. 

○​ Summarize the consensus arguments for true vs false positive. 

Limitations 

Despite the presence of some inaccurate reports, Gemini helped narrow down analysis in 
several cases, and was particularly effective in identifying Spectre code gadgets. We 
identified the following limitations to help inform future use of LLMs for code review:  

●​ Unusual threat model: In Intel TDX, almost all code is considered untrusted which 
leads to unusual circumstances such as APIs that can corrupt or leak VMM memory 
being non-interesting if initiated by the host. Additional prompting was used to help 
reduce false positives due to this confusion. 

●​ High level of out-of-context assumptions: The Intel TDX Module code heavily 
depends on hardware functionality and makes many implicit assumptions based on 
this. While this hardware behavior is mostly defined in public specifications and likely 
incorporated in Gemini’s training data, it's believed that not including it in the context 
window makes mistakes more likely. 

●​ Large code base: All of the Intel TDX Module code encompasses around 2MiB which 
roughly translates to just over 1M tokens. Currently, Gemini 2.5Pro has a maximum 
input context length of 1M tokens so we’ve had to submit partial code to the LLM. 
Additionally, if one also wants to send specs with the code, further code reductions 
are required. 

●​ Ambiguous semantics: There were several areas where the LLM consistently got 
confused due to unusual APIs or unclear intentions of the code authors. For example, 
the Intel TDX Module does not use a heap per-se but does have dynamically mapped 
memory using a “keyhole” system – the LLM would sometimes incorrectly identify 
use-after-free vulnerabilities that incorrectly assumed normal heap properties. 
Additionally, the Intel TDX Module has fairly complex multi-layer locks whose semantics 
are only partially defined in the code and specification. 

●​ Manual post-mortem analysis: Currently, the Intel TDX Module toolchain is too 
complex with limited debugging capabilities, which makes it difficult to develop an 
end-to-end toolchain to let LLMs automatically evaluate findings and receive feedback 
(e.g., by triaging the bugs or trying to develop proof-of-concept exploits in a live 
system). As a result, manual expert analysis is needed to verify each finding.  

Frama-C 
We used an off-the-shelf Frama-C Weakest Precondition (WP) plugin to do some basic code 
analysis. We compiled the Intel TDX Module 1.5 and generated the necessary symbol files so 
we can use Frama-C to identify potential memory safety violations. The compilation by itself 
identified several places where variables are assigned but never used, which is a weak code 
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pattern. We also identified inconsistency across different APIs to initialize pointers, which one 
of them was also reflected in the Vulnerability 4, which allowed for arbitrary values to be 
speculatively injected into the stack. The WP plugin flagged several memory safety cases, but 
manual review showed that those are all false positives, due to Frama-C failing to understand 
the union data structures and their bounds correctly. 

Code Difference 
We did a limited differential analysis between the Intel TDX 1.0 and 1.5 source code to 
understand what changes were made and if there were any bug fixes which might have 
variants. One such difference that caught our attention was the change to basic_memset 
shown below. 

void basic_memset(uint64_t dst, uint64_t dst_bytes, uint8_t val, uint64_t nbytes) { 

  tdx_sanity_check (dst_bytes >= nbytes, FATAL_ERROR_ID_176, 2); 

 

  volatile uint64_t junk; 

 

  _ASM_VOLATILE_ ("cld\n" 

                  "rep; stosb;" 

+                 :"=D"(junk) // marking that RDI is changing 

                  :"c"(nbytes), "a"(val), "D"(dst) 

                  :"memory", "cc"); 

} 

 

A quick refresher on C inline assembly syntax and x86 instructions is probably helpful. The 
REP; STOSB statement is really the STOSB (store string byte) instruction with the REP prefix – 
this indicates that the operation should execute RCX times. STOSB copies data from the source 
pointer in RSI to the destination pointer in RDI. The CLD instruction clears the direction flag 
which causes the copy to auto-increment instead of auto-decrement. 

The three lines following the x86 assembly are the output operand, input operands, and 
clobber list. The input/output operands indicate which registers are used as inputs and 
outputs. The clobber list indicates all other state that is somehow changed by the assembly 
code. In this case, the difference shows that RDI was added to the output operand list – this 
is accurate since STOSB updates RDI as the pointer increments or decrements. Without this 
hint, the compiler is free to optimize usage of RDI and could potentially assume it was 
unchanged and not reload the original value of dst into RDI. 

Looking at this difference, we realized that this is an interesting bug pattern that we might 
have otherwise overlooked, which resulted in the discovery of Bug 5. There are a handful of 
assembly helper functions in the Intel TDX Module and they all depend on accurate operand 
and clobber listings to ensure correctness. Going back to basic_memset, you may have 

https://www.felixcloutier.com/x86/stos:stosb:stosw:stosd:stosq
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noticed that another register is also changed by the assembly but not listed in the output: 
RCX. According to the REP prefix, RCX is decremented until reaching zero so therefore this 
register should be in the clobber list. 

We used a combination of manual analysis and Gemini 2.5 Pro to analyze the remaining 
assembly helper functions for similar issues. The LLM approach was helpful since there are 
many implementations to check and the x86 instruction operations can be complex – this 
gave us a quick estimate of overall problem space. 

Similar issues were discovered in these helpers: 

●​ ia32_rdrand,ia32_rdseed: RDRAND modifies CF and PUSHFQ/POPQ interact with flags. 
cc should be clobbered. 

