
Looker and
BigQuery
Important
Considerations

Google Cloud Whitepaper
v1

Table of Contents

Introduction — Looker’s In-database Architecture . 03

Leveraging BigQuery SQL .. 03
Nested data
Partitioned data
Clustered data

User Defined Functions and Variable .. 07

Using BigQuery GIS for Geospatial Data .. 08

Improving Query Performance and Efficiency .. 09
Leveraging Looker caching with BigQuery
Control per-query costs with connection settings
Accelerate queries with Looker Aggregate Awareness
Working with EAV data

Managing and Monitoring Looker and BigQuery .. 14
BigQuery Information Schema block
System Activity Analytics
Managing users and permissions
Leveraging OAuth with BigQuery and Looker

Data Privacy and Security .. 18
Leveraging Google Cloud Data Loss Protection (Cloud DLP)
Masking sensitive fields with Looker
Using Looker with PCI data

Machine Learning: Leveraging BigQuery ML .. 20
Using existing BigQuery ML models
Training BigQuery ML models with data from Looker

Advanced BigQuery Features . 23
BI Engine
BigQuery Omni

Conclusion/Summary .. 24

3

Introduction — Looker’s
In-database Architecture
Looker is a modern data analytics platform that
operates in-database, meaning Looker does not
ingest source data. Instead, Looker leverages the
power of your database’s query engine to drive
powerful analysis based on the freshest data.
When a question is asked in Looker, it is converted
into highly-performant SQL and delivered to your
database. As a result, the query experience (speed,
concurrency, etc.) is directly related to the power and
sophistication of the database technology to which it
is connected.

Where Looker is connected to Google BigQuery, data
teams can draw on the performance, concurrency,
elasticity, and advanced features of BigQuery to
provide faster, deeper, more impactful, insights. In an
environment where data is stored in, or accessible to,
BigQuery’s powerful query engine, Looker provides
a superior user experience by communicating with
the BigQuery cloud data warehouse using BigQuery-
specific SQL commands and protocols (both
BigQuery Standard SQL and BigQuery Legacy SQL are
supported). This allows Looker to take advantage of
the power and flexibility of BigQuery and to leverage
some of the advanced features available in BigQuery
such as machine learning and geospatial data types.

This document includes considerations, best
practices, and features of interest for data teams
using both Looker and BigQuery. It describes how to
use the specialized features in BigQuery SQL, which
Looker features to leverage, and how best to deploy
Looker with Google BigQuery to get the most out of
your data.

Leveraging BigQuery SQL
BigQuery supports two distinct SQL dialects:
standard SQL and legacy SQL. Looker natively
supports both of these SQL dialects, as well as
more than 60 others. However, with Looker (and for
BigQuery) the preferred query syntax for BigQuery
is standard SQL. Looker experts suggest that data
teams use standard SQL if possible, as it is more
powerful and is actively maintained and enhanced by
the BigQuery development team.

Learn more:

BigQuery Standard SQL

Connecting Looker to BigQuery

Nested Data
BigQuery is unusual among cloud data warehouses
in its support for nesting. Nested records can provide
considerable advantages when scanning over a
distributed data set by physically co-locating related
records. In some cases, properly nested data can
help avoid unnecessary JOINs between tables and
nested structures to avoid repeating data that would
otherwise be repeated in a wide, denormalized table.

BigQuery standard SQL natively supports nested
records within tables. With BigQuery, data teams
can load and export nested and repeated data from
source formats that support object-based schemas,
such as JSON and Avro files.

When using BigQuery, queries that do not reference
a nested column behave exactly as if the nested
column was not present. When referencing a column
of nested data, BigQuery can automatically flatten the
data and the logic is identical to a co-located JOIN.
So, for example, if you have a web_sessions table
with events nested inside the sessions, when you
query for a count of sessions, the presence of events
imposes no performance penalty.

https://docs.looker.com/setup-and-management/database-config
https://cloud.google.com/bigquery/docs/reference/standard-sql/enabling-standard-sql
https://docs.looker.com/setup-and-management/database-config/google-bigquery

4

In Looker, users have the ability to easily look at a key from the JSON field without needing to constantly write
complex queries where data is unnested (flattened). Looker is efficient with data storage because data is only
unnested at query time, on an as-needed basis, with query logic defined once in LookML.

