
WHITE PAPER

LINUX ENDPOINT HARDENING TO PROTECT AGAINST
MALWARE AND DESTRUCTIVE ATTACKS

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 2

Background ... 3

Platform Hardening .. 4

Kernel Module Signing .. 4

Sysctl Configuration Parameters ... 4

Kernel Module Loading Enforcement ... 5

SSH Attack Surface Reductions ... 6

Cron Jobs Review and Permission Restrictions.. 7

SUID Executables ... 7

Mounted Partitions Permissions Options ... 8

SELinux .. 9

AppArmor ...11

Configure Iptables to Enforce Local Firewall Rules ... 12

Disable Unnecessary Services .. 13

NFS Server Hardening ...14

File Integrity Monitoring (FIM) ..14

Credential Hardening ... 15

Root Account Hardening .. 15

Identify and Protect Privileged Accounts .. 15

Strong Password Enforcement ... 15

Interactive Logon Restrictions .. 16

Auditing and Visibility .. 17

System Auditing Configurations .. 17

Log Execution Timestamps (Shell History) .. 18

Session Recording ... 18

Conclusion ... 19

Contents

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 3

The Linux operating system and supporting applications are becoming a prime target for
adversaries. Linux is used as the operating system backend for many components that
automate facets of critical infrastructure, on-premises and cloud-based technologies, and
Internet of Things (IoT) devices.

This document provides recommendations to protect Linux endpoints against adversary
techniques such as lateral movement, privilege escalation, and deploying rootkits or modified
kernel modules that possess either a malicious or destructive capability. Drovorub (https://
media.defense.gov/2020/Aug/13/2002476465/-1/-1/0/CSA_DROVORUB_RUSSIAN_GRU_
MALWARE_AUG_2020.PDF) is an example of a Linux malware toolset that includes a kernel
module rootkit that can be leveraged for command and control (C2) communications, file
download and upload capabilities, and the execution of arbitrary commands.

Similar to Windows-based architectures, security protections need to be aligned for Linux
endpoints to harden credentials, access methods, protect the kernel, and bolster auditing and
visibility of activities.

Background

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 4

TABLE 1. References to enable Secure Boot and Kernel Module Signing.

Linux Distributions Reference Links

Linux Kernel https://www.kernel.org/doc/html/v4.15/admin-guide/module-signing.html

Red Hat Enterprise Linux https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_
updating_the_kernel/signing-kernel-modules-for-secure-boot_managing-monitoring-and-updating-the-kernel

Ubuntu https://ubuntu.com/blog/how-to-sign-things-for-secure-boot

Fedora https://docs.fedoraproject.org/en-US/Fedora/23/html/System_Administrators_Guide/sect-signing-kernel-modules-for-
secure-boot.html

Gentoo https://wiki.gentoo.org/wiki/Signed_kernel_module_support

Oracle https://www.oracle.com/technical-resources/articles/linux/signed-kernel-modules.html

Debian https://wiki.debian.org/SecureBoot

Kernel Module Signing
As of Linux kernel version 3.7, signed kernel modules using digital signatures can be leveraged to enhance the security of Linux by
preventing unsigned and untrusted modules from loading and running. Kernel module signing can be configured within the .config file as
part of the CONFIG_MODULE_SIG configuration parameters. This type of trust chaining for kernel modules works in parallel with UEFI
Secure Boot being enabled, which protects the bootloader and firmware.

Example methods which can be used to configure trust-chains and enforce kernel module signing are referenced in Table 1.

Platform Hardening

Sysctl Configuration Parameters
Sysctl.conf is the main kernel configuration file on Linux
systems. The sysctl -p command can be used to modify
kernel parameters at runtime, which will s`tore the configuration
parameters within the /etc/sysctl.conf file.

The /etc/sysctl.conf file can also be manually edited, with the
added or removed parameters being loaded upon executing the
sysctl -p command.

Example parameters to include within the /etc/sysctl.conf
file to harden a Linux endpoint are referenced in Figure 1.

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 5

Disables IP forwarding
net.ipv4.ip_forward = 0

Disables packet redirect sending
net.ipv4.conf.all.send_redirects = 0
net.ipv4.conf.default.send_redirects = 0

Does not accept source routing
net.ipv4.conf.default.accept_source_route = 0
net.ipv4.conf.default.accept_source_route = 0

Enables reverse path filtering
net.ipv4.conf.all.rp_filter = 1
net.ipv4.conf.default.rp_filter = 1

Disables IPv6 router advertisements
net.ipv6.conf.all.accept_ra = 0
net.ipv6.conf.default.accept_ra = 0

Logs suspicious packets
net.ipv4.conf.all.log_martians = 1
net.ipv4.conf.default.log_martians = 1

Controls the System Request debugging functionality of the kernel
kernel.sysrq = 0

Controls whether core dumps will append the PID to the core filename (useful for debugging
multi-threaded applications)
kernel.core_uses_pid = 1

Enables TCP SYN Cookies
net.ipv4.tcp_syncookies = 1

Enables SYN-flood protections
net.ipv4.tcp_synack_retries = 5

Enables ExecShield protection
kernel.exec-shield = 2

Enable full address space randomization
kernel.randomize_va_space = 2

Prevent new modules from loading
kernel.modules_disabled = 1

FIGURE 1. Recommended sysctl configuration parameters.