●​ _lock_read_128b: CMPXCHG16B modifies flags (ZF). cc clobber is missing. 
●​ _lock_or_16b (and related): ORW, ANDB, and XORW all modify flags (OF, SF, ZF, PF; CF 

cleared). cc clobber is missing for all these. 
●​ clear_xmms: XMM registers XMM0 through XMM15 are modified and should be listed in 

the clobber list. 
●​ load_xmms_from_buffer: XMM registers XMM0 through XMM15 are modified and should 

be listed in the clobber list. 
●​ clear_ymms: YMM registers YMM0 through YMM15 are modified and should be listed in 

the clobber list. 
●​ load_ymms_from_buffer: YMM registers YMM0 through YMM15 are modified and should 

be listed in the clobber list. 
●​ calculate_local_data: RDGSBASE does not modify RFLAGS. cc clobber is 

unnecessary. 
●​ calculate_sysinfo_table: RDFSBASE does not modify RFLAGS. cc clobber is 

unnecessary. 

Notebook LM for Cross Referencing  
To aid in the review, NotebookLM was used as a centralized and searchable resource. All 
relevant Intel manuals, whitepapers, and source code were loaded, which was useful for 
researching key architectural aspects. The ability to quickly cross-reference source material 
and specifications helped validate output and locate relevant sections for further reading and 
reviewing. Notebook LM was not used to query for bugs in the codebase. 

Negative Results 
In this section, we note some of the cases where we failed to identify a vulnerability despite a 
valid attack vector, showing that sufficient mitigations were in place:  

https://notebooklm.google/
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Impact of Live Migration on CPUID and MSR Instruction Behavior 
Intel TDX Architecture impacts behavior of some instructions, virtualization of MSR registers 
and the virtualization of CPU features and how they are being exposed to the guest through 
CPUID instruction. The details are well documented in the Intel TDX Module Specification and 
the security implications of those behaviors are out of scope of this investigation but our 
investigation focused on whether the live migration of a CVM to a different host impacts the 
behavior of these instructions, CPUID values, or MSR virtualization. 

Furthermore, the introduction of Virtualization Exception (#VE) Reduction allows a guest to 
change how the Intel TDX Module handles CPUID and MSRs, creating a complex state 
machine that must maintain consistent security guarantees across migrations. 

In summary, The Intel TDX Module is designed to provide the following security and 
confidentiality guarantees after a CVM migration: 

●​ CPUID Virtualization: The module ensures that CPUID leaves/subleaves configured 
during TD initialization remain consistent for the lifetime of the TD. Other fields are 
either fixed or reflect the native hardware capabilities, based on their security 
implications. 

●​ MSR Virtualization: The module allows the VMM to configure some MSR values 
exposed to the guest and verifies the compatibility of these values during migration. 

●​ REDUCE_VE: This feature allows the guest to relax certain restrictions, enabling a #VE 
handler to manage the virtualization of some CPUID leaves and MSRs. 

We focused on CPUID fields that are calculated by the module or exposed natively from the 
host CPU, checking if hardware differences on a target host would alter their values 
post-migration. 

Most of these fields relate to CPU capabilities that primarily affect workload performance. We 
found no indication that changes in these values would impact the security or 
confidentiality of the CVM. However, a small set of fields that can alter execution behavior 
requires more careful review below. 
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Leaf (Register) Description 

0x1 (EBX) Field Name: Initial APIC ID 
Virtualization Type: Calculated 
Virtualization Details: TDVPS.VCPU_INDEX[7:0] 
Comments: Initialized at TD Init time hence controlled by Intel TDX 
Module. 

0x1 (ECX) Field Name: OSXSAVE 
Virtualization Type: Calculated 
Virtualization Details: CR4.OSXSAVE 
Comments: Calculated through XFAM hence controlled by Intel TDX 
Module. 

0xD (EBX) 
Sub-leaf 0x0 and 0x1 

Field Name: Max Bytes for Enabled Features 
Virtualization Type: Calculated 
Virtualization Details: Native 
Comments: Calculated through XFAM hence controlled by Intel TDX 
Module. 

0x80000000 (EAX) Field Name: Maxindex 
Virtualization Type: Native 
Virtualization Details: N/A 
Comments: Highest calling parameter for CPUID. Would only impact 
CPUID enumeration code with no security risk. 

0x80000001 (EDX) Field Name: SYSCALL/SYSRET in 64-bit Mode 
Virtualization Type: Native 
Virtualization Details: N/A 
Comments: All CPU families supporting Intel TDX would support 
syscall hence this would be always 1. 

0x80000008 (EAX) Field Name: Number of Linear Address Bits 
Virtualization Type: Native 
Virtualization Details: N/A 
Comments: Configured by the host VMM’s GPAW setting, virtualized 
by Intel TDX Module. 

 

We also reviewed the impact of REDUCE_VE on virtualization during live migration. 

●​ With REDUCE_VE, some CPUID values that were previously managed by Intel TDX 
Module can now be emulated by the VMM. While this introduces a theoretical security 
risk, we found no specific case where live migration created a vulnerability. 
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●​ For MSRs, REDUCE_VE can change the result of an operation from a #VE to a General 
Protection (#GP). However, we found no cases where this behavior would be 
different after live migration. 

Ciphertext Side Channels Via Live Migration APIs 
Another attack vector we considered was software-based ciphertext side channels that can 
bypass constant-time coding or potentially leak low-entropy values of registers. The 
tdh_export_* APIs could be vulnerable to such attacks if an attacker could export the same 
memory content, with the same key, and IV more than once.  

Imagine the following common code pattern to mitigate recovery of a cryptographic key with a 
side channel. The code prevents secret dependent leakage due to secret[i] with help of an 
AND gate masking. 