A JSON field is made to be its own dimension in Looker by parsing the field in the
SQL definition.

A repeated JSON can be specified as its own view, and UNNEST is used in the join clause
to join the flattened column back onto its parent.

Learn more:

Specifying nested and repeated columns in BigQuery

Looker guide to nested data in BigQuery (repeated records)

Why nesting is so cool (Looker blog)

https://cloud.google.com/bigquery/docs/nested-repeated
https://help.looker.com/hc/en-us/articles/360023638874-Nested-Data-in-BigQuery-Repeated-Records-
https://looker.com/blog/why-nesting-is-so-cool

5

Partitioned Data
A partitioned table is a special table that is divided
into segments, called partitions, that make it easier
to manage and query data. By dividing a large table
into smaller partitions, data teams can improve
query performance and control costs by reducing
the number of bytes read by a query. BigQuery gives
users the ability to partition their table by a date, by an
integer, or by the time the data is ingested.

To specify a specific partition or set of partitions to
use in a specific query, BigQuery users leverage a
predicate filter (WHERE clause). For example, when
the date column is used in the WHERE clause within a
query, BigQuery will only scan the data in the partitions
designated by that WHERE clause. This gives granular
control over how much data is read in any given query,
directly impacting query speed and cost.

Looker leverages partitions in BigQuery through filters
in both the explore interface and through dashboards.
In order to ensure these key fields are included when
querying BigQuery data, Looker developers can
require (or suggest) filters at both the dashboard
and explore level. Leveraging BigQuery partition
functionality in Looker does not impact end user
analysis — end users do not need to have knowledge
of partitions or the underlying data set to experience
more efficient, faster queries.

It is strongly recommended that Looker developers
leverage partition capabilities in BigQuery, particularly
for very large tables. By using partitions, Looker
developers can ensure end users query limited data
sets where possible, helping eliminate inefficient,
costly queries against the full dataset. Common
use cases for partitioned data with Looker include
querying event logs, machine data, and other easily
partitioned large data sets.

Set conditional filters or always filters on explores with partitioned tables to create
recommended or required filters for business users.

Learn more:

Introduction to partitioned tables in BigQuery

Using partition_keys in Looker

https://cloud.google.com/bigquery/docs/partitioned-tables
https://docs.looker.com/reference/view-params/partition_keys

6

Clustered Data
To improve query efficiency, BigQuery also allows
users to specify cluster keys that designate the way
data is sorted when it is being stored. Clustering
provides storage optimization within columnar
segments to improve filtering and record colocation.
Clustering can improve the performance of certain
types of query such as queries that use filter
clauses and queries that aggregate data. Essentially,
clustering will sort the values within the column so
the BigQuery engine can easily find the records it
needs to complete the query.

Looker developers can leverage clustered data in
BigQuery in the same way they leverage partitions,
e.g. through filters in both the explore and the
dashboard. In order to ensure that these key fields are

being included in queries sent back to your database,
Looker developers can require or suggest filters at
both the dashboard and the explore level.

Using clustered data is recommended when you
don’t need to strictly limit the cost of a given query,
you need greater granularity than is allowed with
partitioning alone, and when queries commonly use
filters or aggregation against multiple particular
columns. Clustering is often used in conjunction with
partitioning — e.g. partition by date, cluster by user_id.

When using LookML, cluster tables are used when
the resulting table is persistent — either a Persistent
Derived Table (PDT) or aggregate table — and is
accomplished using the cluster_keys parameter.
Google BigQuery tables can be partitioned on a date,
timestamp, ingest_time, or integer.

You can use cluster or partition keys in the definition of the persistent derived tables.