FIGURE 2. Setting to disable new kernel modules from loading using sysctl.

Kernel Module Loading Enforcement
Within sysctl.conf, the Linux kernel can be configured to not allow for new modules to be loaded.

Another option for setting this configuration is referenced within Figure 3.

echo 1 > /proc/sys/kernel/modules_disabled

FIGURE 3. Setting to disable kernel module loading using /proc.

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 6

To change this configuration back to the default setting, the kernel.modules_disabled setting can be configured back to “0” – and a
reboot will need to occur.

While this configuration can certainly reduce the attack surface from an adversary loading malicious kernels (e.g., rootkits), this can also
impact legitimate applications that would need to be loaded after the hardened configuration is enforced.

Note: Some modules are not loaded at boot time – and may be loaded as part of normalized system operations. To ensure that legitimate and authorized modules can still be
loaded, modules can be defined either within the /etc/modules-load.d file or within a startup script (Figure 4).

SSH Attack Surface Reductions
Secure Shell (SSH) is a commonly used method to access and
administer Linux endpoints. Adversaries often use SSH to gain
initial access, maintain persistence, and laterally move.

Organizations should define policies and procedures to harden
SSH access methods for Linux endpoints. The following
recommendations should be considered:

• Least privileged access should be enabled for all SSH-
accessible accounts and groups, especially for automated
processes and remote access.

• To limit SSH access to Linux endpoints for only authenticated
non-root user accounts, set PermitRootLogin to "No" in the
/etc/ssh/sshd_config file.

• Implement user or group level restrictions for SSH access
to Linux endpoints through AllowUser, AllowGroup,
DenyUser, DenyGroup settings defined within the
/etc/ssh/sshd_config file.

• AuthenticationMethods configuration parameters in
the /etc/ssh/sshd_config file can be used to specify
authentication methods that can be utilized. Organizations
should consider defining more than one authentication method
in order to enforce a type of multi-factor authentication (MFA)
for accessing Linux endpoints.

• Cryptographic public key-based authentication (PKI) should be
configured along with a strong password to enable a form of
MFA to harden authentication access to a Linux endpoint when
SSH is required.

For this configuration, all users would need to create public
and private key pairs, and the keys would need to be added to
the endpoint before key-based authentication is enforced.
The example configuration (Figure 5) within the /etc/ssh/
sshd_config file will require a user to perform both password-
based and key-based authentication, enforcing a form of MFA
for connecting to the endpoint.

#!/bin/sh/
sleep <value>
insmod <module1> <module2> <module3>
echo 1 > /proc/sys/kernel/modules_disabled

AuthenticationMethods publickey,password

FIGURE 5. Require both public key and password-based authentication.

• Host-based firewalls should be enforced to limit origination
addresses that can connect to the SSH service on an endpoint.
This is strongly recommended for any Linux endpoints that have
SSH services exposed to the Internet or untrusted locations.
Iptables and nftables are Linux utilities that can be used to
configure IP packet filtering and limit SSH access from a
specific set of systems.

Alternatively, TCP wrappers could be used to implement packet
filtering and limit origination systems that can access SSH
services on Linux endpoints. TCP wrappers work by configuring
two files: /etc/hosts.allow and /etc/hosts.deny. It is
recommended to add “ALL” hosts to the hosts.deny file and only
the specific authorized hosts to the hosts.allow file.

• If there is not a requirement to use X11 applications, set
X11Forwarding to “No” in the /etc/ssh/sshd_config file.

• To limit the number of authentication attempts, set the
MaxAuthTries setting to “4” in the /etc/ssh/sshd_config file.

• Set ClientAliveInterval between 300-900 seconds (5-
15 minutes) in the /etc/ssh/sshd_config file and set
ClientAliveCountMax to “1”.

• To limit the risk of backdoor capabilities, set
AllowTcpForwarding to “No” in the /etc/ssh/sshd_config
file.

• To enhance auditing and visibility, set LogLevel to VERBOSE in
the in /etc/ssh/sshd_config file.

• To disable accounts with empty passwords from being able to
login, set PermitEmptyPasswords to “No” in the /etc/ssh/
sshd_config file.

FIGURE 4. Example startup script to load trusted modules.

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 7

Cron Jobs Review and Permission Restrictions
Cron jobs are used to set scheduled tasks on a Linux endpoint.
Cron jobs are often used by adversaries to establish a form
persistence or to elevate permissions by invoking processes or
modules to run within the context of the system. Organizations
should review and enforce visibility for cron jobs configured on
Linux endpoints.

The command referenced in Figure 6 can be used to list all the
cron jobs lon a Linux endpoint for a specific user:

crontab -u <username> -l

stat -c "%a %u %g" /etc/crontab | egrep -v
".00 0 0"

stat -c "%a %u %g" /etc/cron.d | egrep -v
".00 0 0"

chown root:root /etc/crontab
chmod og-rwx /etc/crontab
chown root:root /etc/cron.d
chmod og-rwx /etc/cron.d

cat /etc/crontab
ls -al /etc/cron.d
ls -al /etc/cron.hourly/
ls -al /etc/cron.daily/
ls -al /etc/cron.weekly
ls -al /etc/cron.monthly/

ls -al <path of the binary>

FIGURE 6. Listing Cronjobs for a user.

