a

Measuring Cloud Network
Performance with PerfKit
Benchmarker

A Google Cloud Technical White Paper
January 2020

Google Cloud

For more information visit google.com/cloud

Table of Contents

1. Abstract
2. Introduction
2.1 PerfKit Benchmarker
2.1.1 PerfKit Benchmarker Basic Example
2.1.2 PerfKit Benchmarker Example with Config file
3. Benchmark Configurations
3.1 Basic Benchmark Specific Configurations
3.1.1 Latency (ping and netperf TCP_RR)
3.1.2 Throughput (iperf and netperf)
3.1.3 Packets per Second
3.2 On-Premises to Cloud Benchmarks
3.3 Cross Cloud Benchmarks
3.4 VPN Benchmarks
3.5 Kubernetes Benchmarks
3.6 Intra-Zone Benchmarks
3.7 Inter-Zone Benchmarks
3.8 Inter-Region Benchmarks
3.9 Multi Tier
4. Inter-Region Latency Example and Results
5. Viewing and Analyzing Results
5.1 Visualizing Results with BigQuery and Data Studio

6. Summary

Google Cloud

N N o0 a0 g MWW

oo

10
11
12
13
13
14
15
16
18
18
21

1. Abstract

Network performance is of vital importance to any business or user operating or running part of
their infrastructure in a cloud environment. As such, it is also important to test the performance
of a cloud provider’'s network before deploying a potentially large number of virtual machines
and other components of virtual infrastructure. Researchers at SMU’s AT&T Center for
Virtualization (see smu.edu/provost/virtualization) have been working in conjunction with a team
at Google to run network performance benchmarks across various cloud providers using
automation built around PerfKit Benchmarker (see
github.com/GoogleCloudPlatform/PerfKitBenchmarker) to track changes in network
performance over time. This paper explains how cloud adopters can perform their own
benchmarking.

2. Introduction

When choosing a cloud provider, users are often faced with the task of figuring out which one
best suits their needs. Beyond looking at the advertised metrics, many users will want to test
these claims for themselves or see if a provider can handle the demands of their specific use
case. This brings about the challenge of benchmarking the performance of different cloud
providers, configuring environments, running tests, achieving consistent results, and sifting
through the gathered data. Setting up these environments and navigating the APIs and portals
of multiple different cloud providers can escalate this challenge and takes time and skill. Despite
the sometimes difficult nature of this, benchmarking is a necessary endeavor.

This document demonstrates how to run a variety of network benchmarks on the largest public
cloud providers using PerfKit Benchmarker (PKB). We begin with an overview of the PKB
architecture and how to get started running tests, then describe specific test configurations to
cover a variety of deployment scenarios. These configurations can be used to immediately
compare the performance of different use cases, or run on a schedule to track network
performance over time.

Google Cloud

For more information visit google.com/cloud

http://www.smu.edu/provost/virtualization
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker

2.1 PerfKit Benchmarker

PerfKit Benchmarker is an open source tool created at Google that allows users to easily run
benchmarks on various cloud providers without having to manually set up the infrastructure
required for those benchmarks. PerfKit Benchmarker follows the 5 step process detailed in
Figure 1 to automate each benchmark run. The Configuration phase processes command line
flags, configuration files, and benchmark defaults to establish the final specification used for the
run. The Provisioning phase creates the networks, subnets, firewalls and firewall rules, virtual
machines, drives, and other cloud resources required to run the test. Benchmark binaries and
dependencies like datasets are also loaded in this phase. The Execution phase is responsible
for running the benchmarks themselves, and Teardown releases any resources created during
the Provision phase. The Publishing phase packages the test results into a format suitable for
further analysis such as loading into a reporting system. The metadata returned from the
Publishing phase can include verbose details about the actual infrastructure used during the test
and timing information for each phase of the run along with the metrics returned from the
benchmark itself, providing the level of detail needed to understand the benchmark results in
context.