Learn more:

Introduction to clustered tables in BigQuery

Using cluster_keys in Looker

https://cloud.google.com/bigquery/docs/clustered-tables
https://docs.looker.com/reference/view-params/cluster_keys

7

User Defined Functions
and Variables
A user defined function (UDF) in BigQuery is a
reusable function, defined in SQL, and created by a
Looker developer using another SQL expression or
JavaScript. UDFs in BigQuery accept columns of
input and perform actions, returning the result of
those actions as a value. UDFs can be persistent or
temporary. Persistent UDFs can be reused across
multiple queries.

In Looker you can instantiate and call BigQuery UDFs
via SQL expressions. To leverage existing persisted
UDFs, the process is the same, simply calling the
UDFs in the SQL definitions within your LookML model.

If you are creating a temporary UDF you can leverage
the sql_preamble parameter in an Explore to
define your function. Similarly, you can also define
persisted BigQuery variables within the sql_preamble
and leverage them throughout your model. You can
also define persisted variables through Looker’s SQL
runner interface.

Defining a UDF in sql_preamble

Learn more:

Understanding UDFs in BigQuery

https://cloud.google.com/bigquery/docs/reference/standard-sql/user-defined-functions

8

Using BigQuery GIS for
Geospatial Data
Location and geographic (geospatial) information can
provide powerful insights to businesses, particularly
when visualized using Looker. BigQuery GIS (Geographic
Information Systems) lets you analyze and visualize
geospatial data by using geography data types and
standard SQL geography functions. With Looker,
geographic information can play an important role
in the data model and allows questions to be asked
of the data such as “does this location fall within a
certain region?”

BigQuery GIS is available only in BigQuery standard
SQL. With BigQuery GIS, Looker developers and
users can aggregate geopoints into more meaningful
polygons like states or zip codes and then easily plot
them for visual reference.

For polygons in BigQuery GIS, Looker developers
can define their own geographic features using
ST_AsGeoJSON(geom) to export the data in GeoJSON
format, and convert that to a TopoJSON using a
custom script. Free tools such as mapshaper.org and
others can provide simple ways to convert GIS data.

You can use GIS functions, coupled with BQ public datasets, to find the zipcode
for each lat/lon point.

Learn more:

Introduction to BigQuery GIS

Example script for building custom geographic ranges (GitHub)

Mapshaper.org — a free tool for use in GIS conversions

https://github.com/leighajarett/Geospatial-data-to-Looker-Map-Layer/blob/master/to_geo_json.ipynb?short_path=6e9addf
https://github.com/leighajarett/Geospatial-data-to-Looker-Map-Layer/blob/master/to_geo_json.ipynb?short_path=6e9addf
https://cloud.google.com/bigquery/docs/gis-intro
https://github.com/leighajarett/Geospatial-data-to-Looker-Map-Layer/blob/master/to_geo_json.ipynb?short_path=6e9addf
https://mapshaper.org/

9

Improving Query Performance
and Efficiency

Leveraging Looker Caching
with BigQuery
Looker can reduce database load and improve query
response time by using the cached results of prior
queries. Database concurrency is improved, too, due
to reduced need to access source data. This also
reduces query costs by reducing the amount of data
queried in BigQuery. Caching policy can be defined
in several ways in Looker: at the explore level, at the
model level, or by using the datagroups. It is often
easiest to set caching policy by applying datagroups
within explores, using the persist_with parameter.

When Looker performs a query, it looks first in the
cache for existing, valid results of that same query.
If no valid results are found in the cache, a normal
query is executed. Looker experts recommend
optimizing your caching policies to sync with ETL
policies wherever possible to reduce database query
traffic. (i.e. If your ETL only updates data every hour
and the exact same query was run 10 minutes ago,
there’s no sense rerunning it.) You can control caching
policy and sync Looker data refreshes with your ETL
process to integrate more closely with the backend
data pipeline, so cache usage can be maximized
without the risk of analyzing stale data. Named
caching policies can be applied to an entire model or
to individual explores and persistent derived tables
(PDTs). Refer to the aggregate awareness section
(below) for more information on PDTs.

You can customize the caching logic for models or explores using datagroups
and the persist_with parameter.