FIGURE 9. Command to verify permissions of /etc/crontab.

FIGURE 10. Command to verify permissions of /etc/cron.d.

FIGURE 11. Command to restrict read/write access to non-root accounts for cron
files and directory.

FIGURE 7. List all the cron jobs listed on a system.

FIGURE 8. Full permission listing for a binary.

The commands referenced in Figure 7 can be used to list all the
cron jobs configured on an endpoint:

The specific parameters associated with a cron job should also be
reviewed, including any binaries or modules that re configured for
execution, as these files should only be writable by the root user.
The full permissions for any executable files configured as part
of a cron job can be listed by using the command referenced in
Figure 8.

Additionally, cron job file permissions should be reviewed. Read
access to cron files could provide adversaries with the ability to
gain insight on jobs that run on the endpoint, and could provide a
method to gain unauthorized privileged access or create binaries
or modules that will “blend in” with expected activities. Write
access to cron files could provide unprivileged users with the
ability to elevate privileges.

The command referenced in Figure 9 determines if the /etc/
crontab file has the correct permissions.

If the above command emits no output, then the system is
configured as recommended.

The command referenced in Figure 10 determines if the /etc/
cron.d directory has the correct permissions.

If the above command emits no output, then the system is
configured as recommended.

The commands referenced in Figure 11 will restrict access for
non-root accounts to the /etc/crontab file and the /etc/
cron.d directory.

SUID Executables
SUID (set owner USER ID on execution) is a file permission that
can be configured so that files will execute under the permissions
of the file owner. Files with SUID permissions are often used
by adversaries to escalate privileges and perform malicious
activities on a system. Although there are legitimate reasons to
have a binary with SUID, it is important to identify and review SUID
binaries on a regular basis.

Organizations should review all files on Linux endpoints that have
the SUID bit set. Checking SUID should be part of the regular
review process including post update/installation activity.

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 8

The commands referenced in Figure 12 can be used to search for SUID executables on a Linux endpoint.

The list of identified files should be reviewed for any binary that
may allow a user to escalate privileges to root. Any file editor,
compiler, or interpreter that can be used to read or overwrite a file
should also be reviewed. If not required, SUID permissions should
be removed for identified files.

Mounted Partitions Permissions Options
Once an adversary gains a foothold on a compromised endpoint with
non-privileged access, as part of reconnaissance, an adversary may
look for partitions with weak or misconfigured permission settings
with the goal of executing binaries from storage locations for
potential privilege escalation or lateral movement.

Organizations should review the existing configured options on
mount points and evaluate the following conditions:

• Temporary storage mount points (e.g., /tmp, /var/tmp, dev/
shm, removable media), especially world-writable directories,
should be restricted from running executable binaries and
from creating setuid files to avoid non-root users executing

find / -perm -u=s -type f 2>/dev/null
df --local -P | awk '{if (NR!=1) print $6}
find <partition> -xdev -type f -perm -4000

FIGURE 12. Commands to search for SUID executables.

TABLE 2. Recommended mount point options.

Mount Point Mount Options

/tmp/tmp nosuid, noexec, nodev

/home/home nodev

/dev/shm/dev/shm nosuid, noexec, nodev

/var/var defaults

/var/log/var/log defaults (nosuid, noexec, nodev – can be added)

/var/tmp/var/tmp nosuid, noexec, nodev

/var/log/audit/var/log/audit defaults (nosuid, noexec, nodev – can be added)

Any Removable Media Partition nosuid, noexec, nodev

privileged programs or introducing potentially malicious
software on the endpoint. Blocking the execution of binary files
and creation of setuid files can be done by using “noexec” and
“nosuid” mount options.

• Temporary storage mount points are not intended to support
block or character special device files, and users should be
restricted from creating these filetypes. Executing character
or block special device filetypes from file systems increase
the opportunity for unprivileged users to elevate permissions.
Blocking the creation of special device filetypes can be
accomplished using the “nodev” mount option.

• Directories (e.g., /var/log, /var/log/audit) where log
data is usually stored are recommended to have a separate
partition configured to protect against resource exhaustion
issues (where logs can significantly grow), is minimal, and the
storage capacity is sized appropriately, creating a separate
partition can be planned at a later stage or during a scheduled
maintenance window.

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 9

Focus should be aligned with the following options being assigned
to temporary storage mount points (e.g., /tmp, /var/tmp, dev/
shm, removable media):

• noexec: does not allow for direct execution of any binaries on
the mounted filesystem.

• nodev: does not interpret character or block special devices on
the file system.

• nosuid: does not allow set-user-identifier or set-group-
identifier bits to take effect.

To verify what options a mounted filesystem is utilizing, the mount
command can be leveraged. It is also possible to include the grep
command to limit the output for a particular mount point (Figure 13).

mount | grep /tmp
/usr/.tempdisk on /tmp type ext4
(rw,nosuid,nodev,noexec,relatime)

Command to set SeLinux to Enforcing mode
sudo setenforce 1

Parameters to add to the /etc/selinux/
config file
SELINUX=enforcing

Command to set SeLinux to Enforcing mode
sudo setenforce 0

Parameters to add to the /etc/selinux/
config file
SELINUX=permissive

Parameters to add to the /etc/selinux/
config file
SELINUX=disabled

touch /.autorelabel

FIGURE 13. Verifying the mount options for /tmp mount point.