 

for(int i = 0; i < secret_len; i++) { 

    int val_if_secret_true = (some_value + secret[i]) * 2; 

    int mask = -(int)(secret[i] != 0); 

    *target_page = (val_if_secret_true & mask); 

} 

 

If a ciphertext side-channel attack learns the secret by capturing two ciphertext for 
target_page before and after the memory store and if they differ, it learns the value of the 
secret[i]. 

However, this attack is mitigated in these APIs because of the incrementing Initialization 
Vector (IV) counter. As an example, line 76 in tdh_export_mem.c shows iv_counter++ with a 
comment stating its to prevent reuse. 

// Increment the IV counter so we don't reuse a previous IV even if aborted 

    migsc_p->iv_counter++; 

 

As a result, two calculated ciphertext for a target memory page are expected to always have 
different values. 

We also considered the fact that there is no bounds checking for this counter, which means at 
some point it could reset to a prior value. Imagine the following attack scenario: 

1.​ Attacker blocks access to target_page 

https://ieeexplore.ieee.org/document/9833768
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2.​ Attacker exports a ciphertext_1 for target_page 
3.​ Attacker lets the loop execute for one iteration (can be done by repeatedly 

block/unblock access to target_page) 
4.​ Attacker executes tdh_export_* many times to increment the counter for 264 
5.​ Attacker exports a second ciphertext_2 for target_page with the same IV and Key 
6.​ If ciphertext_1 and ciphertext_2 differ, the attacker learns the secret[i] was set 

However, there is a big challenge to conduct this attack, which is the computational 
complexity of incrementing the counter 264 times. In tdh_export_mem, an attacker can 
increment this counter 512 times by every execution of this API (using GPA_ENTRY_OP_NOP).  

Further, the Intel TDX module only allows a single thread to execute the migration stream, 
which limits an attacker’s ability to scale the hypothesized attack. 

// Lock the MIGSC link 

if (!(migsc_lock(&tdcs_p->f_migsc_links[migs_i]))) { 

  TDX_ERROR("Failed to lock tdcs_p->f_migsc_links[%u]\n", migs_i); 

  return_val = api_error_with_operand_id(TDX_OPERAND_BUSY, OPERAND_ID_MIGSC); 

  goto EXIT; 

} 

migsc_locked_flag = true; 

 

A rough calculation without parallelization shows that this is not practical assuming it takes 
10,000 cycles to increment the counter by 512 on each invocation of the API: 10,000 cycles * 
264 / (5 * 109) / (60 seconds * 60 minutes * 24 hours * 365 days) / 512 increments = 2284.93 
years. 

Exploiting Spectre Gadgets Past VMLAUNCH/VMRESUME 
We mentioned in Bug 11 that two of the Spectre gadgets we identified were not exploitable. 
We tried to develop a working exploit for one of these gadgets which would have allowed a 
guest TD to leak memory of the VMM via executing an RDMSR instruction which is emulated by 
the Intel TDX Module RDMSR exit handler and the results are output to the guest TD. This attack 
vector could have been easy to exploit considering that the output of the RDMSR is forwarded 
to the TD guest and that it can easily encode any forwarded value to cache accesses in the 
TD memory space.  

However, our exploit code did not result in leaking OOB memory. After reporting the issue to 
Intel, they confirmed that speculation does not continue past VMLAUNCH or VMRESUME 
instructions, which confirms our observation. 
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Recommendations 
In this section, we discuss some of the recommendations for improving the security of the 
Intel TDX Module. Some recommendations focus on ways to reduce the attack surface of the 
Intel TDX Module while others suggest enablement of additional security technologies and 
known best practices. 

Memory Safety Mitigations via Segmented Linear Address Space 
Defense-in-depth approaches are crucial to ensure mitigation against potentially 
undiscovered memory safety vulnerabilities. This is especially important because Intel TDX 
Module firmware is not developed in a safe programming language like Rust, and Spectre 
attacks can violate memory bounds checking.  

The SEAM mode can read/write to all private memories that are mapped to the keyhole in the 
linear address. This means if there is a memory safety bug or Spectre gadget in the Intel TDX 
Module, the attacker can construct arbitrary memory addresses that target various physical 
memory (with HKIDs) and read arbitrary memory including TD private memory. 

Control Flow Integrity (CFI) 

The Intel TDX module supports coarse-grain CFI based on Intel CET. The backward edge is 
protected by the CET shadow stack, and the forward edge by the landing pad ENDBRANCH 
instruction. These features make it difficult for an attacker to turn memory safety 
vulnerabilities into code execution inside the Intel TDX Module. The main caveat is that the 
landing pad instruction only provides coarse-grain CFI, hence an attacker may still be able to 
construct code reuse attacks.  

One way to efficiently address this limitation is to apply FineIBT, which combines the Intel CET 
landing pad instruction with cheap software label checks. As claimed by the authors, the 
performance overhead of this approach is less than 2%, and it has already been deployed in 
the Linux kernel. 

Guard Pages 

Guard pages are a common defensive mitigation to prevent out-of-bounds memory primitives 
at the top-level memory region categorization. For example, threads typically have their own 
stack and these stacks are often mapped contiguously in a single large pool. A large stack 
overflow (or a small overflow at the top of the stack) can access the adjacent thread’s stack. 
Guard pages can be inserted between these stacks to prevent this OOB access from 
accessing inter-thread memory. 

https://dl.acm.org/doi/abs/10.1145/3607199.3607219
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These pages are typically implemented by separating each region by a single page width, 
then mapping in a page table entry that falls in this gap with permissions set such that the 
page is marked not present. No backing memory is required for the guard page and thus the 
only cost is a single PTE and a small portion of the virtual address space. 