Learn more:

Caching queries with datagroups

Best practices: Optimizing Looker performance

https://docs.looker.com/data-modeling/learning-lookml/caching#data_delete
https://help.looker.com/hc/en-us/articles/360001847227-Best-Practice-Optimize-Looker-Performance

10

Control Per-Query Costs with Connection Settings
BigQuery natively supports a number of convenient ways to control query costs, including a database connection
setting called maximum bytes billed. With this setting any query that exceeds the maximum bytes billed value
will be prevented from running, without incurring any usage costs. This provides a quick way to eliminate very
large, expensive queries.

This setting is defined when Looker is connected to BigQuery through the database connections dialog in Looker.
Because the maximum bytes billed setting is a parameter for the JDBC connection between Looker and
BigQuery (defined in GB), simply using the setting will control costs. Leaving this setting blank will eliminate
limits on bytes billed.

Enter Google
Project ID here

11

By leveraging the user attributes capabilities of Looker, you
can customize the Looker experience, including connection
parameters, for an individual user or group of users. This is
particularly useful when you want to provide certain users with
unlimited query access and limit access to others. For example,
permitting analysts to run queries of any size but limiting the
ability of business users to perform massive, expensive queries.
This feature can also be useful when enforcing data governance or
security policies (see also Managing Users and Permissions later
in this document).

From the user management dialog in the admin menu in Looker, a
Looker administrator can quickly add constraints to user queries by
defining the BigQuery maximum bytes billed setting for that user
(or group). This gives user-level granular control over query costs.

You can leverage user attributes in the connection settings.

Learn more:

BigQuery cost control best
practices

Setting up BigQuery connection
parameters in Looker

Looker user attributes

BigQuery pricing overview

https://cloud.google.com/bigquery/docs/best-practices-costs
https://cloud.google.com/bigquery/docs/best-practices-costs
https://docs.looker.com/setup-and-management/database-config/google-bigquery#setting_up_the_bigquery_connection_in_looker
https://docs.looker.com/setup-and-management/database-config/google-bigquery#setting_up_the_bigquery_connection_in_looker
https://docs.looker.com/admin-options/settings/user-attributes
https://cloud.google.com/bigquery/pricing#high-compute

12

Accelerate Queries with
Looker Aggregate Awareness
When Looker communicates SQL to BigQuery it
automatically optimizes the query using relational
algebra. This makes queries faster, helps reduce
the load on the BigQuery query engine, and lowers
cost-per-query. For queries that run frequently, large
queries, or expensive queries, Looker developers can
create smaller persistent aggregate tables of data,
grouped by various attributes. These derived tables
are defined in LookML and provide a way for analysts
to create new tables without the need to engage data
engineering resources and without altering the source
data in any way. Persistent derived tables (PDTs)
are written into a scratch schema in BigQuery and
regenerated at a chosen frequency.

LookML example for aggregate awareness

Aggregate tables, defined in the LookML model
using the aggregate_table parameter, are
derived tables that act as summary tables or roll-
ups. Looker preferentially uses these aggregates
instead of the larger table when performing queries,
a behavior we call “aggregate awareness.” Using
aggregate awareness logic, Looker always queries
the smallest aggregate table possible to answer your
users’ questions. If a query span exceeds that of the
available aggregate, Looker will automatically union
fresh data to an aggregate. The original table would
be used only for queries requiring finer granularity
than the aggregate tables can provide.

https://www.youtube.com/watch?v=sizWohyVnoA
https://www.youtube.com/watch?v=sizWohyVnoA

13

Looker aggregate awareness works seamlessly with BigQuery.
Once an aggregate is defined, no additional configuration is
required and Looker will create and maintain the aggregate in
scratch space on BigQuery. As with all materialization in Looker,
this is a new table and the original data table is not modified.
Aggregates are instantiated as persistent derived tables and have a
consistent and persistently addressable name. Using Looker’s API,
third party tools, such as data science tools, can directly call the
data in the aggregate. Accessing a PDT aggregate with third party
tools is, at the time of this writing, only supported on BigQuery
Standard SQL and not in BigQuery Legacy SQL.