FIGURE 14. SELinux enforcement mode.

FIGURE 15. SELinux permissive mode.

FIGURE 16. SELinux disabled mode.

FIGURE 17. Autolabeling command.

The output from the mount command will display the currently
mounted filesystems, the filesystem type the device is mounted
as, and the options that are utilized.

If the recommended options are not present for the mount
point, then organizations should configure the file system
table (/etc/fstab) to add the recommended options for the
associated mount points.

Note: If the mount points referenced in Table 2 do not exist, evaluate the feasibility
to create another partition, mount it, and then apply the recommended options.
When modifying an existing folder (e.g., /var/log) it is advisable to bring the
system to emergency mode by ensuring that auditd is not running.

SELinux
SELinux is a Mandatory Access Control (MAC) security module for
Red Hat Enterprise Linux (RHEL) and CentOS. SELinux can control
access based on labels assigned to files and processes. Labels
are configured in the form of user:role:type:level.

To verify if SELinux is installed and configured, the sestatus
command can be leveraged. Additionally, the getenforce
command can be leveraged to determine the configuration state
of SELinux.

SELinux Modes
The configuration of SELinux is managed within the /etc/
selinux/config file. Within the configuration file, SELinux can
be configured based upon the following modes:

• Enforcing: SELinux security policies are enforced for each
system call. All actions will be logged to /var/log/audit/
audit.log.

• Permissive: SELinux prints warnings instead of enforcing. All
actions will be logged to /var/log/audit/audit.log.

• Disabled: No SELinux policies are loaded. No actions will be
logged

Note: A system restart is required to switch between SELinux modes.

If SELinux is not already running in ”Enforcing” mode, it is
recommended to first configure SELinux in “Permissive” mode
and ensure that autolabeling is enforced (Figure 17) upon reboot.

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 1 0

SELinux Policies
An SELinux policy is a set of rules that define the directories,
files, and ports that can be accessed by a process or application.
SELinux polices can be created either automatically or manually.

Targeted mode within the /etc/selinux/config file is the
default mode for SELinux. In this mode, SELinux targets only
selected processes that exist in configured domains.

SELinux Context
To make access control decisions, SELinux uses “context” to
identify the associated resources relevant to an application or
process. Context is the collection of security related information
assigned to each object (e.g., directory, file, process, port).

system_u:object_r:net_conf_t:s0

semanage login -a -s <SELinux-User> <account>

seinfo -<role>_r -x

FIGURE 18. SELinux context format.

FIGURE 19. SELinux user context change command.

FIGURE 20. SELinux role association command.

• The command ls –Z will display the SELinux security context files.

• The command ps –efZ will display the SELinux security context
for running processes.

• The command id –Z will display the SELinux security context
for users.

SELinux uses four context parameters that are enforced
by policies:

• Users: Every account, process, or application in Linux can be
linked to one “SELinux user” mapping.

To change a user association to a different SELinux user
mapping, the command referenced in Figure 19 can be leveraged:

• Roles: Defines what an SELinux user can do with an object in
a specified domain or type. To check what domains or types
a specific role can access, the seinfo command can be
leveraged (Figure 20).

• Type / Domain: Logical grouping of objects (type) or processes
(domain) to apply permissions.

To change the SELinux context for objects or processes, the
chcon command can be leveraged (Figure 21).

chcon -t <type-name>_t <file path / name>

sudo semodule -l

Disable a module
semodule -d <Module Name>

Enable a module
semodule -e <Module Name>

Remove a module
semodule -r <Module Name>

FIGURE 21. SELinux type modification command example.

FIGURE 22. Command to view the list of SELinux loaded modules.

FIGURE 23. Commands to manage SELinux loaded modules.

• Sensitivity: Defines multiple levels of security between level c0
and c3. This context is used only when the SELinux policy type is
set to MLS mode (non-default).

SELinux Modules
SELinux uses modules to load permission configurations. To view
the list of loaded modules, the command referenced in Figure 22
can be leveraged.

The commands referenced in Figure 23 can be leveraged to
control modules.

For additional information about SELinux, reference:
https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux/7/html/selinux_users_and_administrators_
guide/index

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 1 1

AppArmor
AppArmor is another method to apply MAC for Ubuntu and SuSE
Linux systems. Unlike SELinux, with AppArmor, MAC rules for
applications are applied by file paths instead of within security
contexts (labels). AppArmor works by profiling an application to
determine what an application needs to access, and the capabilities
required to function as part of normal baselined operations.

AppArmor profiles can allow capabilities like network access, raw
socket access, and the permission to read, write, or execute files
based on matching paths. Profiles (stored in the /etc/apparmor.d
directory) can also be configured and customized based upon
specific permissions required by an application. Profiles can run in
“complain mode” or “enforce mode.”

• Enforce mode (default setting for the profiles that come with
Ubuntu) prevents applications from taking restricted actions.

• Complain mode allows applications to take restricted actions
and creates a log entry recording the action within /var/log/
messages.

