

Measuring Cloud Network
Performance with PerfKit
Benchmarker

A Google Cloud Technical White Paper
January 2020

For more information visit ​google.com/cloud

Table of Contents

1. Abstract ​3

2. Introduction ​3

2.1 PerfKit Benchmarker ​4

2.1.1 PerfKit Benchmarker Basic Example ​5

2.1.2 PerfKit Benchmarker Example with Config file ​5

3. Benchmark Configurations ​6

3.1 Basic Benchmark Specific Configurations ​7

3.1.1 Latency (ping and netperf TCP_RR) ​7

3.1.2 Throughput (iperf and netperf) ​7

3.1.3 Packets per Second ​8

3.2 On-Premises to Cloud Benchmarks ​9

3.3 Cross Cloud Benchmarks ​10

3.4 VPN Benchmarks ​11

3.5 Kubernetes Benchmarks ​12

3.6 Intra-Zone Benchmarks ​13

3.7 Inter-Zone Benchmarks ​13

3.8 Inter-Region Benchmarks ​14

3.9 Multi Tier ​15

4. Inter-Region Latency Example and Results ​16

5. Viewing and Analyzing Results ​18

5.1 Visualizing Results with BigQuery and Data Studio ​18

6. Summary ​21

For more information visit ​google.com/cloud

1. Abstract
Network performance is of vital importance to any business or user operating or running part of
their infrastructure in a cloud environment. As such, it is also important to test the performance
of a cloud provider’s network before deploying a potentially large number of virtual machines
and other components of virtual infrastructure. Researchers at SMU’s AT&T Center for
Virtualization (see ​smu.edu/provost/virtualization​) have been working in conjunction with a team
at Google to run network performance benchmarks across various cloud providers using
automation built around PerfKit Benchmarker (see
github.com/GoogleCloudPlatform/PerfKitBenchmarker​) to track changes in network
performance over time. This paper explains how cloud adopters can perform their own
benchmarking.

2. Introduction
When choosing a cloud provider, users are often faced with the task of figuring out which one
best suits their needs. Beyond looking at the advertised metrics, many users will want to test
these claims for themselves or see if a provider can handle the demands of their specific use
case. This brings about the challenge of benchmarking the performance of different cloud
providers, configuring environments, running tests, achieving consistent results, and sifting
through the gathered data. Setting up these environments and navigating the APIs and portals
of multiple different cloud providers can escalate this challenge and takes time and skill. Despite
the sometimes difficult nature of this, benchmarking is a necessary endeavor.

This document demonstrates how to run a variety of network benchmarks on the largest public
cloud providers using PerfKit Benchmarker (PKB). We begin with an overview of the PKB
architecture and how to get started running tests, then describe specific test configurations to
cover a variety of deployment scenarios. These configurations can be used to immediately
compare the performance of different use cases, or run on a schedule to track network
performance over time.

For more information visit ​google.com/cloud

http://www.smu.edu/provost/virtualization
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker

2.1 PerfKit Benchmarker

PerfKit Benchmarker is an open source tool created at Google that allows users to easily run
benchmarks on various cloud providers without having to manually set up the infrastructure
required for those benchmarks. PerfKit Benchmarker follows the 5 step process detailed in
Figure 1​ to automate each benchmark run. The Configuration phase processes command line
flags, configuration files, and benchmark defaults to establish the final specification used for the
run. The Provisioning phase creates the networks, subnets, firewalls and firewall rules, virtual
machines, drives, and other cloud resources required to run the test. Benchmark binaries and
dependencies like datasets are also loaded in this phase. The Execution phase is responsible
for running the benchmarks themselves, and Teardown releases any resources created during
the Provision phase. The Publishing phase packages the test results into a format suitable for
further analysis such as loading into a reporting system. The metadata returned from the
Publishing phase can include verbose details about the actual infrastructure used during the test
and timing information for each phase of the run along with the metrics returned from the
benchmark itself, providing the level of detail needed to understand the benchmark results in
context.

Fig. 1: PerfKitBenchmarker Architecture Diagram

Perfkit Benchmarker, along with an additional automation framework built around it, allows you
to schedule and automate a large number of tests on a daily basis.