Working with EAV Data
Entity-Attribute-Value (EAV) is a common mechanism to encode
key/value pairs in a table and is particularly useful when storing data
before it’s possible to fully define all necessary attributes (columns).
While EAV is simple and flexible, it can result in very long and “skinny”
tables and can result in a data schema that’s cumbersome to analyze.
To perform analysis of EAV data, it is common to define Common
Table Expressions (CTEs) to allow EAV data to be addressed using
more conventional SQL.

For EAV data, Looker can be used to transform and materialize
a more conventional data schema in BigQuery. The EAV table
can be parsed once using a LookML query and materialized as
a Persistent Derived Table (PDT) in BigQuery. The PDT can be
updated incrementally and automatically on a defined schedule to
improve query efficiency. Subsequent queries leverage the PDT and
are simple and efficient. By building a PDT, the need to write and
rewrite cumbersome CTEs can be virtually eliminated.

Open source tools such as PyLookML can be used to autogenerate
the LookML to build the resulting PDT.

Learn more:

Pylookml — an open source tool to autogenerate LookML for EAV data

Derived Tables — Looker documentation

https://pylookml.readthedocs.io/en/latest/index.html
https://docs.looker.com/data-modeling/learning-lookml/derived-tables

14

Managing and Monitoring
Looker and BigQuery

BigQuery Information
Schema Block
Looker blocks are pre-built data models for common
analytical patterns and data sources. BigQuery provides
comprehensive data on resource consumption and
performance via a native set of metadata tables called
the BigQuery INFORMATION_SCHEMA.

Google has developed a Looker block for the BigQuery
Information Schema to help Looker teams operate as
efficiently as possible and to provide the highest level
of performance while containing costs for flat-rate
BigQuery users.

With the Looker block for BigQuery Information
Schema, Looker administrators can:

•	 Optimize slot capacity distribution by investigating
windows and patterns of high and low consumption
against capacity.

•	 Identify troublesome queries and users driving
concurrency and average query time across all
projects in the organization.

•	 Monitor overall health and performance of the
BigQuery environment, providing a central hub for
database administration and auditing.

•	 Optimize investment in BigQuery by breaking down
queries by their individual execution patterns and
job stages and reconfiguring query patterns and
table partitions or clusters.

Monitoring Queries with the Looker Block for BigQuery Information Schema

https://docs.looker.com/data-modeling/looker-blocks
https://cloud.google.com/bigquery/docs/information-schema-intro
https://looker.com/platform/blocks/source/bigquery-information-schema-performance-monitoring-by-google
https://cloud.google.com/bigquery/pricing#flat_rate_pricing

15

The BigQuery Information Schema block is designed
to analyze data at the organization level (the By_
Organization level of granularity in the Information
Schema) to provide the most complete picture of
resource consumption and efficiency. Therefore, to
use this block requires a high level of permissions
from the Looker Service Account to BigQuery.

The tables from the Information Schema that are used
for the Block in its current iteration are:

Jobs_By_Organization

•	 This table contains one row for every query that
was executed across an entire organization

Jobs_Timeline_By_Organization

•	 This table contains one row for every second of
execution of every BigQuery job. Each period starts
on a whole-second interval and lasts exactly one
second, allowing users to view changes in slot usage
during the course of a query’s execution timeline.

The BigQuery INFORMATION_SCHEMA can be
analyzed outside of the Looker block, just as with
other data available through BigQuery. Building on the
existing Looker block, teams can access views that
provide access to:

•	 dataset metadata

•	 job metadata

•	 job timeline metadata

•	 reservation metadata

•	 streaming metadata

•	 routine metadata

•	 table metadata

•	 view metadata

Additionally, third party organizations also offer
Looker blocks that can help optimize cost and
performance in BigQuery, such as the Google
BigQuery Performance block by Datatonic.

Learn More

Looker block for BigQuery Information Schema
Performance Monitoring

System Activity Analytics
Looker system activity is an internal model designed
for the analysis of Looker’s underlying application
database. Explores and dashboards built on the model
show information about a Looker instance, including
all dashboards, Looks, users, and queries — and can
be very helpful for monitoring and auditing. Pre-built
system activity dashboards and explores are available
under the Admin menu and include User Activity,
Content Activity, Database Performance, Instance
Performance, and Errors and Broken Content.