To install AppArmor, the command referenced in Figure 24 can
be leveraged.

sudo apt install apparmor

apparmor_status

specific profile
sudo aa-enforce /path/to/bin

all profiles
sudo aa-enforce /etc/apparmor.d/*

FIGURE 24. Command to install AppArmor

FIGURE 25. Command to verify if AppArmor is installed and configured.

FIGURE 26. Command to verify if AppArmor is installed and configured.

To verify if AppArmor is running and configured, the command
referenced in Figure 25 can be leveraged.

For any profiles that are not configured for “enforce mode”, the
commands reference in Figure 26 can be leveraged.

Note: The aa-complain command can be substituted to change the profiles from
“enforce mode” to “complain mode”.

The apparmor_parser command can be used to load a profile
into the kernel. It can also be used to reload a currently loaded
profile (-r option) after modifying it to have the changes take
effect (Figure 27).

reload a profile:
sudo apparmor_parser -r /etc/apparmor.d/
profile.name

reload all profiles:
sudo systemctl reload apparmor.service

sudo ln -s /etc/apparmor.d/<profile.name> /
etc/apparmor.d/disable/
sudo apparmor_parser -r /etc/
apparmor.d/<profile.name>

sudo systemctl stop apparmor.service
sudo update-rc.d -f apparmor remove

sudo systemctl start apparmor.service
sudo update-rc.d apparmor defaults

FIGURE 27. Commands to reload an AppArmor profile.

FIGURE 28. Commands to disable an AppArmor profile.

FIGURE 29. Commands to unload the AppArmor kernel module.

FIGURE 30. Commands to re-enable AppArmor.

The /etc/apparmor.d/disable directory can be used along with
the apparmor_parser -r option to disable a profile (Figure 28).

To disable AppArmor and unload the kernel module, the
commands referenced in Figure 29 can be leveraged:

To re-enable AppArmor, the commands referenced in Figure 30
can be leveraged.

For additional information about AppArmor, reference:
https://ubuntu.com/server/docs/security-apparmor

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 1 2

Configure Iptables to Enforce Local Firewall Rules
Iptables is the local firewall enforcement control for Linux endpoints. Iptables configurations can be leveraged to control both
inbound and outbound layer 3 communications in Linux.

Figure 31 contains example commands to configure specific conditions using iptables in Linux.

List iptables rules
sudo iptables -L -v -n

Flush command to clean-up iptables rules
iptables –flush

Modify the default chain policy to DROP (default = ACCEPT)
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT DROP
Note: When DROP is configured for both INPUT and OUTPUT, for every defined communication flow,
two (2) rules (one for incoming and one for outgoing) must be configured.

Only allow Inbound SSH from a specific subnet
iptables -A INPUT -i eth0 -p tcp -s <XXX.XXX.XXX.XXX/XX> --dport 22 -m state --state
NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp --sport 22 -m state --state ESTABLISHED -j ACCEPT

Only allow Outbound SSH to a specific subnet
iptables -A OUTPUT -o eth0 -p tcp -d < XXX.XXX.XXX.XXX/XX> --dport 22 -m state --state
NEW,ESTABLISHED -j ACCEPT
iptables -A INPUT -i eth0 -p tcp --sport 22 -m state --state ESTABLISHED -j ACCEPT

Block a specific IP address Inbound
iptables -A INPUT -s <XXX.XXX.XXX.XXX> -j DROP

Block a specific IP address Outbound
iptables -A OUTPUT -d <XXX.XXX.XXX.XXX> -j DROP

Block a specific IP address and port Outbound
iptables -A OUTPUT -p tcp -d <XXX.XXX.XXX.XXX> --dport <XXXX> -j DROP

FIGURE 31. Example iptables configurations.

Once configured, iptables rules need to be saved using either of the commands referenced in Figure 32.

/sbin/service iptables save
/etc/init.d/iptables save

FIGURE 32. Commands to save iptables rules.

The scope of ports and protocols to configure within iptables will
vary based upon the intended use-case of the Linux endpoint.
As a best-practice, the goal of an iptables configuration would
enforce a default chain policy of DENY, with only allow-list
communications configured bi-directionally.

Note: Linux distributions can use different firewall services and firewall
management tools. To avoid potential conflicts with the different services, it
is recommended to run only one firewall service on a Linux endpoint. Common
modern firewall services and firewall management tools are noted below:
• RPM-based Linux distributions such as RHEL, CentOS, Fedora, SUSE and

OpenSUSE use firewalld by default. For additional details about firewalld,
reference https://firewalld.org/

• Uncomplicated Firewall (ufw) is available by default in Ubuntu distributions.
For additional details about ufw, reference https://wiki.ubuntu.com/
UncomplicatedFirewall

• Nftables is the default and recommended firewalling framework in Debian 10 and
later, and it replaces iptables. For additional details about nftables, reference
https://wiki.debian.org/nftables

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 1 3

Disable Unnecessary Services
Linux endpoints should be reviewed and hardened to protect against non-baselined services from being enabled and leveraged. To
see a listing of all enabled and running services on a Linux endpoint, the command service—status-all can be leveraged. Any running
services will have a “+” symbol associated (Figure 33).

