

IOT Device Integration Guide
Setting up your IoT device to run an example script

Using GCP Console and the gCloud command-line tool

Contents

Introduction 3

Preliminary Setup 3
Create an account on Google Cloud Platform (if needed) 4
Set up required libraries on the device 4
Create a public/private key pair 5
Install and initialize the Google Cloud SDK 7

Using GCP Console for setup tasks 9
Create a project 9
Configure the project for Cloud IoT Core and Cloud Pub/Sub 11
Create and configure a device registry 12
Add devices to the registry 13

Using gCloud for setup tasks 16
Create a project 16
Configure the project for Cloud IoT Core and Cloud Pub/Sub 17
Create and configure a device registry 17
Add devices to the registry 18

Testing the setup by running sample code 18

Troubleshooting 21
Check TLS Connectivity 21

For more information visit cloud.google.com/partners/become-a-partner/technology-track 2

Introduction
This IoT Device Integration Guide is a companion to the IoT Partner Quickstart which provides an
overview of Cloud IoT Core and other key Google Cloud Platform (GCP) products and services. That
document also includes a list of technical articles and other resources that will be helpful to developers
who want to put their integrated device to work.

See the Documentation Quicklist for a complete list of conceptual overviews, tutorials, APIs, and
reference documentation for Google Cloud Platform products. In addition to the Quicklist, here are some
IoT-specific guides and overviews:

This guide summarizes the preliminary setup requirements and shows you how to register and test a
device using either the Google Cloud Platform Console (GCP Console) or the gCloud command-line tool.
Each of these approaches has its own section in this guide. Other approaches, including using REST APIs,
will be covered in a future release of this document.

This hands-on guide includes these topics:

● Preliminary Setup

● Using GCP Console for setup tasks

● Using gCloud for setup tasks

● Testing the setup by running sample code

● Troubleshooting

The goal of this document is to help you get a device set up and working with Cloud IoT Core as quickly
as possible and yet provide enough background information to answer questions you might have.

Tip To get a device set up as quickly as possible without any additional context, see the IoT Device
Integration Cheatsheet. The Cheatsheet provides a summary of commands that you can
copy/paste/edit with your own project name and other details.

Preliminary Setup
Before you get started, you should:

1. Create a Google Cloud Platform account (if necessary). If you already have an account on GCP, you’ll
need to know your logon account name (typically, your business email address) and your password to
use either GCP Console or gCloud.

2. Set up the required libraries needed by the device for connectivity (MQTT libraries, for example) and
authentication (JWT libraries). The specific libraries and versions vary by hardware platform, OS,
programming language, and application development environment.

For more information visit cloud.google.com/partners/become-a-partner/technology-track 3

https://www.cloudconnect.goog/docs/DOC-28939
https://www.cloudconnect.goog/docs/DOC-28865
https://www.cloudconnect.goog/docs/DOC-28961
https://www.cloudconnect.goog/docs/DOC-28961

3. Create the public/private key pair and have them ready for use. You’ll need the public key (or its
certificate) to associate with device when you add it to the registry, and the private key must be
available on the device at runtime.

4. Install and initialize the Google Cloud SDK. This step is required only if you plan to use the gCloud
command-line tool. However, Google recommends having the gClouthe gCloud command-line tool
because it is convenient to use, to augment your interactions with the GCP Console. For example, to
test your device’s connections to the Cloud IoT Core and the messages sent to Cloud Pub/Sub, you
can use gCloud to pull subscriptions and make sure the events were queued.

Create an account on Google Cloud Platform (if needed)

Regardless of the approach you plan to use to develop your devices—GCP Console, gCloud command-line
tool, REST APIs, or specific client language and client APIs—you must have an account on Google Cloud
Platform. If you do not have an account on Google Cloud Platform, create one now before proceeding. To
create the account on the Google Cloud Platform Free Tier for use while developing and testing your
device with GCP and Cloud IoT core:

1. Browse to cloud.google.com/free and click Try It Free.

2. Enter your company email account and create a password. These comprise your login credentials to
the GCP Console [console.cloud.google.com], so keep them private and secure.
○ The Free Tier requires a credit card number or other billing information. The $300 credit is applied

to your Billing account as a credit. Each project you create on GCP is always associated with a
Billing account.

3. Follow the other prompts on this simple setup. See GCP documentation (Platform Overview >
Concepts) for more information about creating an account and getting started with GCP.