Teams optimizing BigQuery performance can use the
existing dashboard to identify users who drive the
most queries and are able to track historical performance
trends. It’s also easy to identify periods of high
scheduled activity or high concurrency using the
Concurrency Timelines and Hourly Schedules Looks.

https://looker.com/platform/blocks/source/bigquery-information-schema-performance-monitoring-by-google
https://cloud.google.com/bigquery/docs/information-schema-jobs
https://cloud.google.com/bigquery/docs/information-schema-jobs-timeline
https://cloud.google.com/bigquery/query-plan-explanation
https://looker.com/platform/blocks/source/google-bigquery-performance-by-datatonic
https://looker.com/platform/blocks/source/google-bigquery-performance-by-datatonic
https://looker.com/platform/blocks/source/bigquery-information-schema-performance-monitoring-by-google
https://looker.com/platform/blocks/source/bigquery-information-schema-performance-monitoring-by-google
https://docs.looker.com/admin-options/system-activity

16

System activity database performance dashboard

Learn more:

Looker system activity pages documentation

Looker system activity database performance dashboard

Managing Looker at Scale with System Activity Analytics (video)

https://docs.looker.com/admin-options/system-activity
https://docs.looker.com/admin-options/system-activity/sa-dashboards#dashboard_performance_dashboard
https://www.youtube.com/watch?v=6KNTD_7n4E8

17

Managing Users and Permissions
If BigQuery has different accounts with various access restrictions, you can leverage those existing database
permissions in Looker. To leverage those restrictions, Looker administrators can set parameters around the user
name and password of a connection so each user connects with the appropriate credentials for their database
access level. While this will ensure that users do not see data to which they shouldn’t have access, this will not
affect which Explores, dimensions, and measures are shown to them in Looker.

For example, if a user is configured to connect to the database with an account that prevents them from seeing
a credit_card_number column in the user table, any dimension using that database column will still be shown to
them in Looker. They will simply receive an error from the database if they attempt to run a query that includes
that dimension. Tracking user activity and permissions in Looker is relatively straightforward using the Looker
system activity user activity dashboard. With this dashboard you can quickly identify users with administrative
or developer permissions, track user activity and engagement, and embedded user statistics.

Learn more:

Setting up user attributes in Looker

Leveraging OAuth with BigQuery and Looker
Leveraging Oauth: leverage existing permissions within Google Cloud to make sure end users can only see the
data that they’re supposed to How to setup 0Auth in BQ connection.

Example of BQ connection with 0Auth

https://docs.looker.com/admin-options/system-activity/sa-dashboards#user_activity_dashboard
https://docs.looker.com/admin-options/settings/user-attributes
https://docs.looker.com/setup-and-management/database-config/google-bigquery#oauth_for_bigquery_connections

18

Data Privacy and Security
Data teams are often tasked with defining privacy,
security, and compliance postures for the data under
their care. Although this data is common, in general
it is recommended Looker administrators reduce or
eliminate access to sensitive data, including PII, PHI,
PCI, and other sensitive data types. Sensitive data
should only be made available for analysis where it
is absolutely necessary and only to authorized users,
defined by user and group permissions in Looker and
in BigQuery. Google Cloud provides several tools that
work in conjunction with Looker to keep sensitive data
private and in compliance with relevant regulations.

Leveraging Google Cloud
Data Loss Protection
(Cloud DLP)
The first step in protecting sensitive data is limiting
its presence in BigQuery. Google Cloud Data Loss
Protection (Cloud DLP) is a fully-managed service
that helps you protect sensitive data on or off
Google Cloud. With Cloud DLP you can inspect data
to identify and track sensitive data types, tokenize
or mask data where necessary, and transform both
unstructured and structured data. Cloud DLP is
best used as data is moved into or while data is
stored in BigQuery, before it is connected to Looker.
Once private data is remediated in BigQuery, Looker
administrators can share data with confidence.