We recommend that Intel add similar guard pages between each thread’s stack region. 
Currently these are separated by the CET shadow stack pages but these pages are still 
marked read-only. This prevents cross-thread linear OOB writes but does not prevent 
cross-thread linear OOB reads. We demonstrated this in Vulnerability 2 and Bug 1. The 
top-level memory regions (stack, global, code, keyhole) are already separated by unmapped 
memory and don’t need additional guard pages. 

Software Fault Isolation (SFI) 

A limitation of guard pages is that they do not protect against non-linear OOB violations—if an 
attacker can construct arbitrary addresses due to memory indexing overflow or Spectre 
gadgets, they can go over the guard pages. 

One solution to this is to apply software fault isolation in addition to guard pages. In the Intel 
TDX Module, map_pa is essentially calculating a linear address. This linear address is never 
supposed to reach memory beyond an nGB region (there is no supergiant page mapping). If 
we can efficiently and reliably check that every memory access is within a nGB bounds, it 
should be possible to mitigate OOB memory safety violations (and Spectre gadgets) so that 
an attacker cannot overflow a linear memory address into an arbitrary region. 

In x86_64, this bounds checking operation is almost free. Based on NaCL, one can simply 
encode all memory accesses as the following and implicitly enforce such bounds checking 
operation: 

 

basereg + indexreg * scale + disp32 

 

For example, in this pseudo-instruction: 

 

add $0x00abcdef, %ecx 

mov %eax, disp32(%RZP, %rcx, scale) 

 

As a result, every memory access is limited to a 100G region, so that the memory that is 
mapped for other VPs or the TD private memory (e.g., during calling various APIs) is not 
accessible to a OOB vulnerability. 

https://www.usenix.org/legacy/event/sec10/tech/full_papers/Sehr.pdf


 

​ Page 74 of 84 

This potentially prevents OOB reads (including Spectre v1 gadgets) in a way that an attacker 
can only read what is supposed to be accessed by Intel TDX Module, for a lot of APIs, this is 
just metadata, not user data. 

One caveat is that right now mig_*_keys are mapped inside the TDCS, which are 
highly-privileged credentials that, if leaked, lead to full compromise of TD security. But if SFI 
works above, you can also map those credentials to a separate linear space in a different 100 
GB region, so they are not reachable directly. 

SFI comes with execution overhead, although modern hardware extensions like Intel CET and 
MPK can be used to reduce the execution cost, more research and experimentation is 
required to assess if this is a practical solution. 

Reducing TCB via Attestable Global Feature Disablement 
One of our learnings in this engagement is that the Intel TDX Module TCB is growing with 
every new feature (Live migration, TD Partitioning, TDX Connect, etc.), and this growth 
introduces a large attack surface for users. This is problematic in several scenarios: 

●​ A feature may not be used by all customers, but vulnerabilities in the Intel TDX Module 
remain exploitable regardless. 

●​ The Intel TDX Module sometimes receives functionality before other components are 
ready (e.g., MigTD, Host and Guest Kernel Support), so while a feature is not even 
usable, the attack surface is present. 

●​ Completely addressing vulnerabilities in the Intel TDX Module can be time consuming 
due to IPU and TCB Recovery cycles, leaving customers with no mitigation option until 
patches are applied. 

We believe that the Intel TDX Module should have a set of global flags that are sticky, 
configured during initialization, and attestable. These flags could allow a host to enable only 
used features, enable only used interfaces, and lock TD attributes. This could limit the attack 
surface on a compromised host. 

Examples include: 

●​ Host VMM could disable the migration feature 
●​ Host VMM disables loading of debuggable TDs via a global flag 
●​ Host VMM disables loading of migratable TDs via a global flag 

Currently, multiple Intel TDX Module features are already opted-in by the host VMM: 

●​ TD Migration is opted-in by the TD's MIGRATABLE attribute. 
●​ TD Partitioning is opted-in by configuring the number of L2 VMs to a non-0 value. 
●​ TDX Connect is opted-in at the global level (tdh_sys_config and tdh_sys_update 

input flag) and per-TD. 
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●​ Perfmon events filtering is a VMM-configured feature. 

We recommend also supporting global enable/disable flags to remove the possibility that 
TD security may be impacted by a feature, even if that feature is disabled for that specific TD, 
and the fact that a certain feature is globally disabled should be attestable. 

Enablement or disablement could be performed during tdh_sys_init or earlier (e.g., 
PSEAMLDR, sticky MSR bits). This also potentially requires refactoring of the Intel TDX Module 
firmware to ensure that code related to a disabled feature is not reachable via any API / user 
input. 

Challenges with Reflecting Platform Configuration in Attestation Reports 
Currently, the attestation report is largely static. If platform configuration is updated via 
runtime μcode patches, the changes are not reflected in the report until the TD Quoting SGX 
enclave is restarted. While TDQuotes generated after that enclave restart will reflect SVN 
changes in trusted components, a critical gap exists: there is no notification mechanism to 
inform the guest VM when to initiate a new TD Quote. 

This gap forces an implicit trust in Cloud Service Providers (CSPs) to provide timely updates to 
TCB components. If the platform is patched for a known vulnerability, there is no way to 
guarantee the guest VM can verify that the system is running the safer version before a TCB 
component is compromised during that vulnerable period. Similarly, no notification 
mechanism exists to alert a guest VM of underlying TCB changes following a live migration. 