Set up required libraries on the device

To support secure communications and authentication between the device and the Google Cloud
Platform, the device needs the libraries appropriate for the underlying hardware and OS for:

TLS 1.2 Transport Layer Security (TLS) is a protocol for securing communications channels between
client and server processes. Version 1.2 of TLS is specifically required. With TLS on the
device, specific well-known ports are used for encrypted communications:

● Port 443 is the default for HTTP over TLS (HTTP/S)
● Port 8883 is the MQTT over TLS (secure-mqtt)

JWT A JSON Web Token (RFC 7519) is a JSON (JavaScript Object Notation)-formatted security
artifact. In the context of Google Cloud Platform and Cloud IoT Core specifically, a JWT
facilitates the authentication of the client (the device) to Google Cloud. Download the
appropriate JWT library for the language you plan to use for your application. JWT libraries
are available for Go, Java, JavaScript, .NET, Node.js, Perl, Python, Ruby, and more.

For more information visit cloud.google.com/partners/become-a-partner/technology-track 4

https://cloud.google.com/free/docs/frequently-asked-questions
https://cloud.google.com/free/
https://console.cloud.google.com/
https://cloud.google.com/docs/overview/
https://cloud.google.com/docs/overview/
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc7519
https://www.json.org/
https://jwt.io/

 MQTT Message queuing telemetry transport is a lightweight publish/subscribe messaging
transport and the most frequently used communications mechanism for IoT. MQTT has
lower latency and utilizes less bandwidth as wells as faster throughput than HTTP (see
Cloud IoT > Concepts > Protocols for more information). MQTT also supports binary data,
which is not supported by HTTP. For example, HTTP requires Base64-encoded (ASCII) text
for the public/private keys, consuming more network and CPU resources.

Cloud IoT Core supports both MQTT and HTTP. To use MQTT on your device, you must
install the appropriate MQTT client library. See the libraries page of the mqtt/mqtt.github.io
GitHub wiki for details.

As an example of the libraries needed to run the Python sample application cloudiot_mqtt_example.py on
a Linux device, the following might all be installed:

Library and version example Description

google-api-python-client 1.7.4
google-auth-httplib2 0.0.3
google-auth 1.5.1
google-cloud-pubsub 0.37.2

Google client libraries (Python client) to support authentication,
authorization, and specific client API calls

cryptography 2.3.1 Python library of cryptographic primitives

pyjwt 1.6.4 A Python implementation of RFC-7519 (JWT)

paho-mqtt 1.3.1 Open source Eclipse Paho client implementation of MQTT

The GoogleCloudPlatform repository on GitHub has examples for Python, Java, and other client libraries.
Be sure to set up your device with the required software and library versions and follow any other
instructions in the appropriate README files before trying to run any of the sample applications.

Note: If your customers will need to set up your device with any of the prerequisites, you must provide
step-by-step documentation so they can do so quickly and easily.

Create a public/private key pair

Devices must have several security artifacts, including a JWT library as discussed above to support
authentication at runtime. In greatly oversimplified terms, a private key residing on the device is used to
sign a JWT that gets sent to Google Cloud Platform, and Google Cloud Platform uses the device’s public
key to verify the source of the JWT as the device.

For more information about how IoT uses JWT and for an overview, see:

● Device Security

● How-to Guides > Getting Started

To create the private/public key pair, Google recommends using OpenSSL, typically available by default
with any Linux distribution. If the device does not have OpenSSL available on the underlying OS, you must

For more information visit cloud.google.com/partners/become-a-partner/technology-track 5

http://mqtt.org/
https://cloud.google.com/iot/docs/concepts/protocols
https://github.com/mqtt/mqtt.github.io/wiki/libraries
https://github.com/mqtt/mqtt.github.io/wiki/libraries
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/iot/api-client/mqtt_example/cloudiot_mqtt_example.py
https://www.eclipse.org/paho/
https://github.com/GoogleCloudPlatform/
https://cloud.google.com/iot/docs/concepts/device-security
https://cloud.google.com/iot/docs/how-tos/getting-started
https://www.openssl.org/source/

download and install it so you can generate the necessary keys or certificates.

Note: Google recommends generating these security artifacts on the device itself to avoid transferring
the private key from another machine to the device for optimal security.

Cloud IoT Core supports keys generated using either RSA and EC (elliptic curve) algorithms:

● RSA is one of the first public/private cryptosystems. It is still widely used today, and is included in
most client libraries. RSA keys can be quite large and can consume lots of CPU, however, so take
this into account when integrating your specific device. Figure 1 shows an example of using
OpenSSL to generate RSA key pairs and a self-signed X.509 certificate.