 [+] acpid
 [-] alsa-utils
 [-] anacron
 [+] apparmor
 [+] apport
 [-] avahi-daemon
 [+] bluetooth
 [-] console-setup.sh
 [+] cron
 [+] cups
 [+] cups-browsed
 [+] dbus
 [+] gdm3
 [-] grub-common
 [-] hwclock.sh
 [+] irqbalance
 [+] kerneloops
 [-] keyboard-setup.sh
 [+] kmod
 [+] network-manager
 [+] openvpn
 [-] plymouth
 [-] plymouth-log
 [-] pppd-dns
 [+] procps
 [-] pulseaudio-enable-autospawn
 [-] rsync
 [+] rsyslog
 [-] saned
 [-] speech-dispatcher
 [-] spice-vdagent
 [+] udev
 [+] ufw
 [+] unattended-upgrades
 [-] uuidd
 [+] whoopsie
 [-] x11-common

FIGURE 33. Example output of running services.

To disable a specific service, the command systemctl—now
disable <service-name> can be leveraged.

Common Linux endpoint services that can be abused by adversaries
and should be considered in-scope for disabling include:

• avahi-daemon

• NFS

• rpcbind

• rsync

• smb

• telnet

Note: The services listed above can be used legitimately, therefore the business
justification for the services to remain enabled should be considered. To reduce
the attack surface of a Linux endpoint, if the services are not required for
operational purposes, they should be disabled. If the services cannot be disabled,
at a minimum, local firewall rules should be configured to restrict the scope of
inbound access to Linux endpoints for some of the common protocols and ports
noted below.
• NFS (TCP & UDP/2049)

• rpcbind (TCP & UDP/111)

• smb (TCP/445)

• telnet (TCP/22)

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 1 4

NFS Server Hardening
Network File Sharing (NFS) is a protocol that allows for directories
and files to be shared with Linux clients over a network.
Configuration parameters for an NFS server are stored within the
/etc/exports file.

Best practices for hardening an NFS server to prevent against
unauthorized access to the file and directory contents include:

• If directories must be mounted with the rw option (which allows
for both read and write requests on the NFS volume), to reduce
risks of ransomware or data being overwritten in a malicious
manner. ensure that the volumes and directories are not world-
writable

• Leverage the showmount command to review all exported
directories. If directories or paths that should not be
exportable are listed, restrictions can be defined within the
/etc/exports file.

File Integrity Monitoring (FIM)
Modern Linux platforms can leverage the Advanced Intrusion
Detection Environment (AIDE) utility to create a database of
files to verify their integrity—and to identify any newly created,
modified, or removed files. To generate an initial AIDE database to
baseline the filesystem, the aide —init or aideinit commands
can be leveraged.

Note: AIDE initialization will check directories and files defined within the /etc/
aide.conf file. To include additional directories or files within the database, and to
change any parameters, the /etc/aide.conf file can be edited and modified.

Once initialized, AIDE can be executed either manually (aide—
check or the aide -c /etc/aide/aide.conf —check
commands) or as part of a scheduled (cron) job within /etc/
crontab. The output will identify files that have been added,
removed, or modified since AIDE was last initiated or ran.
Example output is included within Figure 34. For any added,
removed, or modified files, the output from AIDE will provide
additional context about the directory and file attributes.

AIDE found differences between database and
filesystem!!
Verbose level: 6

Summary:
 Total number of entries: 286611
 Added entries: 8
 Removed entries: 4
 Changed entries: 28

FIGURE 34. Example AIDE output.

For additional information about AIDE, reference:
https://help.ubuntu.com/community/FileIntegrityAIDE

https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux/7/html/security_guide/sec-using-aide

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 1 5

Root Account Hardening
Organizations should not only limit the root account usage for
Linux endpoints, but also regularly review and monitor any root
account usage in the environment and perform best-practices
such as:

• configuring a strong password.

• enforcing a password rotation on a pre-defined interaval.

• setting a unique password for root accounts on all Linux
endpoints in the environment.

Identify and Protect Privileged Accounts
Organizations should review and document all accounts
configured on all Linux endpoints. All local accounts on a Linux
endpoint are listed in the files /etc/passwd and /etc/
sudoers. Any modifications to content within these files should
be reviewed to ensure that all accounts are authorized.

The UID (user identifier) value is used by Linux to identify a user.
Any user account that has the UID value set to 0 will have root
privileges. Organizations should check and ensure that the only
account configured on a Linux system with UID 0 is the default
root account. The command referenced in Figure 35 can be used
to identify accounts that have a UID value set to 0.

Strong Password Enforcement
Organizations should consider implementing mechanisms to
ensure strong passwords are used for all accounts on Linux
endpoints. The “Pam_cracklib.so” module can be used to
check the strength of passwords.

The command referenced in Figure 37 can be used to install the
libpam_cracklib module.

Credential Hardening

cat /etc/passwd | awk -F: '($3 == 0) { print
$1 }'

grep wheel /etc/group

FIGURE 35. Command to identify accounts with UID 0.

FIGURE 36. Command to list all members of the wheel group.

The sudo command allows users to run programs with
the security privileges of another user. By default, sudo
runs commands with superuser privileges. Access to the
sudo privilege is managed through the /etc/sudoers
file. Alternatively, file entries can also be created in the /
etc/sudoers.d folder to provide sudo access to a user.
Organizations should review the /etc/sudoers file and /etc/
sudoers.d folder to identify any groups that may have sudo
access. Membership to any groups that have sudo access should
be reviewed.