While the Intel TDX Live Migration TCB is measured and included in the attestation report, it is 
crucial to understand that this TCB is a combination of the Intel TDX LM MigTD binary and 
the Migration Policy provided by the platform owner. Intel provides a reference MigTD 
implementation, but the current Intel TDX architecture does not enforce rules on the policy 
nor does it authenticate the MigTD binary.  

These components are measured and reported, but it is fully the customer's responsibility to 
review this information and establish trust. CVM customers must carefully review the source 
of the MigTD binary and the security implications of the Migration Policy, verifying both as 
part of their attestation verification process. 

Intel has recently published a proposal where the MigTD is not under the control of the CSP 
but is integrated into the TDX Module. 

Memory Safe Language and Formal Verification 
The Intel TDX Module and NP/P-SEAMLDRs are written in C, which is not a memory safe 
language, and because of this considerable time was invested to review source code for 
memory safety issues. Formal verification of C code is problematic due to its memory model 
and direct interaction with hardware, which can result in undefined behavior. While tools exist, 
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such as Frama-C for analysis and CompCert for compilation, using a memory safe language, 
such as Rust, would have almost eliminated this entire class of vulnerabilities. 

Usage of unsafe in Rust would still need to be scrutinized but multiple vulnerabilities and 
bugs disclosed in this report would have not existed. 

Furthermore, multiple recommendations described above are included for the sole purpose of 
providing DiD against memory safety issues, which themselves increase complexity of the 
software and carry a non-zero impact to system performance. 

Memory safe languages, such as Rust, are already being used for the development of Intel’s 
MigTD and would be a great alternative for these codebases. Intel could rewrite the existing 
implementations, in a memory safe language, but allowing 3rd parties to develop their own 
TDX module provides the most flexibility. This would allow 3rd parties to select the language, 
build tools, desired features, and utilize analysis tools that meet their specific functional 
needs and security requirements. 

Disclosure Timeline 
Following our investigation, we discovered and disclosed several security vulnerabilities to 
Intel. Intel promptly assigned CVEs but set a public disclosure timeline of February 2026 for 
the following reasons: 

1.​ High-Risk Updates: Updates to the Intel TDX Module are inherently disruptive to 
production environments due to the module's high privilege level. Therefore, simply 
patching the binary is insufficient. Each cloud provider will need several months to test, 
qualify, and safely roll out the fix to their infrastructure. 

2.​ Customer Attestation: Any security fix that changes the TCB requires close 
coordination with customers. This collaboration is essential to give them time to 
update their attestation policies and prevent unexpected disruptions to their 
workloads. 

Additionally, some identified items (less critical bug fixes and some security weaknesses) are 
not included in the February 2026 release but are expected to be addressed in subsequent 
releases. 

As security researchers, we feel a responsibility to all Intel TDX users. We are adhering to 
Intel's timeline to ensure a proper mitigation is in place before the vulnerabilities are publicly 
detailed. 

We have verified that no Google CVM customers were exposed to vulnerability 1. Following 
the principle of least privilege, Live Migration support has never been enabled in our 
production environment. This can be independently verified through the hardware-rooted 

https://compcert.org
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Intel TDX attestation report generated on-demand. The Google Cloud log also stores 
immutable copies of Hardware rooted attestation reports for CVM instances created in the 
past. Google has written a blog post to provide guidance on how attestation can be used to 
verify SVNs and attributes. 

Furthermore, for vulnerability 2, 3, 4, and 5 we have verified that there has been no evidence 
of active exploitation of these vulnerabilities among Google CVM customers. 
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Appendix A 
The data structures used in by the Intel TDX Module for the SEAMCALL and TDCALL API located 
in include/auto_gen/op_state_lookup.c as seamcall_state_lookup and 
tdcall_state_lookup. Both tables are two-dimensional arrays of type bool_t so a couple of 
scripts were created to parse them into a more readable format. 

This table shows the different op_state of a TD and the available SEAMCALL API. The notes 
provide the primary transition API and next state. 

Operation Allowed SEAMCALLS Notes 

OP_STATE_UNINITIALIZED TDH_MNG_ADDCX_LEAF 
TDH_VP_FLUSH_LEAF 
TDH_MNG_INIT_LEAF 
TDH_SERVTD_BIND_LEAF 
TDH_SERVTD_PREBIND_LEAF 
TDH_IMPORT_STATE_IMMUTABLE
_LEAF 
TDH_MIG_STREAM_CREATE_LEAF 