[Logic Execution Flow - Start at Any Stage '>
v
CunﬂEuration Provisioning Execution Teardown Publish
Benchmark cfg. file Prepare Upload
+ Provisioning Workflow Run Teardown Workflow RUD ':
Command line flags Cleanup 2porting
Benchmark Spec (doc Parse & Store
based)
Software Modules
Configuration Resolution Provisioning Execution Publishing
Defaults Provider Assets Services Benchmark Flow Formatting
Virtual Machines l Remote Commands | | Prepare ‘ I JSON [
Config File
Config File Network [Remote Copy Run] | Tesxt
| Overides 4 Fackage ‘
i AT Management LiReruy: | BigQuery
Cmd. Line Flags
I Storage (disks) [Utility Functions | l Error Handling l
| Benchmark Spec ‘ Package Manager Instrumentation
Static (tar) Files dstat
e [oowan |
Instal/Remave iy
| Image abstraction |

Fig. 1: PerfKitBenchmarker Architecture Diagram

Perfkit Benchmarker, along with an additional automation framework built around it, allows you
to schedule and automate a large number of tests on a daily basis.

Google Cloud

2.1.1 PerfKit Benchmarker Basic Example

Once PKB has been downloaded from github.com/GoogleCloudPlatform/PerfKitBenchmarker
and its dependencies have been installed following the directions on that page, running a single
benchmark with PerfKit Benchmarker is simple. You give it the benchmark you want to run and
where you want to run it. For example, here is a ping benchmark between two VMs that will be
located in zone us-east1-b on Google Cloud Platform:

./pkb.py --benchmarks=ping --zones=us-eastl-b --cloud=GCP

If the zone or cloud is not given, a default value will be used. You can also specify the machine
type with the --machine_type flag. If this is not set, a default single CPU VM will be used.

2.1.2 PerfKit Benchmarker Example with Config file

For more complicated benchmark setups, users define configurations using files in the .yaml
format, as shown in the following example.

At the top of the config file is the benchmark that is being run. Next, give it the name of a flag
matrix to use, in this case we’ll call it fmatrix. Then define a filter to apply to the flag matrix and
define the flag matrix itself. PKB works by taking the lists defined for each flag in the matrix (in
our case this is zones, extra_zones, and machine_type) and finding every combination of those
flags. It will then run the benchmark once for each combination of flags defined under fmatrix, as
long as it evaluates to true with the flag matrix filters. The flags defined under flags at the
bottom will be used for all benchmarks runs.

netperf:
flag matrix: fmatrix
flag matrix filters:
fmatrix: "zones !'= extra_zones"
flag matrix_ defs:
fmatrix:
zones: [us-westl-a, us-westl-b,us-westl-c]
extra zones: [us-westl-a, us-westl-b,us-westl-c]
flags:
cloud: GCP
netperf histogram buckets: 1000
netperf benchmarks: TCP_RR,TCP_STREAM,UDP_RR,UDP_STREAM
netperf test_length: 30
netperf num streams: 1,4,32
machine_ type: nl-standard-16
netperf tcp stream send size in bytes: 131072

Google Cloud

For more information visit google.com/cloud

https://github.com/GoogleCloudPlatform/PerfKitBenchmarker

This config file can be run with the command:
./pkb.py --benchmarks=netperf --benchmark config file=interzone us_westl.yaml

Using this config file will run netperf TCP_RR, TCP_STREAM, UDP_RR and UDP_STREAM
between pairs of n1-standard-16 instances in the us-west1-a, us-west1-b and us-west1-c zones.
Because of the flag matrix filter, it will exclude tests from the same zone. Each test will be of 30
seconds duration and will be repeated for 1, 4, and 32 parallel streams. So from one config file
and command line, we will get 72 benchmarks run (6 zone combinations * 4 netperf
benchmarks * 3 different stream counts).

In the following sections of this paper, we will see several more examples of how to run specific
tests with PKB. Generally, they all use this same format; the structure and parameters of the
benchmark are defined in a config file and a relatively simple command is used to start the
benchmark with the specified config file.

3. Benchmark Configurations

All of the benchmarks that are presented here are simple and easy to reproduce should anyone
want to run their own tests. In this section we will discuss the configurations for various test
runs.