For more information visit ​google.com/cloud

2.1.1 PerfKit Benchmarker Basic Example
Once PKB has been downloaded from ​github.com/GoogleCloudPlatform/PerfKitBenchmarker
and its dependencies have been installed following the directions on that page, running a single
benchmark with PerfKit Benchmarker is simple. You give it the benchmark you want to run and
where you want to run it. For example, here is a ping benchmark between two VMs that will be
located in zone us-east1-b on Google Cloud Platform:

.​/​pkb.py ​--benchmarks​=​ping​ --zones=us-east1-b --cloud=GCP

If the zone or cloud is not given, a default value will be used. You can also specify the machine
type with the ​--machine_type​ flag. If this is not set, a default single CPU VM will be used.

2.1.2 PerfKit Benchmarker Example with Config file
For more complicated benchmark setups, users define configurations using files in the .yaml
format, as shown in the following example.

At the top of the config file is the benchmark that is being run. Next, give it the name of a flag
matrix to use, in this case we’ll call it fmatrix. Then define a filter to apply to the flag matrix and
define the flag matrix itself. PKB works by taking the lists defined for each flag in the matrix (in
our case this is zones, extra_zones, and machine_type) and finding every combination of those
flags. It will then run the benchmark once for each combination of flags defined under fmatrix, as
long as it evaluates to true with the flag matrix filters. The flags defined under ​flags​ at the
bottom will be used for all benchmarks runs.

netperf​:
 flag_matrix​: ​fmatrix
 flag_matrix_filters​:
 fmatrix​: ​"zones != extra_zones"
 flag_matrix_defs​:
 fmatrix​:
 zones​: ​[us-west1-a, us-west1-b,us-west1-c]
 extra_zones​: ​[us-west1-a, us-west1-b,us-west1-c]
 flags​:
 cloud​: ​GCP
 netperf_histogram_buckets​: ​1000
 netperf_benchmarks​: ​TCP_RR,TCP_STREAM,UDP_RR,UDP_STREAM
 netperf_test_length​: ​30
 netperf_num_streams​: ​1,4,32
 machine_type​: ​n1-standard-16
 netperf_tcp_stream_send_size_in_bytes​: ​131072

For more information visit ​google.com/cloud

https://github.com/GoogleCloudPlatform/PerfKitBenchmarker

This config file can be run with the command:

.​/​pkb.py ​--benchmarks​=netperf --benchmark_config_file=interzone_us_west1.yaml

Using this config file will run netperf TCP_RR, TCP_STREAM, UDP_RR and UDP_STREAM
between pairs of n1-standard-16 instances in the us-west1-a, us-west1-b and us-west1-c zones.
Because of the flag matrix filter, it will exclude tests from the same zone. Each test will be of 30
seconds duration and will be repeated for 1, 4, and 32 parallel streams. So from one config file
and command line, we will get 72 benchmarks run (6 zone combinations * 4 netperf
benchmarks * 3 different stream counts).

In the following sections of this paper, we will see several more examples of how to run specific
tests with PKB. Generally, they all use this same format; the structure and parameters of the
benchmark are defined in a config file and a relatively simple command is used to start the
benchmark with the specified config file.

3. Benchmark Configurations
All of the benchmarks that are presented here are simple and easy to reproduce should anyone
want to run their own tests. In this section we will discuss the configurations for various test
runs.

There are several general types of network benchmarks you may want to run, including: same
zone (intra-zone), cross zone (inter-zone), and cross region (inter-region) tests. Intra-zone tests
are between VMs within the same zone, which usually means that they are situated in the same
datacenter. Inter-zone tests run between VMs in different zones within the same cloud region
and Inter-region tests run between VMs in separate cloud regions. These kinds of groupings are
necessary as network performance can vary dramatically across these three scales.

Additionally, benchmarks can be run to test network performance across VPN connections, on
different levels of network performance tiers, using different server operating systems, and on
Kubernetes clusters.

3.1 Basic Benchmark Specific Configurations
In this subsection, we cover the basic flags and configurations that are most commonly used for
network tests. These benchmarks are fairly standard and used to gather metrics on latency,
throughput, and packets per second.

For more information visit ​google.com/cloud

3.1.1 Latency (ping and netperf TCP_RR)
Ping is a commonly used utility for measuring latency between two machines and uses ICMP.
The flag you should know for running a ping benchmark is
--ping_also_run_using_external_ip=True​. Just as the name implies, this will tell PKB to get
latency results using both internal and external IP addresses.