TDH_MNG_INIT_LEAF transitions to 
OP_STATE_INITIALIZED 
 
TDH_IMPORT_STATE_IMMUTABLE_LEAF 
transitions to OP_STATE_MEMORY_IMPORT 
 
TDH_IMPORT_STATE_IMMUTABLE_LEAF 
transitions to OP_STATE_FAILED_IMPORT 

https://security.googlecloudcommunity.com/community-blog-42/beyond-confidential-establishing-trust-in-your-computing-environment-6290?linkId=23969517
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OP_STATE_INITIALIZED TDH_MEM_PAGE_ADD_LEAF 
TDH_MEM_SEPT_ADD_LEAF 
TDH_VP_ADDCX_LEAF 
TDH_MEM_PAGE_RELOCATE 
TDH_MEM_PAGE_AUG_LEAF 
TDH_MEM_RANGE_BLOCK_LEAF 
TDH_VP_CREATE_LEAF 
TDH_MNG_RD_LEAF 
TDH_MEM_RD_LEAF 
TDH_MNG_WR_LEAF 
TDH_MEM_WR_LEAF 
TDH_MEM_PAGE_DEMOTE_LEAF 
TDH_MR_EXTEND_LEAF 
TDH_MR_FINALIZE_LEAF 
TDH_VP_FLUSH_LEAF 
TDH_VP_INIT_LEAF 
TDH_MEM_PAGE_PROMOTE_LEAF 
TDH_MEM_SEPT_RD_LEAF 
TDH_VP_RD_LEAF 
TDH_MEM_PAGE_REMOVE_LEAF 
TDH_MEM_SEPT_REMOVE_LEAF 
TDH_MEM_TRACK_LEAF 
TDH_MEM_RANGE_UNBLOCK_LEAF 
TDH_VP_WR_LEAF 
TDH_SERVTD_BIND_LEAF 
TDH_SERVTD_PREBIND_LEAF 
TDH_MIG_STREAM_CREATE_LEAF 

TDH_MR_FINALIZE_LEAF transitions to 
OP_STATE_RUNNABLE 

OP_STATE_RUNNABLE TDH_VP_ENTER_LEAF 
TDH_MEM_SEPT_ADD_LEAF 
TDH_MEM_PAGE_RELOCATE 
TDH_MEM_PAGE_AUG_LEAF 
TDH_MEM_RANGE_BLOCK_LEAF 
TDH_MNG_RD_LEAF 
TDH_MEM_RD_LEAF 
TDH_MNG_WR_LEAF 
TDH_MEM_WR_LEAF 
TDH_MEM_PAGE_DEMOTE_LEAF 
TDH_VP_FLUSH_LEAF 
TDH_MEM_PAGE_PROMOTE_LEAF 
TDH_MEM_SEPT_RD_LEAF 
TDH_VP_RD_LEAF 
TDH_MEM_PAGE_REMOVE_LEAF 
TDH_MEM_SEPT_REMOVE_LEAF 
TDH_MEM_TRACK_LEAF 
TDH_MEM_RANGE_UNBLOCK_LEAF 
TDH_VP_WR_LEAF 
TDH_SERVTD_BIND_LEAF 
TDH_EXPORT_RESTORE_LEAF 
TDH_EXPORT_STATE_IMMUTABLE
_LEAF 
TDH_EXPORT_UNBLOCKW_LEAF 
TDH_MIG_STREAM_CREATE_LEAF 

TDH_EXPORT_STATE_IMMUTABLE_LEAF 
transitions to OP_STATE_LIVE_EXPORT 
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OP_STATE_LIVE_EXPORT TDH_VP_ENTER_LEAF 
TDH_MEM_SEPT_ADD_LEAF 
TDH_MEM_PAGE_RELOCATE 
TDH_MEM_PAGE_AUG_LEAF 
TDH_MEM_RANGE_BLOCK_LEAF 
TDH_MNG_RD_LEAF 
TDH_MEM_RD_LEAF 
TDH_MNG_WR_LEAF 
TDH_MEM_WR_LEAF 
TDH_MEM_PAGE_DEMOTE_LEAF 
TDH_VP_FLUSH_LEAF 
TDH_MEM_PAGE_PROMOTE_LEAF 
TDH_MEM_SEPT_RD_LEAF 
TDH_VP_RD_LEAF 
TDH_MEM_PAGE_REMOVE_LEAF 
TDH_MEM_SEPT_REMOVE_LEAF 
TDH_MEM_TRACK_LEAF 
TDH_MEM_RANGE_UNBLOCK_LEAF 
TDH_VP_WR_LEAF 
TDH_SERVTD_BIND_LEAF 
TDH_EXPORT_ABORT_LEAF 
TDH_EXPORT_BLOCKW_LEAF 
TDH_EXPORT_MEM_LEAF 
TDH_EXPORT_PAUSE_LEAF 
TDH_EXPORT_TRACK_LEAF 
TDH_EXPORT_UNBLOCKW_LEAF 

TDH_EXPORT_ABORT_LEAF transitions to 
OP_STATE_RUNNBALE 
 
TDH_EXPORT_ABORT_LEAF transitions to 
OP_STATE_PAUSED_EXPORT 
 
TDH_EXPORT_TRACK_LEAF transitions to 
OP_STATE_POST_EXPORT 

OP_STATE_PAUSED_EXPORT TDH_MEM_PAGE_RELOCATE 
TDH_MEM_RANGE_BLOCK_LEAF 
TDH_MNG_RD_LEAF 
TDH_MEM_RD_LEAF 
TDH_MEM_PAGE_DEMOTE_LEAF 
TDH_VP_FLUSH_LEAF 
TDH_MEM_PAGE_PROMOTE_LEAF 
TDH_MEM_SEPT_RD_LEAF 
TDH_VP_RD_LEAF 
TDH_MEM_PAGE_REMOVE_LEAF 
TDH_MEM_SEPT_REMOVE_LEAF 
TDH_MEM_TRACK_LEAF 
TDH_MEM_RANGE_UNBLOCK_LEAF 
TDH_EXPORT_ABORT_LEAF 
TDH_EXPORT_MEM_LEAF 
TDH_EXPORT_TRACK_LEAF 
TDH_EXPORT_STATE_TD_LEAF 
TDH_EXPORT_STATE_VP_LEAF 
TDH_EXPORT_UNBLOCKW_LEAF 