In RHEL, the group “wheel” has sudo access as part of the
default configuration. The command referenced in Figure 36
can be used to identify all the members of a group (e.g., “wheel”)
on a RHEL endpoint.

$ sudo apt install libpam-cracklib

sudo cp /etc/pam.d/common-password /root/
sudo nano /etc/pam.d/common-password

Edit parameters
password requisite pam_cracklib.so retry=1
minlen=15 ucredit=-1 lcredit=-1 dcredit=-1
ocredit=-1

FIGURE 37. Command to install the libpam_cracklib module\.

FIGURE 38. Steps to enforce strong password requirements on a Linux endpoint.

After the installation has completed, the /etc/pam.d/common-
password file will need to be edited to enforce strong password
requirements (Figure 38).

The available parameters for editing include:

• retry=1 : Prompts user at most 1 time before returning with
error. The default is also 1.

• minlen=15 : The minimum acceptable size for the new password.

• ucredit=-1 : The password must contain at least 1 uppercase
characters.

• lcredit=-1 : The password must contain at least 1 lowercase
characters.

• dcredit=-12 : The new password must contain at least 12 digits.

• ocredit=-12 : The new password must contain at least 12 symbols.

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 1 6

The settings referenced in Figure 39 are recommended to enable password lockout for failed authentication attempts, where the
example enforces an account lockout after five (5) failed logon attempts.

auth required pam_faillock.so preauth audit silent deny=5 unlock_time=900
auth [success=1 default=bad] pam_unix.so
auth [default=die] pam_faillock.so authfail audit deny=5 unlock_time=900
auth sufficient pam_faillock.so authsucc audit deny=5 unlock_time=900

auth required /lib/security/$ISA/pam_tally.so onerr=fail no_magic_root

password sufficient pam_unix.so sha512

FIGURE 39. Enable Lockout for failed password attempts.

FIGURE 40. Configuration to protect root accountsa from lockout.

FIGURE 41. Configure usage of sha512 for password hashing.

The setting referenced in Figure 40 will prevent root account lockout as a result of an account lockout configuration.

The setting referenced in Figure 41 will enforce that the sha512 hashing algorithm is used as part of the password storage configuration.

Accounts that are inactive for a long period should be audited and disabled on a periodic basis. The lastlog command can be used to
identify the last login date for a specific account.

Interactive Logon Restrictions
Organizations should configure the shell field in the /etc/passwd file to “/sbin/nologin” for accounts that don’t require interactive
logons, which effectively disables shell access for an account (Figure 42).

usermod -s /sbin/nologin <user>

FIGURE 42. Command to set the shell for a user as /sbin/nologin for a specific account.

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 1 7

System Auditing Configurations
Organizations should review Linux endpoint auditing
configurations present in the Linux Auditing System (AuditD) to
ensure that events and detections are recorded and available for
review and analysis.

Linux Auditing System (Auditd)
AuditD is a feature for Linux endpoints that provides logging
of actions such as system calls, file access, authentication,
and other security-related events. When installed (sudo apt-
install auditd) and enabled (sudo service auditd
start), there are several types of security events that are
recorded, such as:

• Modification to audit configurations and audit log files.

• Changes to trusted databases (e.g., /etc/passwd).

• Auditing and monitoring /etc/passwd for write, append, and
read actions (using auditctl).

• Attempts to export information out of the system.

• Changes to user authentication mechanisms (e.g., SSH) .

• Modifications to user and group associations.

• Login and logout events.

• Unsuccessful unauthorized file access attempts.

• Privileged commands being invoked.

• File deletion events.

• Changes to privileged functions (e.g., sudoers).

• Kernel module loading and unloading.

• Auditing of all privileged functions.

• File mount conditions.

• Locations of public/private keys (within the .ssh directory)

While there are many benefits of enabling auditd, there are also
some potential performance impacts. Once configured, auditd
logs can quickly accumulate on an endpoint, so organizations
should have a mechanism in place to forward audit logs to a log
aggregation tool or a SIEM. To enhance the performance of auditd,
it is recommended to configure the /etc/audit/auditd.conf
file to allow for the endpoint to have enough time to accumulate
the logs to forward off the endpoint, as well as ensuring that logs
are written to disk and not to the event buffer to protect against
overutilization of the userspace (Figure 43).

Auditing and Visibility
Figure 43 provides sample auditd.conf configuration options
that reflect optimized settings for both logging and performance.
These settings should be tested on a subset of Linux endpoints to
ensure that they are optimized for the current environment.

local_events = yes
write_logs = yes
log_file = /var/log/audit/audit.log
log_group = root
log_format = RAW
flush = INCREMENTAL
freq = 50
num_logs = 99
max_log_file = 50
max_log_file_action = ROTATE
priority_boost = 4
disp_qos = lossy
#dispatcher = /sbin/audispd
name_format = NONE
##name = mydomain
space_left = 524
space_left_action = EMAIL
verify_email = yes
action_mail_acct = root
admin_space_left = 256
admin_space_left_action = SUSPEND
disk_full_action = SUSPEND
disk_error_action = SUSPEND
use_libwrap = yes
##tcp_listen_port = XX
tcp_listen_queue = 5
tcp_max_per_addr = 1
##tcp_client_ports = 1024-65535
tcp_client_max_idle = 0
enable_krb5 = no
krb5_principal = auditd
##krb5_key_file = /etc/audit/audit.key
distribute_network = no

FIGURE 43. Example auditd configuration settings.