.​/​pkb.py ​--benchmarks​=​ping​ --ping_also_run_using_external_ip=True
--zone=us-central1-a --zone=us-west1-b --cloud=GCP

Ping, with its default once-a-second measurement is quite sufficient for inter-region latency. If
you wish to measure intra-region latency (either intra-zone or inter-zone) a netperf TCP_RR test
will show results that are more representative of application-level performance.

.​/​pkb.py ​--benchmarks​=netperf --netperf_histogram_buckets=​1000 \
--netperf_benchmarks=TCP_RR --netperf_test_length=​60 \
--zone=us-west1-b --cloud=GCP

3.1.2 Throughput (iperf and netperf)
Both iperf and netperf can be used to gather throughput data about both TCP and UDP
connections with various numbers of parallel streams, so that you can test single stream
throughput performance as well as aggregate.

The relevant flags for iperf are shown in the following. The first sets the length of time the
throughput tests are run (default: 60s) and the second flag sets how many threads iperf will use
to send traffic (default: 1).

iperf_runtime_in_seconds=60
Iperf_sending_thread_count=<num_threads>

.​/​pkb.py ​--benchmarks​=iperf --iperf_runtime_in_seconds=​120​ \
--iperf_sending_thread_count=​32 --zone=us-central1-a --cloud=GCP

To perform UDP tests or a request/response test in PKB, one should use netperf. We can also
set the number of streams, the test length in seconds, which netperf benchmarks are being run,
and how many buckets are in the optional histogram.

For more information visit ​google.com/cloud

.​/​pkb.py ​--benchmarks​=netperf \
--netperf_histogram_buckets=​1000 \
--netperf_benchmarks=TCP_STREAM,UDP_STREAM \

--netperf_test_length=​30​ \
--netperf_num_streams=​4 \
--zone=us-central1-a --cloud=GCP

For any of the example benchmark configurations in sections 3.2 and after, you can use iperf
instead of ping, ping instead of netperf, etc. depending on what type of metrics you would like to
gather.

3.1.3 Packets per Second
Packets per second tests are performed using a script that runs multiple instances of netperf
UDP request/response (UDP_RR) using small message sizes to achieve the maximum possible
packets per second the VM can achieve in the configured situation. In PerfKit Benchmarker, it is
called netperf_aggregate and uses 3 virtual machines to test packets per second performance,
as can be seen in the configuration file:

netperf_aggregate​:
 vm_groups​:
 vm_1​:
 vm_spec​:
 GCP​:
 machine_type​: ​n1-standard-4
 zone​: ​us-east4-b
 vm_2​:
 vm_spec​:
 GCP​:
 machine_type​: ​n1-standard-4
 zone​: ​us-east4-c
 vm_3​:
 vm_spec​:
 GCP​:
 machine_type​: ​n1-standard-4
 zone​: ​us-east4-c

This config file can be run with the following command:

.​/​pkb.py ​--benchmarks​=netperf_aggregate \
--benchmark_config_file=​/​path​/​to​/​config.yaml

For more information visit ​google.com/cloud

At the time of this writing the packets per second benchmark is still a pending contribution, but
should be available to use soon.

3.2 On-Premises to Cloud Benchmarks
On-premise to cloud benchmarks are highly specific to the user’s location, so unlike most cloud
to cloud benchmarks, you can’t simply look up results on a table online. PerfKit Benchmarker
makes it simple to setup your own benchmarking for your on-premise situation. There are two
ways to perform On-Prem to Cloud Benchmarks within the paradigm of PerfKit Benchmarker.
The first is to use a Static, On-Prem System (either VM or bare-metal). This requires you to set up
said on-prem system and can ssh to it​. Then in a config file, you can specify that machine be the
static VM you have set up, and the other will be a VM that will be created on the cloud provider
of your choice. A config file to run a netperf test between a sample static VM and a
n1-standard-2 machine in GCP zone us-central1-a would look the following:

netperf​:
 vm_groups​:
 vm_1​:
 static_vms​:
 ip_address​: ​192.168.0.1
 ssh_private_key​: <​ssh_key>
 user_name​: <​username>
 zone​: ​local
 vm_2​:
 vm_spec​:
 GCP​:
 machine_type​: ​n1-standard-2
 zone​: ​us-central1-a