Learn more:

Google Cloud Data Loss Protection (Cloud DLP)

Masking Sensitive Fields
with Looker
While there are several ways to mask sensitive data
within Looker, one flexible way is to reference user
attributes in SQL using liquid syntax. User attributes
are defined by the Looker administrator and can
be applied to individual users or to groups. Looker
automatically includes some user attributes, but
administrators can also define attributes for which
users supply values (such as passwords or contact
information). By connecting user access to view, then
creating a dimension that references the attribute but
only returns value when the attribute is properly set,
administrators can quickly define, on a very granular
level, data visibility.

Access grants are another way to leverage user
attribute values to control which end users are
able to view specific explores, joins, views or fields.
Access grants are defined at the model level with the
access_grant parameter. As part of the definition,
you associate the access grant with a user attribute.
You also specify which user attribute values provide
access to the access grant.

Learn more:

Masking sensitive fields for certain user

https://cloud.google.com/dlp
https://help.looker.com/hc/en-us/articles/360001236867-Masking-Sensitive-Fields-for-Certain-Users

19

Using Looker with PCI Data
Where possible, it is suggested that data teams
eliminate access to PCI data in Looker. This can
be accomplished by using tools such as Cloud
DLP, transforming data at time of loading into the
database, or removing sensitive data once it’s
loaded in BigQuery. In general, PCI data such as

card numbers holds little analytical data in itself —
and using customer IDs or other mechanisms can
reduce the need to include that data in analysis.
The Looker customer success team is an excellent
resource if you are considering making PCI data
available in Looker, as they can provide advice and
alternatives. Some details on PCI and securing data
in Looker are available on looker.com.

https://looker.com/product/security

20

Machine Learning: Leveraging BigQuery ML
BigQuery ML allows SQL developers to create and execute machine learning models in BigQuery using standard
SQL queries. With LookML & BigQuery ML, developers can build models using existing tools and skills, speeding
up development and eliminating the need to move data out of BigQuery or spin up new infrastructure for
predictive model development.

Using Existing BigQuery ML Models

Because BigQuery ML natively supports models for regression, clustering, factorization, and more, if you need
these types of models you can simply take advantage of them by calling them via SQL commands right in your
LookML model, using Looker Derived Tables. When a query is executed, the SQL commands, including calling
the BigQuery ML model, are sent to BigQuery for execution and results are returned as part of the query results.
Because these results are the same as any other query results, you can then use them in reports or dashboards,
build a Looker PDT, and send them via data actions just as with any query results. Because a LookML query with
BigQuery ML operates just as any other query you can pull results from BigQuery ML via Looker APIs, seamlessly.

21

Here is an example of using a simple Derived table to
build a full ML model within BigQuery:

And that’s it. Notice that this simply references other
LookML objects, so we don’t need massive SQL
queries to manage these models. We can take each
feature and manage it as it’s own LookML field, then
just select the ones we want to put into our `training_
input` table.

Learn more:

Supported models in BigQuery ML

BigQuery ML and Looker (blog)

Training BigQuery ML Models with Data from Looker
Looker makes it easy to compile training data using NDTs that make use of the logic you’ve already put into
LookML (DRY), then you can use datagroups to trigger how often you want to retrain your model. End users can
see the results joined back on with other business-critical data so you can use ML outputs to make meaningful
business decisions without worrying about annoying ETL processes.

Grabbing the results of a BigQuery ML model is as simple as another derived table in Looker:

Once this is in place, we can set it and forget it. Regardless of how our model changes, this is just a set of
pointers to that model, and the unlabeled data we’ll use to make predictions, `future_input.̀ We also have
reference to the prediction and the probability of that prediction, so we don’t need to worry about writing that bit
of SQL every time we want to look at it.

https://cloud.google.com/bigquery-ml/docs/introduction#supported_models_in
https://looker.com/blog/data-science-with-bigquery-machine-learning-looker

22

Combining the above, here’s an example of how we could actually check on the performance of our model (using
the various BigQuery ML performance metrics provided in the ML.CONFUSION_MATRIX, ML.EVALUATE, and
ML.ROC_CURVE functions) in one clean Looker Dashboard. Again, set it and forget it. Make the dashboard once,
retrain the model by altering the input, and simply hitting “run” on your dashboard.