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 1 8

After the /etc/audit/auditd.conf file has been configured,
the next step to enhance visibility is to add additional rules to the
/etc/audit/rules.d/audit.rules file. Some examples of
events that can be generated by auditd rules include, but are not
limited to:

• Reading, configuration, and monitoring of audit tools

• Standard kernel parameters, loading and unloading of modules
(including modprobe configuration), and kexec usage

• Use of special files (e.g., attached block devices), mount
operations, and swap operations

• Cron configurations

• Changes to users, groups, and passwords

• Changes to Sudoers/root privileges, login information

• Network events (e.g., hostname changes and connections)

• Startup scripts and search paths

• Service and system configurations

• Access to sensitive directories and binaries (e.g., /sbin)

• Process ID changes

• Session initiation

• Changes to sensitive access control levels (e.g., chmod >= 500)

• Common reconnaissance, suspicious use of binaries (e.g.,
Netcat, and code/data/process injections)

• Suspicious file access

The scope and type of rules required for auditing and visibility
purposes will be different for each organization. Pre-configured
rules for consideration are available from the following
organizations:

• Center for Information Security (CIS)1

• Security Technical Implementation Guide (STIG)2

• Information Systems Security Organization (ISSO)

• Controlled Access Protection Profile (CAPP)3

• Labeled Security Protection Profile (LSPP)4

Log Execution Timestamps (Shell History)
Linux systems store commands executed by a user in a user-
specific hidden “.bash_history” file located in each user’s
home directory. This file can provide important information that
is useful when investigating and reviewing a Linux endpoint. A
limitation of the default shell history recording on Linux is that
the history file does not contain timestamps. The availability of
timestamps being recorded within the .bash_history file can
provide significant contextual information for an investigation.

1 https://benchmarks.cisecurity.org/tools2/linux/CIS_CentOS_Linux_7_Benchmark_v1.1.0.pdf
2 https://github.com/linux-audit/audit-userspace/blob/master/rules/30-stig.rules
3 https://www.commoncriteriaportal.org/files/ppfiles/capp.pdf
4 https://www.commoncriteriaportal.org/files/ppfiles/lspp.pdf

Organizations should enable timestamps for the .bash_history
file by configuring a “HISTTIMEFORMAT” variable on the
endpoint. The file “.bash_profile” in a user’s home directory
can be used to configure this every time the user logs into the
endpoint (Figure 44).

echo 'export HISTTIMEFORMAT="%d/%m/%y %T "'
>> ~/.bash_profile

echo 'export HISTSIZE= ' >> ~/.bash_profile
echo 'export HISTFILESIZE= ' >> ~/.bash_
profile

FIGURE 44. Command to configure $HISTTIMEFORMAT variable in a
.bash_profile file.

FIGURE 45. Commands to configure unlimited history file size for bash history.

The default size of the history file is 1,000 lines. This means that
any commands that are older than last 1,000 commands will be
removed from the history file; therefore, it is recommended to
increase the file’s length. This can be configured by setting both
the HISTSIZE and HISTFILESIZE variables on a Linux endpoint.
The commands referenced in Figure 45 will configure variables
in a user ’s bash profile, increasing the size of the history file to
an unlimited value.

Session Recording
Organizations should consider enabling user session recording.
User session recording enables the ability to record and play back
user terminal sessions. All the recordings are captured and stored
in a text-based format in the system journal. This data can be
used for auditing user sessions or performing forensics in case of
a security incident.

For additional information for how to enable and configure
session recording, reference:
https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux/8/html-single/recording_sessions/index

http://manpages.ubuntu.com/manpages/bionic/man5/sssd-
session-recording.5.html

https://manpages.debian.org/testing/sssd-common/sssd-
session-recording.5.en.html

https://fedoraproject.org/wiki/ScreenCasting

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 1 9

Linux-focused exploitation attacks can pose a serious threat to organizations.
This whitepaper provides practical hardening guidance to protect against common
techniques used by threat actors to access and deploy malware or backdoors on Linux
endpoints. The guidance provided within this document is based on front-line expertise with
helping organizations prepare, contain, eradicate, and recover from incidents where Linux
endpoints have been targeted and impacted.

Conclusion

Learn more at www.mandiant.com

©2022 Mandiant, Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other brands, products, or service
names are or may be trademarks or service marks of their respective owners. M-EXT-WP-US-EN-000422-01

About Mandiant
Since 2004, Mandiant® has been a trusted partner to security-conscious
organizations. Today, industry-leading Mandiant threat intelligence and
expertise drive dynamic solutions that help organizations develop more
effective programs and instill confidence in their cyber readiness.

Mandiant
11951 Freedom Dr, 6th Fl, Reston, VA 20190
(703) 935-1700
833.3MANDIANT (362.6342)
info@mandiant.com

W H I T E PA P E R | M A N D I A N T Linux Endpoint Hardening to Protect Against Malware and Destructive Attacks 2 0

TABLE 2. Change log.

Version/Date Notes

1.0: March 15, 2022 Initial Document