TDH_EXPORT_ABORT_LEAF transitions to 
OP_STATE_RUNNBALE 
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OP_STATE_POST_EXPORT TDH_MEM_PAGE_RELOCATE 
TDH_MEM_RANGE_BLOCK_LEAF 
TDH_MNG_RD_LEAF 
TDH_MEM_RD_LEAF 
TDH_MEM_PAGE_DEMOTE_LEAF 
TDH_VP_FLUSH_LEAF 
TDH_MEM_PAGE_PROMOTE_LEAF 
TDH_MEM_SEPT_RD_LEAF 
TDH_VP_RD_LEAF 
TDH_MEM_PAGE_REMOVE_LEAF 
TDH_MEM_SEPT_REMOVE_LEAF 
TDH_MEM_TRACK_LEAF 
TDH_MEM_RANGE_UNBLOCK_LEAF 
TDH_EXPORT_ABORT_LEAF 
TDH_EXPORT_MEM_LEAF 
TDH_EXPORT_UNBLOCKW_LEAF 

TDH_EXPORT_ABORT_LEAF transitions to 
OP_STATE_RUNNBALE 

OP_STATE_MEMORY_IMPORT TDH_MEM_SEPT_ADD_LEAF 
TDH_MNG_RD_LEAF 
TDH_MEM_RD_LEAF 
TDH_MNG_WR_LEAF 
TDH_MEM_WR_LEAF 
TDH_VP_FLUSH_LEAF 
TDH_MEM_SEPT_RD_LEAF 
TDH_VP_RD_LEAF 
TDH_MEM_SEPT_REMOVE_LEAF 
TDH_MEM_TRACK_LEAF 
TDH_VP_WR_LEAF 
TDH_IMPORT_ABORT_LEAF 
TDH_IMPORT_MEM_LEAF 
TDH_IMPORT_TRACK_LEAF 
TDH_IMPORT_STATE_TD_LEAF 

TDH_IMPORT_STATE_TD_LEAF transitions to 
OP_STATE_STATE_IMPORT 
 
TDH_IMPORT_TRACK_LEAF transitions to 
OP_STATE_POST_IMPORT 
 
TDH_IMPORT_MEM_LEAF transitions to 
OP_STATE_LIVE_IMPORT 
 
TDH_IMPORT_ABORT_LEAF transitions to 
OP_STATE_FAILED_IMPORT 
 
TDH_IMPORT_STATE_TD_LEAF transitions to 
OP_STATE_FAILED_IMPORT 

OP_STATE_STATE_IMPORT TDH_MEM_SEPT_ADD_LEAF 
TDH_VP_ADDCX_LEAF 
TDH_VP_CREATE_LEAF 
TDH_MNG_RD_LEAF 
TDH_MEM_RD_LEAF 
TDH_MNG_WR_LEAF 
TDH_MEM_WR_LEAF 
TDH_VP_FLUSH_LEAF 
TDH_MEM_SEPT_RD_LEAF 
TDH_VP_RD_LEAF 
TDH_MEM_SEPT_REMOVE_LEAF 
TDH_MEM_TRACK_LEAF 
TDH_VP_WR_LEAF 
TDH_IMPORT_ABORT_LEAF 
TDH_IMPORT_MEM_LEAF 
TDH_IMPORT_TRACK_LEAF 
TDH_IMPORT_STATE_VP_LEAF 

TDH_IMPORT_TRACK_LEAF transitions to 
OP_STATE_POST_IMPORT 
 
TDH_IMPORT_ABORT_LEAF transitions to 
OP_STATE_FAILED_IMPORT 
 
TDH_IMPORT_MEM_LEAF transitions to 
OP_STATE_LIVE_IMPORT 
 
TDH_IMPORT_STATE_VP_LEAF transitions to 
OP_STATE_FAILED_IMPORT 
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OP_STATE_POST_IMPORT TDH_MEM_SEPT_ADD_LEAF 
TDH_MEM_PAGE_RELOCATE 
TDH_MEM_RANGE_BLOCK_LEAF 
TDH_MNG_RD_LEAF 
TDH_MEM_RD_LEAF 
TDH_MNG_WR_LEAF 
TDH_MEM_WR_LEAF 
TDH_MEM_PAGE_DEMOTE_LEAF 
TDH_VP_FLUSH_LEAF 
TDH_MEM_PAGE_PROMOTE_LEAF 
TDH_MEM_SEPT_RD_LEAF 
TDH_VP_RD_LEAF 
TDH_MEM_PAGE_REMOVE_LEAF 
TDH_MEM_SEPT_REMOVE_LEAF 
TDH_MEM_TRACK_LEAF 
TDH_MEM_RANGE_UNBLOCK_LEAF 
TDH_VP_WR_LEAF 
TDH_SERVTD_BIND_LEAF 
TDH_IMPORT_ABORT_LEAF 
TDH_IMPORT_END_LEAF 
TDH_IMPORT_COMMIT_LEAF 
TDH_IMPORT_MEM_LEAF 