There are several general types of network benchmarks you may want to run, including: same
zone (intra-zone), cross zone (inter-zone), and cross region (inter-region) tests. Intra-zone tests
are between VMs within the same zone, which usually means that they are situated in the same
datacenter. Inter-zone tests run between VMs in different zones within the same cloud region
and Inter-region tests run between VMs in separate cloud regions. These kinds of groupings are
necessary as network performance can vary dramatically across these three scales.

Additionally, benchmarks can be run to test network performance across VPN connections, on
different levels of network performance tiers, using different server operating systems, and on
Kubernetes clusters.

3.1 Basic Benchmark Specific Configurations

In this subsection, we cover the basic flags and configurations that are most commonly used for
network tests. These benchmarks are fairly standard and used to gather metrics on latency,
throughput, and packets per second.

Google Cloud

3.1.1 Latency (ping and netperf TCP_RR)

Ping is a commonly used utility for measuring latency between two machines and uses ICMP.
The flag you should know for running a ping benchmark is
--ping_also_run_using_external_ip=True. Just as the name implies, this will tell PKB to get
latency results using both internal and external IP addresses.

./pkb.py --benchmarks=ping --ping also_run using external ip=True
--zone=us-centrall-a --zone=us-westl-b --cloud=GCP

Ping, with its default once-a-second measurement is quite sufficient for inter-region latency. If
you wish to measure intra-region latency (either intra-zone or inter-zone) a netperf TCP_RR test
will show results that are more representative of application-level performance.

./pPkb.py --benchmarks=netperf --netperf histogram buckets=1000 \
--netperf benchmarks=TCP_RR --netperf test length=60 \
--zone=us-westl-b --cloud=GCP

3.1.2 Throughput (iperf and netperf)

Both iperf and netperf can be used to gather throughput data about both TCP and UDP
connections with various numbers of parallel streams, so that you can test single stream
throughput performance as well as aggregate.

The relevant flags for iperf are shown in the following. The first sets the length of time the
throughput tests are run (default: 60s) and the second flag sets how many threads iperf will use
to send traffic (default: 1).

iperf_runtime_in_seconds=60
Iperf_sending_thread_count=<num_threads>

./pPkb.py --benchmarks=iperf --iperf runtime_in seconds=120 \
--iperf sending thread count=32 --zone=us-centrall-a --cloud=GCP

To perform UDP tests or a request/response test in PKB, one should use netperf. We can also
set the number of streams, the test length in seconds, which netperf benchmarks are being run,
and how many buckets are in the optional histogram.

Google Cloud

./pkb.py --benchmarks=netperf \

--netperf histogram buckets=1000 \

--netperf benchmarks=TCP_STREAM,UDP_ STREAM \
--netperf test length=30 \

--netperf num streams=4 \
--zone=us-centrall-a --cloud=GCP

For any of the example benchmark configurations in sections 3.2 and after, you can use iperf
instead of ping, ping instead of netperf, etc. depending on what type of metrics you would like to
gather.

3.1.3 Packets per Second

Packets per second tests are performed using a script that runs multiple instances of netperf
UDP request/response (UDP_RR) using small message sizes to achieve the maximum possible
packets per second the VM can achieve in the configured situation. In PerfKit Benchmarker, it is
called netperf_aggregate and uses 3 virtual machines to test packets per second performance,
as can be seen in the configuration file:

netperf aggregate:
vm_groups:
vm_1:
vm_spec:
GCP:
machine type: nl-standard-4
zone: us-east4-b
vm_2:
vm_spec:
GCP:
machine_ type: nl-standard-4
zone: us-eastéd-c
vm_3:
vm_spec:
GCP:
machine_type: nl-standard-4
zone: us-eastéd-c

This config file can be run with the following command:

./pkb.py --benchmarks=netperf aggregate \
--benchmark config file=/path/to/config.yaml

Google Cloud

At the time of this writing the packets per second benchmark is still a pending contribution, but
should be available to use soon.