A potentially quicker option is to use Docker. If you have Docker installed, you can run tests
between a Docker container running locally and a VM in the cloud. For this, the config file to use
would look something like this:

netperf:

 vm_groups​:
 vm_1​:
 cloud​: ​Docker
 vm_2​:
 vm_spec​:
 GCP​:

For more information visit ​google.com/cloud

 machine_type​: ​n1-standard-2
 zone​: ​us-central1-a

In the config file, specify two vm_groups: vm_1 and vm_2. In vm_1, tell it to use Docker as the
cloud. In vm_2, use vm_spec to set the machine_type and zone manually, as shown in the
example. Doing this will create a new Docker image if you have not used the Docker provider
previously and a new Docker container on your local machine (wherever you execute PKB from)
that will function as a VM for the benchmark.

The command to run the benchmark from either of the preceding config files would be

.​/​pkb.py ​--benchmarks​=netperf --benchmark_config_file=​/​path​/​to​/​config.yaml

3.3 Cross-cloud Benchmarks
If you use multiple cloud providers, it may be of interest to run cross cloud benchmarks. With
PKB, this can be achieved simply with a config file similar to the one we used for the on prem to
cloud with Docker benchmark.

netperf​:
 vm_groups​:
 vm_1​:
 cloud​: ​AWS
 vm_spec​:
 AWS​:
 machine_type​: ​m4.4xlarge
 zone​: ​us-east-1a
 vm_2​:
 cloud​: ​GCP
 vm_spec​:
 GCP​:
 machine_type​: ​n1-standard-16
 zone​: ​us-central1-a

This will create one VM on AWS and another on GCP with the specified machine types in the
specified zones and run netperf between them. ​The command to run the benchmark would be:

For more information visit ​google.com/cloud

.​/​pkb.py ​--benchmarks​=netperf --benchmark_config_file=​/​path​/​to​/​config.yaml

3.4 VPN Benchmarks
Running benchmarks across an IPSec VPN is possible using the PKB VPN service.
Base requirements for IPSec VPNs across the Internet:

● Public IP address on both ends of the tunnel.
● Unique subnet ranges behind each VPN GW. CIDRs can’t overlap unless using multiple

tunnels.
● Pre-shared key

By default, GCP and some other providers in PKB run benchmarks from within a single VPC
and subnet range. To meet the requirement for mutually exclusive subnet ranges, you can
distinguish using the ​cidr​ vm_group property in your benchmark config file as follows:

iperf​:
 description​: ​Run iperf on custom cidr
 vm_groups​:
 vm_1​:
 cloud​: ​GCP
 cidr​: ​10.0.1.0/24
 vm_spec​:
 GCP​:
 zone​: ​us-west1-b
 machine_type​: ​n1-standard-4
 vm_2​:
 cloud​: ​GCP
 cidr​: ​192.168.1.0/24
 vm_spec​:
 GCP​:
 zone​: ​us-central1-c
 machine_type​: ​n1-standard-4

Then to establish the VPN for a benchmark config you can add --​use_vpn​ to the flags passed
to PKB and include the desired parameters to the ​vpn_service​ section of the configuration:

ping​:
 description​: ​Run ping over vpn
 flags​:
 use_vpn​: ​True

For more information visit ​google.com/cloud

 vpn_service_gateway_count​: ​1
 vpn_service​:
 tunnel_count​: ​2
 ike_version​: ​2
 routing_type​: ​static
 vm_groups​:
 vm_1​:
 cloud​: ​GCP
 cidr​: ​10.0.1.0/24
 vm_spec​:
 GCP​:
 zone​: ​us-west1-b
 machine_type​: ​n1-standard-4
 vm_2​:
 cloud​: ​GCP
 cidr​: ​192.168.1.0/24
 vm_spec​:
 GCP​:
 zone​: ​us-central1-c
 machine_type​: ​n1-standard-4

At the time of this writing VPN support is still a pending contribution to PerfKit Benchmarker, but
should be available to use soon.

3.5 Kubernetes Benchmarks
There are two ways to execute Kubernetes tests on a cloud provider. The first is to create a
Kubernetes cluster in the cloud provider and provide its config to PKB via the
--kubeconfig=</path/to/.kube/config> ​flag. Using this method, PKB handles the
setup and teardown of the Kubernetes pods, in the cluster you have setup manually. This will
work for most benchmarks that you want to run on a cluster.