● EC uses elliptic curve algebra to create public/private key pairs. EC is a newer approach that
results in smaller key sizes and less CPU consumption, so EC generated keys are better for
devices with very limited resources. EC keys may require additional client libraries. Figure 2
shows an example of using OpenSSL to generate public/private keys using an EC algorithm.

Figure 1 shows an example of using OpenSSL directly on an example device to generate a private/public
key pair using the RSA algorithm. First, a 2048-bit private key is created (labpi_private.pem in Figure 1),
and then the private key is used to create a matching public key (labpi_public.pem). At this point, the
private key on the device would be usable for signing token (a JWT) using RS256 and submitting to GCP
(to the MQTT bridge), where its matching public key (labpi_public.pem, assuming it has been uploaded to
the registry and associated with this device) would be used by Cloud IoT Core to verify the key used for
the JWT.

Figure 1. Creating a private/public key pair (RSA) and self-signed public key (X.509 certificate)

pi@lab-pi:~ $ openssl genrsa -out labpi_private.pem 2048
Generating RSA private key, 2048 bit long modulus
......................+++
.....+++
e is 65537 (0x010001)
pi@lab-pi:~ $ openssl rsa -in labpi_private.pem -pubout -out labpi_public.pem
writing RSA key
pi@lab-pi:~ $ openssl req -x509 -nodes -newkey rsa:2048 -keyout labpi_private.pem -days 365
-out labpi_cert.pem -subj "/CN=unused"
Generating a 2048 bit RSA private key
..........................+++
.................................+++
writing new private key to 'labpi_private.pem'

As an alternative, the third command shown in Figure 1 creates a private key also called
labpi_private.pem (thus, overwriting the key created in the first line) and then generates a self-signed
certificate (the -x509 option for OpenSSL’s req command (which typically is used to create CSRs
(certificate signing requests) that would be sent to commercial CAs or to an internal CA controlled by
your organization, which in turn creates a certificate attesting to the identity of the requesting entity. In
this case, the certificate is self-signed (self-signed certificates are recommended for test and
development environments only). This is then uploaded to the registry (identified as RS256_X509). This

For more information visit cloud.google.com/partners/become-a-partner/technology-track 6

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

particular generated self-signed certificate will expire in 365 days, after which it can no longer verify
tokens sent from the device that have been signed using the matching private key (if not specified, the
default for -x509 is 30 days).

The distinguished name attributes are not used (as shown with common name set to “unused” in this
example) because (as mentioned) the certificate is not used in the context of TLS to authenticate the
client, but rather is used by the client to create the JSON Web Token (JWT) that gets sent from the client
to Google Cloud. The -nodes option (“no DES”) means don’t encrypt the private key (encrypting the private
key would require that a password be used each time the key is accessed, ie., each time the JWT needs to
get created and signed).

Figure 2 shows the equivalent OpenSSL commands to generate private/public key pairs using elliptic
curve algorithms rather than RSA. You would follow the same process to upload the public key to the
registry for the device as detailed above, but would specify ES256 or ES256_X509 depending on whether
you use the public key or the X.509 certificate.

Figure 2. Creating a private/public key pair (EC) and self-signed public key (X.509 certificate)

openssl ecparam -genkey -name prime256v1 -noout -out ec_private.pem
openssl ec -in ec_private.pem -pubout -out ec_public.pem
openssl pkcs8 -topk8 -inform PEM -outform DER -in rsa_private.pem -nocrypt > rsa_private_pkcs8
openssl pkcs8 -topk8 -inform PEM -outform DER -in ec_private.pem -nocrypt > ec_private_pkcs8

If the registry already exists at this point, you can use the GCP Console or gCloud command-line to add
the device with its associated public key to the registry.

Note If you create the public/private key pair on a machine other than the actual device, you must
securely transfer the private key to the device and delete the key from the system on which it
was initially created. The private key must be associated exclusively with the intended device
to ensure the security of the system.