TDH_IMPORT_END_LEAF transitions to 
OP_STATE_RUNNBALE 
 
TDH_IMPORT_COMMIT_LEAF transitions to 
OP_STATE_LIVE_IMPORT 
 
TDH_IMPORT_MEM_LEAF transitions to 
OP_STATE_FAILED_IMPORT 
 
TDH_IMPORT_ABORT_LEAF transitions to 
OP_STATE_FAILED_IMPORT 

OP_STATE_LIVE_IMPORT TDH_VP_ENTER_LEAF 
TDH_MEM_SEPT_ADD_LEAF 
TDH_MEM_PAGE_RELOCATE 
TDH_MEM_PAGE_AUG_LEAF 
TDH_MEM_RANGE_BLOCK_LEAF 
TDH_MNG_RD_LEAF 
TDH_MEM_RD_LEAF 
TDH_MNG_WR_LEAF 
TDH_MEM_WR_LEAF 
TDH_MEM_PAGE_DEMOTE_LEAF 
TDH_VP_FLUSH_LEAF 
TDH_MEM_PAGE_PROMOTE_LEAF 
TDH_MEM_SEPT_RD_LEAF 
TDH_VP_RD_LEAF 
TDH_MEM_PAGE_REMOVE_LEAF 
TDH_MEM_SEPT_REMOVE_LEAF 
TDH_MEM_TRACK_LEAF 
TDH_MEM_RANGE_UNBLOCK_LEAF 
TDH_VP_WR_LEAF 
TDH_SERVTD_BIND_LEAF 
TDH_EXPORT_STATE_IMMUTABLE
_LEAF 
TDH_IMPORT_END_LEAF 
TDH_IMPORT_MEM_LEAF 

TDH_IMPORT_END_LEAF transitions to 
OP_STATE_RUNNBALE 
 
TDH_EXPORT_STATE_IMMUTABLE_LEAF 
transitions to OP_STATE_LIVE_EXPORT 
 
TDH_IMPORT_MEM_LEAF transitions to 
OP_STATE_LIVE_IMPORT 

OP_STATE_FAILED_IMPORT TDH_MNG_RD_LEAF 
TDH_MEM_RD_LEAF 
TDH_MNG_WR_LEAF 
TDH_MEM_WR_LEAF 
TDH_VP_FLUSH_LEAF 
TDH_MEM_SEPT_RD_LEAF 
TDH_VP_RD_LEAF 
TDH_MEM_PAGE_REMOVE_LEAF 
TDH_MEM_SEPT_REMOVE_LEAF 
TDH_VP_WR_LEAF 
TDH_IMPORT_ABORT_LEAF 

TDH_IMPORT_ABORT_LEAF transitions to 
OP_STATE_FAILED_IMPORT 
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Another table was created for the TDCALL API but not included here due to its simplicity. It 
showed that all states allowed both TDG_SERVTD_RD_LEAF, and TDG_SERV_TD_WR_LEAF except 
OP_STATE_PAUSED_EXPORT and OP_STATE_POST_EXPORT which only allowed 
TDG_SERVTD_RD_LEAF. 

Appendix B 
Example source code showing how excluding RCX from the clobber list can introduce bugs 
depending on usage and compiler optimization. 

// gcc version 14.2.0 

// gcc -O2 clobber.c 

// gcc -O1 clobber.c 

// gcc -Os clobber.c 

 

// clang version 19.1.7 

// clang -O1 clobber.c 

// clang -O2 clobber.c 

// clang -Os clobber.c 

 

#define _GNU_SOURCE 

#include <string.h> 

#include <stdint.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <signal.h> 

 

// #define INFINITE_LOOP_TEST 

// #define PAGE_FAULT_TEST 

 

// #define RCX_IN_INPUT_ONLY 

// #define RCX_IN_INPUT_AND_OUTPUT 

 

#ifdef RCX_IN_INPUT_ONLY 

static inline void tdx_memcpy(void *dst, uint64_t dst_bytes, void *src, uint64_t 

nbytes) { 

   volatile uint64_t junk_a, junk_b; 

 

   asm volatile("rep; movsb;" 

                : "=S"(junk_a), "=D"(junk_b) 

                : "c"(nbytes), "S"(src), "D"(dst) 

                : "memory"); 

} 

#endif // RCX_IN_INPUT_ONLY 

 

#ifdef RCX_IN_INPUT_AND_OUTPUT 
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static inline void tdx_memcpy(void *dst, uint64_t dst_bytes, void *src, uint64_t 

nbytes) { 

   volatile uint64_t junk_a, junk_b, junk_c; 

 

   asm volatile("rep; movsb;" 

                : "=S"(junk_a), "=D"(junk_b), "=c"(junk_c) 

                : "c"(nbytes), "S"(src), "D"(dst) 

                : "memory"); 

} 

#endif // RCX_IN_INPUT_AND_OUTPUT 

 

#define ARRAY_SIZE 64 

uint8_t dst[ARRAY_SIZE] = {42}; 

uint8_t src[ARRAY_SIZE] = {73}; 

 

void sigsegv_handler(int signum, siginfo_t *si, void *context) { 

 

   ucontext_t *uc = (ucontext_t *)context; 

 

   printf("[-] test failed: sigsegv rip: 0x%llx, rcx: 0x%llx\n", 

uc->uc_mcontext.gregs[REG_RIP], uc->uc_mcontext.gregs[REG_RCX]); 

   exit(-1); 

} 

 

int main(int argc, char *argv[]) { 

 

   struct sigaction sa; 

   sa.sa_flags = SA_SIGINFO; 

   sa.sa_sigaction = &sigsegv_handler; 

   sigaction(SIGSEGV, &sa, NULL); 

 

#ifdef PAGE_FAULT_TEST 

   int count = 64; 

 

   for (int i = 0; i < count; i++) { 

       tdx_memcpy(dst, sizeof(dst), src, count); 

       count--; 

   } 

#endif // PAGE_FAULT_TEST 

 

#ifdef INFINITE_LOOP_TEST 

   for (int i = 0; i < ARRAY_SIZE; i++) { 

       tdx_memcpy(dst, sizeof(dst), src, i); 

   } 

#endif // INFINITE_LOOP_TEST 

 

   printf("[+] test passed\n"); 
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   return 0; 

} 

 