The second method involves using a config file that looks like the following with the benchmark
container_netperf​. Using this benchmark will set up a Kubernetes cluster for you and deploy
pods that use a specialized netperf container image. In the config file, we have to specify the
specs of both our containers that will be deployed and the cluster itself.

container_netperf​:
 container_specs​:
 netperf​:
 image​: ​netperf
 cpus​: ​2
 memory​: ​4GiB

For more information visit ​google.com/cloud

 container_registry​: ​{}
 container_cluster​:
 vm_count​: ​2
 vm_spec​:
 GCP​:
 machine_type​: ​n1-standard-4
 zone​: ​us-east1-b

The command to run this benchmark will be:

.​/​pkb.py ​--benchmarks​=container_netperf \
--benchmark_config_file=​</​path​/​to​/​config.yaml​>

3.6 Intra-zone Benchmarks
To run an intra-zone benchmark (two VMs in the same zone), you can simply specify the zone
you want both VMs to be in and any other flags you want to specify. The following example runs
an intra-zone netperf TCP_RR benchmark in GCP zone us-central1-a with n1-standard-4
machines. If you want to run another network benchmark, refer to section 3.1 for details on the
flags available to use.

.​/​pkb.py ​--benchmarks​=​netperf​ --cloud=GCP --zones=us-central1-a \
--machine_type=n1-standard-4 --netperf_benchmarks=TCP_RR

3.7 Inter-zone Benchmarks
Inter-zone tests, like most other tests can be executed in one of two ways. It can be done
entirely from the command line using the --zone flag, as follows:

.​/​pkb.py ​--benchmarks​=​iperf​ --cloud=GCP --zone=us-east4-b \
--zone=us-east4-c --machine_type=n1-standard-4

The same Inter-zone benchmark can also be set up using a config file:

iperf​:
 vm_groups​:

For more information visit ​google.com/cloud

 vm_1​:
 cloud​: ​GCP
 vm_spec​:
 GCP​:
 machine_type​: ​n1-standard-4
 zone​: ​us-east4-b
 vm_2​:
 cloud​: ​GCP
 vm_spec​:
 GCP​:
 machine_type​: ​n1-standard-4
 zone​: ​us-east4-c

This config file can be run using the command:

.​/​pkb.py ​--benchmarks​=​iperf​ --benchmark_config_file=​/​path​/​to​/​config.yaml

3.8 Inter-Region Benchmarks
Inter-Region benchmarks (between VMs located in separate geographic regions), can likewise
be run using command line flags or with a config file.

.​/​pkb.py ​--benchmarks​=​iperf​ --cloud=GCP --zone=us-central1-b \
--zone=us-east4-c --machine_type=n1-standard-4

The same Inter-Region benchmark can also be set up using the following config file:

iperf​:
 vm_groups​:
 vm_1​:
 cloud​: ​GCP
 vm_spec​:
 GCP​:
 machine_type​: ​n1-standard-4
 zone​: ​us-central1-b
 vm_2​:
 cloud​: ​GCP
 vm_spec​:
 GCP​:
 machine_type​: ​n1-standard-4
 zone​: ​us-east4-c

For more information visit ​google.com/cloud

And this config file can be run with the following command:

.​/​pkb.py ​--benchmarks​=​iperf​ --benchmark_config_file=​/​path​/​to​/​config.yaml

3.9 Multi Tier
Many cloud providers have multiple tiers of network performance. GCP has premium and
standard tiers, which basically determines where traffic transitions between the Internet and
Google’s network, with the premium tier spending more time on Google’s internal network. The
network tier can be set with the ​--gce_network_tier​ flag. However, you will only see a
difference between the tiers when testing between GCP and another network (cross cloud or on
prem to cloud).

iperf​:
 flags​:
 Gce_network_tier​: premium
 vm_groups​:
 vm_1​:
 cloud​: ​AWS
 vm_spec​:
 AWS​:
 machine_type​: ​m4.4xlarge
 zone​: ​us-east-1a
 vm_2​:
 cloud​: ​GCP
 vm_spec​:
 GCP​:
 machine_type​: ​n1-standard-16
 zone​: ​us-central1-a

And this config file can be run with the following command:

.​/​pkb.py ​--benchmarks​=​iperf​ --benchmark_config_file=​/​path​/​to​/​config.yaml

4. Inter-Region Latency Example and Results
As an illustrative example, we present the actual results of our Google Cloud all-region to
all-region round trip latency tests, as shown in ​Fig. 2.​ This chart shows the average round trip

For more information visit ​google.com/cloud

latency between regions from benchmarks run over the course of a month. The benchmarks
were all executed on n1-standard-2 machine types with internal IP addresses. The statistics are
all collected using PerfKit Benchmarker to run ping benchmarks between VMs in each pair of
regions.