Install and initialize the Google Cloud SDK

The Google Cloud SDK includes the gCloud tool for command-line use with Google Cloud Platform.
Before you will be able to use gCloud commands for useful tasks, you must:

1. Install Google Cloud SDK on your development machine, the device, or both.

2. Run the initialization script to authenticate the gCloud client to your account on the Google Cloud
Platform. You’ll be prompted for your GCP account and password. Assuming successful
authentication, the command-line spawns a browser session and opens to an “authentication
success” page, as shown in Figure 3:

For more information visit cloud.google.com/partners/become-a-partner/technology-track 7

https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/docs/initializing

Figure 3. Authenticated with Google Cloud SDK success page

3. Dismiss the page and return to the console session to continue setting up gCloud. If your GCP
account already has one or more Projects created you can select the one you want to use with
gCloud, or you can create a new project. When the initialization process completes, you’ll see some
useful tips displayed and the command prompt returned to its ready state.

Figure 4. The gCloud command-line interface

To get started using gCloud with your Cloud IoT Core, see Using gCloud for setup tasks.

For more information visit cloud.google.com/partners/become-a-partner/technology-track 8

Using GCP Console for setup tasks
If you have completed all Preliminary Setup steps for the device, you can configure Cloud IoT Core. The
general process is as follows (each of these encompasses several sub-steps):

● Create a project

● Configure the project

● Create a device registry

● Register your device

As an alternative to using the GCP Console for these tasks, you can use the gCloud command-line.

Note The steps below assume the default GCP Console, without any selections ‘pinned’ to the top of
the menu.

Create a project

The GCP Console uses Projects as an organizing mechanism to keep track of the GCP products and
services (Cloud IoT Core, Cloud Pub/Sub), APIs, and other cloud-based objects (such as the registry for
your devices) that interact as whole. For more information about Projects, see How-to Guides > Creating
and Managing Projects.

1. Log in to Google Cloud Platform (GCP) by opening your browser to console.cloud.google.com and
entering your GCP account credentials (Google account and password) on the login page.

2. Click the Google Cloud Platform navigation menu icon (the top-left-most icon that looks like three
horizontal bars, sometimes referred to as the “hamburger” icon) and then click Home at the top of the
list. The Home view displays information for the selected project:

3. Create a new project by clicking the Project name displayed in the drop-down at the top of the Home
page (to the right of Google Cloud Platform) to open the Select a project page:

For more information visit cloud.google.com/partners/become-a-partner/technology-track 9

https://docs.google.com/document/d/1CtsAAw5UWTK9v7HiwCDtho_F2-EQTY-dndJJZyPGrPg/edit#heading=h.2clcj6xpxhn6
https://docs.google.com/document/d/1CtsAAw5UWTK9v7HiwCDtho_F2-EQTY-dndJJZyPGrPg/edit#heading=h.kmxiumenw6dc
https://cloud.google.com/products/
https://cloud.google.com/products/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects
http://console.cloud.google.clom/

4. Click NEW PROJECT. The New Project page displays a generated Project Name in the entry field and
shows a generated Project ID that will be associated with the name once created.

You can accept these if you like but they are not especially user friendly and cannot be changed later
(see screenshot above) so it’s best to replace both values before proceeding.

5. Click the EDIT link (to open the New Project information page:

For more information visit cloud.google.com/partners/become-a-partner/technology-track 10

6. Enter meaningful values for the Project Name and a Project ID as shown in the screenshot above.
The Location (parent organization or folder) field applies only to those accounts that have been set
up in the context of G Suite or Cloud Identity & Access Management so disregard if not relevant.

7. Click CREATE. A Project number is generated and assigned to your project by Google. (The Home
view screenshot above shows a complete example.) If you accepted the pre-populated Project Name
and Project ID, be sure to make a note of them. See Google Cloud Platform Overview > Concepts for
more information about GCP and Projects.

Each project is linked to a specific Billing account.

● If you have only one Billing account, the projects you create are automatically linked to it by default.

● If you have multiple Billing accounts you must modify the project’s Billing settings to link the project
to a specific Billing account. Do so before configuring the other details of the project so that the
appropriate Billing account is linked to the project.

Configure the project for Cloud IoT Core and Cloud Pub/Sub

Cloud IoT Core integrates with Cloud Pub/Sub to handle message queuing needed by IoT use cases. The
APIs for both of these services must be enabled for your project. In addition, the notification mechanisms
of Cloud Pub/Sub must be configured. The steps in this section guide you through these configurations.
These steps assume that the appropriate project is selected and displayed in the Home page of the GCP
Console.

8. Click the Navigation menu and select APIs & Services > Library to open the API Library. There are
many ways to filter the pages of cards available but for simplicity’s sake, filter by Category > Big data
which contains both APIs needed.