3.2 On-Premises to Cloud Benchmarks

On-premise to cloud benchmarks are highly specific to the user’s location, so unlike most cloud
to cloud benchmarks, you can’t simply look up results on a table online. PerfKit Benchmarker
makes it simple to setup your own benchmarking for your on-premise situation. There are two
ways to perform On-Prem to Cloud Benchmarks within the paradigm of PerfKit Benchmarker.
The first is to use a Static, On-Prem System (either VM or bare-metal). This requires you to set up
said on-prem system and can ssh to it. Then in a config file, you can specify that machine be the
static VM you have set up, and the other will be a VM that will be created on the cloud provider
of your choice. A config file to run a netperf test between a sample static VM and a
n1-standard-2 machine in GCP zone us-central1-a would look the following:

netperf:
vm_groups:
vm_1:
static_vms:
ip address: 192.168.0.1
ssh private_key: <ssh_key>
user_name: <username>
zone: local
vm_2:
vm_spec:
GCP:
machine_type: nl-standard-2
zone: us-centrall-a

A potentially quicker option is to use Docker. If you have Docker installed, you can run tests
between a Docker container running locally and a VM in the cloud. For this, the config file to use
would look something like this:

netperf:
vm_groups:
vm_1:
cloud: Docker
vm_2:
vm_spec:
GCP:

Google Cloud

For more information visit google.com/cloud

machine type: nl-standard-2
zone: us-centrall-a

In the config file, specify two vm_groups: vm_1 and vm_2. In vm_1, tell it to use Docker as the
cloud. In vm_2, use vm_spec to set the machine_type and zone manually, as shown in the
example. Doing this will create a new Docker image if you have not used the Docker provider
previously and a new Docker container on your local machine (wherever you execute PKB from)
that will function as a VM for the benchmark.

The command to run the benchmark from either of the preceding config files would be

./pPkb.py --benchmarks=netperf --benchmark config file=/path/to/config.yaml

3.3 Cross-cloud Benchmarks

If you use multiple cloud providers, it may be of interest to run cross cloud benchmarks. With
PKB, this can be achieved simply with a config file similar to the one we used for the on prem to
cloud with Docker benchmark.

netperf:
vm_groups:
vm_1:
cloud: AWS
vm_spec:
AWS:
machine_type: md.4xlarge
zone: us-east-la
vm_2:
cloud: GCP
vm_spec:
GCP:
machine_ type: nl-standard-16
zone: us-centrall-a

This will create one VM on AWS and another on GCP with the specified machine types in the
specified zones and run netperf between them. The command to run the benchmark would be:

Google Cloud

For more information visit google.com/cloud

./pPkb.py --benchmarks=netperf --benchmark config file=/path/to/config.yaml

3.4 VPN Benchmarks

Running benchmarks across an IPSec VPN is possible using the PKB VPN service.
Base requirements for IPSec VPNs across the Internet:

Public IP address on both ends of the tunnel.
Unique subnet ranges behind each VPN GW. CIDRs can’t overlap unless using multiple
tunnels.

e Pre-shared key

By default, GCP and some other providers in PKB run benchmarks from within a single VPC
and subnet range. To meet the requirement for mutually exclusive subnet ranges, you can
distinguish using the cidr vm_group property in your benchmark config file as follows:

iperf:
description: Run iperf on custom cidr

vm_groups:

vm_1:
cloud: GCP
cidr: 10.0.1.0/24
vm_spec:
GCP:
zone: us-westl-b
machine_ type: nl-standard-4
vm_2:
cloud: GCP
cidr: 192.168.1.0/24
vm_spec:
GCP:

zone: us-centrall-c
machine_type: nl-standard-4

Then to establish the VPN for a benchmark config you can add --use_vpn to the flags passed
to PKB and include the desired parameters to the vpn_service section of the configuration:

ping:
description: Run ping over vpn
flags:
use_vpn: True

Google Cloud

vpn_service gateway count: 1
vpn_service:

tunnel count: 2

ike version: 2

routing type: static
vm_groups:

vm_1:
cloud: GCP
cidr: 10.0.1.0/24
vm_spec:
GCP:
zone: us-westl-b
machine type: nl-standard-4
vm_2:
cloud: GCP
cidr: 192.168.1.0/24
vm_spec:
GCP:

zone: us-centrall-c
machine type: nl-standard-4

At the time of this writing VPN support is still a pending contribution to PerfKit Benchmarker, but
should be available to use soon.