To reproduce this chart, you can run the following pkb command with the following config file. If
you want to run a smaller subset of regions, just remove the regions you don’t want included
from the ​zones​ and ​extra_zones​ lists.

ping​:
 flag_matrix​: ​inter_region
 flag_matrix_filters​:
 inter_region​: ​"zones < extra_zones"
 flag_matrix_defs​:
 inter_region​:

 zones​:
[asia-east1-a,asia-east2-a,asia-northeast1-a,asia-northeast2-a,asia-south1-a,asi

a-southeast1-a,australia-southeast1-a,europe-north1-a,europe-west1-c,europe-west

2-a,europe-west3-a,europe-west4-a,europe-west6-a,northamerica-northeast1-a,south

america-east1-a,us-central1-a,us-east1-b,us-east4-a,us-west1-a,us-west2-a]

 extra_zones​:
[asia-east1-a,asia-east2-a,asia-northeast1-a,asia-northeast2-a,asia-south1-a,asi

a-southeast1-a,australia-southeast1-a,europe-north1-a,europe-west1-c,europe-west

2-a,europe-west3-a,europe-west4-a,europe-west6-a,northamerica-northeast1-a,south

america-east1-a,us-central1-a,us-east1-b,us-east4-a,us-west1-a,us-west2-a]

 flags​:
 cloud​: ​GCP
 machine_type​: ​n1-standard-2
 ping_also_run_using_external_ip​: ​True

You can also add the ​--run_processes=<# of processes>​ to tell it to run multiple benchmarks
in parallel, but this will still likely take awhile (>12 hours). If you run too many benchmarks in
parallel, you may run into quota issues, such as regional CPU quotas and per project subnet
quotas, which limits you to around 8 processes. If you exceed a quota while running PKB, it will
tell you the exception that was thrown and the benchmark will fail. Additionally, you can use the
--gce_network_name=<network name> ​flag to have each benchmark use a GCP VPC
that you have already created, so that each benchmark doesn’t make their own, which adds up
to a significant amount of time. This will also ensure that you don’t run into subnet quota issues.

.​/​pkb.py ​--benchmarks​=​ping​ --benchmark_config_file=​/​path​/​to​/​config.yaml

For more information visit ​google.com/cloud

Fig. 2: Inter-Region Latency results for Google Cloud. All numbers are in milliseconds.

In the matrix shown in ​Fig. 2, ​The labels on the y-axis (left side) represent the sending region
and the labels on the x-axis (across the top) represent the receiving region. So if we look at the
intersection of asia-east2 on the y-axis and asia-east1 on the x-axis, this represents the average
of results from ping benchmarks executed from a VM in asia-east2 to a VM in asia-east1.

5. Viewing and Analyzing Results
The report generated from a PKB run includes the results of the benchmark test along with a
significant quantity of metadata about the test environment. The raw report is a JSON formatted

For more information visit ​google.com/cloud

dictionary of key:value pairs. The default location for this file is
<tmp_dir>/perfkitbenchmarker/runs/<run_uri>/perfkitbenchmarker_results.json

PKB includes a number of publishing targets as well, which can be specified on the command
line when the test is launched to store the results in a backend like BigQuery or ElasticSearch
automatically. It is then possible to query these runs from a dashboard provider to visualize the
data.

5.1 Visualizing Results with BigQuery and Data Studio
To use the BigQuery PKB publisher, first create a BigQuery table in your GCP project (the
schema will be created when you first push a sample), and then include the table name and
project name in the PKB run flags:

.​/​pkb.py ​--benchmarks​=​iperf​ --benchmark_config_file=​/​path​/​to​/​config.yaml
--bigquery_table=<bq.table> --bq_project=<bq.project>

The schema for each sample published by a run is described in the table below. Each run can
(and usually does) produce multiple samples. In a network test like ping for example, the latency
from zone_1 to zone_2 and the latency from zone_2 to zone_1 are recorded in separate
samples. Likewise, there are separate samples created when using public and private networks,
as well as samples that describe system metadata like lscpu and procmap. All of the samples
for a single run share the same run_uri and can be joined on this field for grouping in queries.