9. Click the Google Cloud IoT API card to open its details and then click ENABLE. The API is enabled on
your project, and the GCP Console redisplays your project open to APIs & Services > Dashboard.

10. From the Dashboard, click the ENABLE APIS AND SERVICES link to return to the API Library. Click
Category > Big data, click the Cloud Pub/Sub API card to open its details, and then click ENABLE.

When the Dashboard redisplays, visually confirm that both APIs have been enabled for the project.

The next step is to configure the queuing (topic and subscription in Cloud Pub/Sub) and set permissions
so that Cloud IoT Core can use the queue.

10. Click the Navigation menu and scroll down to the BIG DATA section of the menu.

11. Select Pub/Sub > Topics to open the Topics panel, and then click the CREATE TOPIC link to open the
Create a topic page. Give the topic a name and click Create when finished. For example:

neodada-test-topic

For more information visit cloud.google.com/partners/become-a-partner/technology-track 11

https://cloud.google.com/docs/overview/
https://support.google.com/cloud/answer/6293499#enable-billing

12. The topic is added to the list in the Topics panel.

11. Click the topic to select it (checkmark in the box) and then click the pop-up menu to the right side to
display a menu. From this menu, select Permissions to open an info panel for the topic’s permissions
(the PERMISSIONS tab of the info panel).

○ In the Add members entry field (on the PERMISSIONS tab of the info panel), add the following
service account:
cloud-iot@system.gserviceaccount.com

This step enables Cloud IoT Core to access and use Cloud Pub/Sub. The protocol bridge’s
internal MQTT queuing mechanism will be able to send messages to Cloud Pub/Sub topics.

○ From the drop-down selector adjacent to the Add members field, select the following role:
Pub/Sub Publisher

○ Click Add to save the topic and its permission settings.

Create and configure a device registry

The device registry is Cloud IoT Core mechanism for managing and obtaining data from devices. Each
registry is associated with a specific region and contains details about all the devices that can connect to
it. Currently, US-Central1 is the only region available for North America.

1. Click the Navigation menu and scroll down to the BIG DATA section of the menu.

2. Select IoT Core.

○ If the IoT Core has no registries defined yet, you are prompted to create one. Click Create a
device registry to open the Create a registry page.

○ If any registries already exist, the Device registries page displays. Click the CREATE DEVICE
REGISTRY link to open the Create a registry page.

3. In the Registry ID field, enter a meaningful name for the registry.

○ For the Region, select from those available in the drop-down selector.

○ For Protocol, select MQTT, HTTP, or both.

○ For Default telemetry topic, select the topic created in the steps above from the drop-down
selector.

○ For Device state topic, select the same topic.

3. Click Create to save the settings. Here’s a completed example (shown in Edit mode, after creation):

For more information visit cloud.google.com/partners/become-a-partner/technology-track 12

mailto:cloud-iot@system.gserviceaccount.com

This screenshot shows a test setup
in which device telemetry data and
device state data both target the
same topic:

projects/neodada-testbed-001
/topics/neodada-test-topic

For a non-test use case, you may
want to set up separate topics for
each of these types of data.

Also note that the Topic name as
shown in this interface is not the
name that should be specified in
your code. For telemetry data, you
must prepend the topic with the
following:

/devices/{device-id}/events

For example:

/devices/lab-rasp-pi-device/
events/projects/neodada-test
bed-001/topics/neodada-test-
topic

Data from each device in a given
registry is thus distinguishable
from other devices in the same
registry.

Add devices to the registry

You can now add one or more devices to this registry. Assuming that the GCP Console is open to the IoT
Core > Registries page:

To add a device to the Registry:

For more information visit cloud.google.com/partners/become-a-partner/technology-track 13

1. Double-click on the name (Registry ID) in the list to open the Registry details page:

2. Click Create device to open the Create a device entry page.

○ In the Device ID field, enter a name for the device.

○ For Authentication, choose how you will input the device’s public key or its certificate if you are
using that mechanism. Select the Public key format that was used to create the public/private
key pair or the certificate. You must have the public key or certificate available to be uploaded or
to copy/paste:

■ Select Upload to select the file on your local file system in the Public key value field (click
Browse to navigate to the file and select it).

■ Select Enter manually to copy/paste the content from the PEM file into the Public key value
text entry field:

For more information visit cloud.google.com/partners/become-a-partner/technology-track 14

○ Optionally, set a date and time in the future at which the key will no longer be valid. (This feature
and the fact that up to three different keys can be stored for each device at any time is intended
to support key rotation.)