Once you have a model that you like, it can be incorporated into a variety of live use cases. Since the
flow of data is already automated, using Looker dashboard, schedules, alerts, and a wide array of data
delivery options, we can operationalize this information very easily. Here is a simple example of a dashboard
using the outputs of our model to create an ROI calculator for potential marketing campaigns. This could be
used to actually create lists for campaigns.

https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-confusion
https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-evaluate
https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-roc
https://looker.com/platform/directory#actions
https://looker.com/platform/directory#actions

23

Common use cases may include:

•	 Use clustering algorithms to create organic
categories for your customers to better understand
your user base. Provide this information to your
marketing team for better informed decision making.

•	 Find anomalies in your transactions using regression
analysis, to alert you of potentially fraudulent activity.

•	 Create a recommendation engine to show
customers likely products that they’ll want based
on historical data.

Learn more:

BigQueryML Looker block

Advanced BigQuery Features

BI Engine
BI Engine is BigQuery’s fast, in-memory analysis
service. With BI Engine, data is automatically moved
between in-memory storage, the BigQuery cache, and
BigQuery storage to optimize query performance. BI
Engine is enabled via the Cloud Console where an
administrator can add and remove BI Engine memory
capacity using the BigQuery UI.

BI Engine is most useful for Looker administrators
who require extremely fast query response time and
improved concurrency. Common use cases in Looker
include the analysis of large data sets or streaming
data where speed and freshness is important. BI
Engine can be used to help Looker dashboards load
faster, particularly where they rely on larger queries.

When BI Engine is unable to accelerate a query,
performance will revert to that of a typical BigQuery
query — automatically. This means there’s no need
for a Looker administrator to tune or modify their
Looker queries to accommodate BI Engine. Query

types that typically cannot take advantage of the high-
performance capabilities of BI Engine include pivots,
multi-level JOINs, and distinct aggregates.

For the fastest queries and rapid dashboard loading, using
BI Engine in conjunction with Looker aggregate awareness
is recommended. Looker’s aggregate awareness
capabilities complement BI Engine’s in-memory approach
and materialized views (PDTs) located in-memory
provide exceptionally fast query response times.

Learn more:

BI Engine documentation

BigQuery Omni
BigQuery Omni is a multicloud analytics solution that
lets you access and analyze data across clouds, including
Google Cloud, AWS, and Azure (coming soon). Because
moving data between clouds can be onerous, BigQuery
Omni provides the ability to query data directly from
Amazon S3 buckets, without moving data between clouds.

There is no specific configuration required to connect
Looker to BigQuery Omni. Looker connects to BigQuery
Omni through the standard BigQuery JDBC connection,
and BigQuery-specific SQL commands are transmitted
by the BigQuery system to the query engine located in
AWS. Queries are executed in AWS by BigQuery, and only
query results are communicated to Looker. Because
only query results are returned, costs associated with
data movement between clouds are minimized.

At the time of this writing, BigQuery Omni access to
S3 data is read-only. This precludes the use of PDTs
and aggregate awareness functionality in Looker, as
it is not possible to materialize query results in S3
using BigQuery Omni. Best practices for improving
performance and efficiency of queries include
leveraging the Looker cache to provide faster access
to common queries.

https://looker.com/platform/blocks/source/bigquery-machine-learning-by-google
https://cloud.google.com/bi-engine/docs/introduction

24

Conclusion/Summary
The integrations and best practices for Google BigQuery and
Looker are constantly evolving and improving. While this document
is intended to be a useful reference, Looker documentation is the
most accurate and frequently updated source for this information
and it is suggested that readers consult it regularly to learn the
latest. Other resources of interest include Looker’s help documents
and the Looker community.

Looker documentation

Looker help center

The Looker community

Looker blogs

If you need help or information beyond that available here or online,
please contact your Looker representative for assistance.

https://docs.looker.com/
http://help.looker.com
https://community.looker.com/
https://looker.com/blog