3.5 Kubernetes Benchmarks

There are two ways to execute Kubernetes tests on a cloud provider. The first is to create a
Kubernetes cluster in the cloud provider and provide its config to PKB via the
--kubeconfig=</path/to/.kube/config> flag. Using this method, PKB handles the
setup and teardown of the Kubernetes pods, in the cluster you have setup manually. This will
work for most benchmarks that you want to run on a cluster.

The second method involves using a config file that looks like the following with the benchmark
container_netperf. Using this benchmark will set up a Kubernetes cluster for you and deploy
pods that use a specialized netperf container image. In the config file, we have to specify the
specs of both our containers that will be deployed and the cluster itself.

container netperf:
container_ specs:
netperf:
image: netperf
cpus: 2
memory: 4GiB

Google Cloud

container registry: {}
container cluster:
vm_count: 2
vm_spec:
GCP:
machine_ type: nl-standard-4
zone: us-eastl-b

The command to run this benchmark will be:

./pkb.py --benchmarks=container netperf \
--benchmark config file=</path/to/config.yaml>

3.6 Intra-zone Benchmarks

To run an intra-zone benchmark (two VMs in the same zone), you can simply specify the zone
you want both VMs to be in and any other flags you want to specify. The following example runs
an intra-zone netperf TCP_RR benchmark in GCP zone us-central1-a with n1-standard-4
machines. If you want to run another network benchmark, refer to section 3.1 for details on the
flags available to use.

./pkb.py --benchmarks=netperf --cloud=GCP --zones=us-centrall-a \

--machine_ type=nl-standard-4 --netperf benchmarks=TCP_RR

3.7 Inter-zone Benchmarks

Inter-zone tests, like most other tests can be executed in one of two ways. It can be done
entirely from the command line using the --zone flag, as follows:

./pkb.py --benchmarks=iperf --cloud=GCP --zone=us-east4-b \
--zone=us-east4-c --machine type=nl-standard-4

The same Inter-zone benchmark can also be set up using a config file:

iperf:

vm_groups:

Google Cloud

vm_1:
cloud: GCP
vm_spec:
GCP:
machine_ type: nl-standard-4
zone: us-east4-b
vm_2:
cloud: GCP
vm_spec:
GCP:
machine_type: nl-standard-4
zone: us-eastéd-c

This config file can be run using the command:

./pkb.py --benchmarks=iperf --benchmark config file=/path/to/config.yaml

3.8 Inter-Region Benchmarks

Inter-Region benchmarks (between VMs located in separate geographic regions), can likewise
be run using command line flags or with a config file.

./pkb.py --benchmarks=iperf --cloud=GCP --zone=us-centrall-b \
--zone=us-east4-c --machine type=nl-standard-4

The same Inter-Region benchmark can also be set up using the following config file:

iperf:
vm_groups:
vm_1:
cloud: GCP
vm_spec:
GCP:
machine_type: nl-standard-4
zone: us-centrall-b
vm_2:
cloud: GCP
vm_spec:
GCP:
machine type: nl-standard-4
zone: us-eastéd-c

Google Cloud

And this config file can be run with the following command:

./pkb.py --benchmarks=iperf --benchmark config file=/path/to/config.yaml

3.9 Multi Tier

Many cloud providers have multiple tiers of network performance. GCP has premium and
standard tiers, which basically determines where traffic transitions between the Internet and
Google’s network, with the premium tier spending more time on Google’s internal network. The
network tier can be set with the --gce_network_tier flag. However, you will only see a
difference between the tiers when testing between GCP and another network (cross cloud or on
prem to cloud).

iperf:
flags:
Gce _network tier: premium
Vm_groups:
vm_1:
cloud: AWS
vm_spec:
AWS:
machine_type: md.4xlarge
zone: us-east-la
vm_2:
cloud: GCP
vm_spec:
GCP:
machine_ type: nl-standard-16
zone: us-centrall-a

And this config file can be run with the following command:

./pkb.py --benchmarks=iperf --benchmark config file=/path/to/config.yaml

4. Inter-Region Latency Example and Results

As an illustrative example, we present the actual results of our Google Cloud all-region to
all-region round trip latency tests, as shown in Fig. 2. This chart shows the average round trip

Google Cloud

latency between regions from benchmarks run over the course of a month. The benchmarks
were all executed on n1-standard-2 machine types with internal IP addresses. The statistics are
all collected using PerfKit Benchmarker to run ping benchmarks between VMs in each pair of
regions.