3. Click Create to add the device to the registry.

Note GCP Console will alert you if the Public key format selected in the page is incorrect for the
actual PEM file name/path or its content uploaded or pasted into the page. You cannot add a
device if its public key is not formatted as specified.

At this point, your device has been set up in the registry and you can test your configuration by running an
example. See Testing the setup by running sample code for details.

For more information visit cloud.google.com/partners/become-a-partner/technology-track 15

Using gCloud for setup tasks
If you have completed all Preliminary Setup steps for the device including the steps to Install and initialize
the Google Cloud SDK, you can configure Cloud IoT Core using the gCloud command-line tool. The
general process is as follows:

● Create a project

● Configure the project

● Create a device registry

● Register your device

The steps below assume you have created the private/public key pair and that these are available on the
system that is being used to execute the gCloud commands. See Using OpenSSL to create public/private
key pair for details about how to create and do that now, before continuing.

See the gCloud Overview and the gCloud Reference for more information about using gCloud.

For the example run-through in this section, the Google Cloud SDK is running on the device (a Raspberry
Pi 3+ with 32-GB microSD and Raspbian OS) and all keys and other artifacts were also created on the
device, along with the Python example (cloudiot_mqtt_example.py). See the IoT Device Integration
Cheatsheet for a summary of all commands needed to integrate a device.

Create a project

See gCloud reference > projects for details.

gcloud projects create <project-id> --name=<project-name>

For example:

./google-cloud-sdk/bin/gcloud create neodada-testbed-001 --name=neodada-dot-org-deploy

Progress displays in the terminal, for example:

Create in progress for
[https://cloudresourcemanager.googleapis.com/v1/projects/neodada-project-001].

Waiting for [operations/cp.5349365235427647091] to finish...done.

Many of the examples shown in this section assume that the gCloud client has been configured for the
specific project. If necessary, set your gCloud installation to point to the new project:

gcloud config set project <project-id>

For example:

./google-cloud-sdk/bin/gcloud config set project neodada-testbed-001

For more information visit cloud.google.com/partners/become-a-partner/technology-track 16

https://docs.google.com/document/d/1CtsAAw5UWTK9v7HiwCDtho_F2-EQTY-dndJJZyPGrPg/edit#heading=h.8tgwl7yu2dle
https://docs.google.com/document/d/1CtsAAw5UWTK9v7HiwCDtho_F2-EQTY-dndJJZyPGrPg/edit#heading=h.8tgwl7yu2dle
https://cloud.google.com/sdk/gcloud/
https://cloud.google.com/sdk/gcloud/
https://cloud.google.com/sdk/gcloud/reference/
https://www.cloudconnect.goog/docs/DOC-28961
https://www.cloudconnect.goog/docs/DOC-28961
https://cloud.google.com/sdk/gcloud/reference/projects/
https://cloudresourcemanager.googleapis.com/v1/projects/neodada-project-001

Configure the project for Cloud IoT Core and Cloud Pub/Sub

The project has now been created but it still needs to be granted appropriate permissions so that Cloud
Pub/Sub can send events to Cloud IoT Core. To do that:

gcloud projects add-iam-policy-binding <project-id>
--member=<user>|<group>|serviceAccount:<email>|<domain>:<domain> --role=<role>

For example:

gcloud projects add-iam-policy-binding neodada-testbed-001
--member=serviceAccount:cloud-iot@system.gserviceaccount.com--role='roles/pubsub.publisher'

Note that you can use the gcloud services list command to see the full list of APIs that can be enabled
from gCloud. Having done that, you can now use the gcloud services enable command as shown here:

gcloud services enable cloudiot.googleapis.com

gcloud services enable pubsub.googleapis.com

For example:

pi@lab-pi:~ $./google-cloud-sdk/bin/gcloud services enable pubsub.googleapis.com
Operation "operations/acf.e6050272-e2f4-4753-b689-50a39062e4e8" finished successfully.

pi@lab-pi:~ $./google-cloud-sdk/bin/gcloud services enable cloudiot.googleapis.com
Operation "operations/acf.ac6448a0-737b-49b4-9bad-29168658655d" finished successfully.

See gCloud reference > services > enable for details.