FIELD NAME TYPE MODE DESCRIPTION

For more information visit ​google.com/cloud

unit STRING NULLABLE Unit type of the test/metric. (sec, ms, Mbit/sec, etc)
labels STRING NULLABLE Catch all field that stores any information about the

benchmark that does in any other field. This will contain
a variety of information depending on the specific
benchmark and test setup

timestamp FLOAT NULLABLE Timestamp of benchmark in epoch time
product_name STRING NULLABLE Name of the testing tool (this will always be

‘PerfkitBenchmarker’)
test STRING NULLABLE Name of the specific benchmark that is being run (iperf,

netperf, ping, etc)
official BOOLEAN NULLABLE This will always be false
metric STRING NULLABLE The specific metric that the value and unit type is for.

(Avg latency, TCP Throughput, etc). A test can have
multiple metrics.

value FLOAT NULLABLE The value of the specific test and metric
owner STRING NULLABLE The user who executed PerfKitBenchmarker
run_uri STRING NULLABLE A unique value assigned to each test run
sample_uri STRING NULLABLE A unique value assigned to each metric in each test run

Once the table is populated you can query run results directly for reporting. If you are capturing
several test types or tests with different parameters in the same table it may be useful to create
views for each test used in your reports. The following BigQuery Standard SQL query shows
how you can capture specific key:value pairs nested in the labels field and how to work with the
time format for use in reporting.

SELECT

 value,

 unit,

 metric,

 test,

 TIMESTAMP_MICROS(CAST(timestamp * 1000000 AS int64)) AS thedate,

 REGEXP_EXTRACT(labels, r"\|vm_1_cloud:(.*?)\|") AS vm_1_cloud,

 REGEXP_EXTRACT(labels, r"\|vm_2_cloud:(.*?)\|") AS vm_2_cloud,

 REGEXP_EXTRACT(labels, r"\|sending_zone:(.*?)\|") AS sending_zone,

 REGEXP_EXTRACT(labels, r"\|receiving_zone:(.*?)\|") AS receiving_zone,

 REGEXP_EXTRACT(labels, r"\|sending_zone:(.*?-.*?)-.*?\|") AS sending_region,

 REGEXP_EXTRACT(labels, r"\|receiving_zone:(.*?-.*?)-.*?\|") AS receiving_region,

 REGEXP_EXTRACT(labels, r"\|vm_1_machine_type:(.*?)\|") AS machine_type,

 REGEXP_EXTRACT(labels, r"\|ip_type:(.*?)\|") AS ip_type

FROM <PROJECT>.<dataset>.<table>

To create a visualization using ​Data Studio​, start by adding a connection to the BigQuery table
you specified above. If using separate views, you can make each view its own data source.

For more information visit ​google.com/cloud

https://datastudio.google.com/

Once Data Studio can see the PKB results table, you can design your charts and visualizations
accordingly using the full range of reporting tools available. The example report below shows
inter-region ping latency results:

For more information visit ​google.com/cloud

Example PerfKit Benchmarker report in Google Data Studio

6. Summary
Perfkit Benchmarker simplifies cloud network performance testing, allowing you to collect your
measurements of interest in an easy and repeatable manner. In this whitepaper we have
covered benchmark testing network latency and throughput using familiar tools like iperf,
netperf, and ping. The scenarios we described allow you to verify network performance claims
within a single cloud, across cloud providers, or from your site to the cloud. For more information
about PKB including the other available benchmarks (~100), supported cloud providers (~12), or
to reach out to the community, please visit:
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker

For more information visit ​google.com/cloud

https://github.com/GoogleCloudPlatform/PerfKitBenchmarker

Authors & Acknowledgements

Authors: Derek Phanekham (SMU), Matthew Zaber (SMU), Suku Nair (SMU)

Reviewers/Contributors: Steve Deitz (Google), Rick Jones (Google), Manasa Chalasani (Google), Mike
Truty (Google)

Publication Date: January 13, 2020

For more information visit ​google.com/cloud