The next step is to configure the queuing (topic and subscription in Cloud Pub/Sub).

gcloud pubsub topics create <topic-name>

gcloud pubsub create subscriptions <subscription-name> --topic=<topic-name>

For example:

pi@tech-lab-pi:~/dev $ gcloud pubsub topics create neodada-test-topic
Created topic [projects/neodada-testbed-001/topics/neodada-test-topic].
pi@tech-lab-pi:~/dev $ gcloud pubsub subscriptions create neodada-test-sub
--topic=neodada-test-topic
Created subscription [projects/neodada-testbed-001/subscriptions/integration-test-sub].
pi@tech-lab-pi:~/dev $

Create and configure a device registry

Cloud IoT Core uses a registry as the mechanism distinguish one set of devices from another, and within
each collection, to distinguish one device from another. Telemetry messages from each device are

For more information visit cloud.google.com/partners/become-a-partner/technology-track 17

https://cloud.google.com/sdk/gcloud/reference/services/enable
https://cloud.google.com/sdk/gcloud/reference/services/enable

queued up to a specific topic as configured for the registry. With gCloud, you can create the device
registry and specify the topic to associate with the registry as follows:

gcloud iot registries create <registry-name> --region=us-central1 --project=<project-id>
--event-notification-config=topic=<topic-name>

For example:

gcloud iot registries create neodada-devices --region=us-central1 --project=neodada-testbed-001
--event-notification-config=topic=neodada-test-topic

See gCloud reference > iot > registries for details.

Add devices to the registry

This step assumes you have the public key for the device available. The gCloud command accepts the
path to the public key and adds it to the device configuration on Google Cloud. The device must have the
matching private key at runtime.

In the gCloud command, specify whether RSA (type=RS256) or EC (elliptical curve, type=ES256) algorithm
was used to create the key. The syntax varies by only the type field:

gcloud iot devices create <device-name> --project=<project-name> --region=us-central1
--registry=<registry-name> --public-key path=<path-to-filename_pub.pem>, type=[rs256 | es256]

For example, to add a device to the registry with its public key:

gcloud iot devices create neodada-field-station-027 --project=my-iot-project
--region=us-central1 --registry=neodada-devices --public-key path=neodada_pub.pem,type=rs256

Alternatively, if the public key uploaded to Google Cloud Platform IoT registry was created using an
elliptical curve (EC) algorithm, the statement might be as shown here (assuming the companion private
key was created using the same algorithm as detailed in Create a public/private key pair for the device).

gcloud iot devices create neodada-field-station-028 --project=my-iot-project
--region=us-central1 --registry=neodada-devices --public-key path=neodada_ecpub.pem,type=es256

At this point, your device has been set up in the registry and you can test your configuration by running an
example. See Testing the setup by running sample code for details.

Testing the setup by running sample code
To verify your completed setup, you can run one of the samples available on Google Cloud Platform
GitHub. Samples are available for both MQTT and HTTP and using various clients.

For more information visit cloud.google.com/partners/become-a-partner/technology-track 18

https://cloud.google.com/sdk/gcloud/reference/iot/registries/

The Google Cloud Platform repository on GitHub has many other examples, including the End-to-End
example (cloudiot_pubsub_example_mqtt_device.py) demonstrated in An Overview Cloud IoT Core
(Google I/O '18). Here are two direct links to the iot/api-client samples for Java and Python, respectively.

● GoogleCloudPlatform/java-docs-samples

● GoogleCloudPlatform/python-docs-samples

The example run-through in this section uses the cloudiot_mqtt_example.py script from the
GoogleCloudPlatform/python-docs-samples directory.

To run any of the MQTT example scripts, you need Google’s certificates available on the device to verify
the certificate received in response to device’s connection request can be trusted. To obtain these root
certificates, downloading Google’s roots.pem using one of the following:

wget https://pki.goog/roots.pem

curl https://pki.goog/roots.pem > roots.pem

For many of the MQTT examples, the ca_cert parameter is set to roots.pem by default, and the scripts
typically look for the file in the local path. How you handle this for your own code is up to you.

If you’ve set up your device properly, you can run the example script as follows:

python cloudiot_mqtt_example_device.py --project_id=<your-project-id> --registry_id=<your-registry>
--cloud_region=us-central1 --device_id=<your-device-id> --private_key_file=<your_private-key>.pem
--algorithm=<RS256 | ES256> --message_type=<event | state>

For example:

python cloudiot_mqtt_example_device.py --project_id=neodada-testbed-001
--registry_id=neodada-devices --cloud_region=us-central1 --device_id=lab-rasp-pi-device
--private_key_file=labdevice_priv.pem --algorithm=RS256 --message_type=event

The screenshot below shows a successful sample run:

For more information visit cloud.google.com/partners/become-a-partner/technology-track 19

https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/iot/api-client/end_to_end_example
https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/iot/api-client/end_to_end_example
https://youtu.be/7kpE44tXQak?t=1092
https://youtu.be/7kpE44tXQak?t=1092
https://github.com/GoogleCloudPlatform/java-docs-samples/tree/master/iot/api-client
https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/iot/api-client
https://github.com/GoogleCloudPlatform/python-docs-samples

To confirm that the messages sent by the script are actually being queued to Cloud Pub/Sub, you can use
the gCloud command to pull from the subscriptions:

gcloud pubsub subscriptions pull <subscription-name>

For example:

gcloud pubsub subscriptions pull neodada-test-pub

The console should display some of the payload content that was posted to the topic associated with the
subscription, as shown here:

For more information visit cloud.google.com/partners/become-a-partner/technology-track 20

Troubleshooting
Various issues can arise, and you may not always see useful error messages. The example script may
seem to run just fine, but if the device doesn’t have a Last seen timestamp listed in the GCP Console
(Registry details page), then something is not working.

For example, the Project Name might
erroneously be passed as the Project_ID
without raising any error message. The only
indication you may have that something is not
working is an empty date-time field (-) for the
Last seen column.

A good place to start is to check TLS connectivity from the device to GCP. See Troubleshooting in the
Google Cloud documentation for many other common issues and solutions.

Check TLS Connectivity

Use OpenSSL from the client device to query the MQTT endpoint.

openssl s_client -connect mqtt.googleapis.com:8883

If TLS is in place correctly, you should see an entire stream of detail including the server certificate (the
Base64-encoded ASCII string), the certificate chain, and many other details, including the TLS version
returned from the endpoint. For example:

pi@lab-pi:~/iot $ openssl s_client -connect mqtt.googleapis.com:8883
CONNECTED(00000003)
depth=2 OU = GlobalSign Root CA - R2, O = GlobalSign, CN = GlobalSign
verify return:1
depth=1 C = US, O = Google Trust Services, CN = Google Internet Authority G3
verify return:1
depth=0 C = US, ST = California, L = Mountain View, O = Google LLC, CN
= mqtt.googleapis.com
verify return:1

Certificate chain
 0 s:/C=US/ST=California/L=Mountain View/O=Google LLC/CN=mqtt.googleapis.com
 i:/C=US/O=Google Trust Services/CN=Google Internet Authority G3
 1 s:/C=US/O=Google Trust Services/CN=Google Internet Authority G3

For more information visit cloud.google.com/partners/become-a-partner/technology-track 21

https://cloud.google.com/iot/docs/troubleshooting

 i:/OU=GlobalSign Root CA - R2/O=GlobalSign/CN=GlobalSign

Server certificate
-----BEGIN CERTIFICATE-----
MIIEjDCCA3SgAwIBAgIIb4AVAEu46mMwDQYJKoZIhvcNAQELBQAwVDELMAkGA1UE
BhMCVVMxHjAcBgNVBAoTFUdvb2dsZSBUcnVzdCBTZXJ2aWNlczElMCMGA1UEAxMc
R29vZ2xlIEludGVybmV0IEF1dGhvcml0eSBHMzAeFw0xODA4MjEwODA1MDBaFw0x
ODExMTMwODA1MDBaMG0xCzAJBgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlh
MRYwFAYDVQQHDA1Nb3VudGFpbiBWaWV3MRMwEQYDVQQKDApHb29nbGUgTExDMRww
. . .
-----END CERTIFICATE-----
subject=/C=US/ST=California/L=Mountain View/O=Google LLC/CN=mqtt.googleapis.com
issuer=/C=US/O=Google Trust Services/CN=Google Internet Authority G3

No client certificate CA names sent
Peer signing digest: SHA256
Server Temp Key: X25519, 253 bits

SSL handshake has read 2964 bytes and written 261 bytes
Verification: OK

New, TLSv1.2, Cipher is ECDHE-RSA-CHACHA20-POLY1305
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
 Protocol : TLSv1.2
. . .

IoT Device Partner Integration Guide 1.0 © 2018 Google LLC. All rights reserved. Google and the Google logo are
trademarks of Google Inc. All other company and product names may be trademarks of the respective companies
with which they are associated. [10-2018-en-GCP-PARTNERS-QS-03]

Last updated: 16-October-2018

For more information visit cloud.google.com/partners/become-a-partner/technology-track 22