To reproduce this chart, you can run the following pkb command with the following config file. If
you want to run a smaller subset of regions, just remove the regions you don’t want included
from the zones and extra_zones lists.

ping:
flag matrix: inter_ region
flag matrix filters:
inter region: "zones < extra zones"
flag matrix defs:
inter_ region:
zones:
[asia-eastl-a,asia-east2-a,asia-northeastl-a,asia-northeast2-a,asia-southl-a,asi
a-southeastl-a,australia-southeastl-a,europe-northl-a,europe-westl-c,europe-west
2-a,europe-west3-a,europe-west4-a,europe-west6-a,northamerica-northeastl-a, south
america-eastl-a,us-centrall-a,us-eastl-b,us-eastd4-a,us-westl-a,us-west2-a]
extra zones:
[asia-eastl-a,asia-east2-a,asia-northeastl-a,asia-northeast2-a,asia-southl-a,asi
a-southeastl-a,australia-southeastl-a,europe-northl-a,europe-westl-c,europe-west
2-a,europe-west3-a,europe-west4-a,europe-west6-a,northamerica-northeastl-a,south
america-eastl-a,us-centrall-a,us-eastl-b,us-eastd4-a,us-westl-a,us-west2-a]

flags:
cloud: GCP
machine type: nl-standard-2
ping_also_run using external ip: True

You can also add the --run_processes=<# of processes> to tell it to run multiple benchmarks
in parallel, but this will still likely take awhile (>12 hours). If you run too many benchmarks in
parallel, you may run into quota issues, such as regional CPU quotas and per project subnet
quotas, which limits you to around 8 processes. If you exceed a quota while running PKB, it will
tell you the exception that was thrown and the benchmark will fail. Additionally, you can use the
--gce_network name=<network name> flag to have each benchmark use a GCP VPC
that you have already created, so that each benchmark doesn’t make their own, which adds up
to a significant amount of time. This will also ensure that you don’t run into subnet quota issues.

./pkb.py --benchmarks=ping --benchmark config file=/path/to/config.yaml

Google Cloud

milliseconds receiving_region

o

= g =

© T 8

5% % £z s s

g g § 3 £ 7 g e _
2 £ % s § 2 $ 5 % 3 o
§ 2 2 2 & & g g % 8
& & % & B 8 e £ 35 O =
sending_region 8 ® & 8 & B 3 g 8 3 g
asia-east1 13 36 37 107 46 139 282 250 244 258 253 262 183 289 153 185 175 118 128
asia-east? 13 48 48 95 37 127 294 263 257 267 266 274 195 302 164 197 190 130 142
asia-northeast! = 36 49 9 127 67 114 254 220 215 226 222 234 154 260 122 156 146 89 98
asia-northeast2 = 37 48 9 138 79 122 260 228 224 235 231 241 163 269 131 165 156 98 106
asia-south1 108 95 127 138 60 151 374 341 337 346 348 359 276 384 245 276 267 212 220
asia-southeast! 46 37 67 77 60 92 318 285 278 290 286 296 215 323 187 219 209 152 161
australia-southee 139 127 114 122 152 92 303 271 264 276 273 283 203 302 171 196 196 160 137
europe-north1 283 296 253 261 374 318 303 33 40 32 31 39 115 241 132 124 113 165 167
europe-west! | 251 263 219 228 342 285 271 33 7 7 7 14 82 210 99 92 81 131 134
europe-west2 245 258 215 224 337 279 265 40 7 13 10 20 77 203 94 87 76 127 129
europe-west3 259 268 226 234 349 290 276 32 7 13 7 8 88 214 105 98 87 137 140
europe-westd | 254 267 223 231 348 286 273 30 7 10 7 14 84 211 102 94 83 136 137
europe-west6 | 263 275 234 242 358 297 283 39 14 20 8 14 95 221 112 105 93 147 147
northamerica-not 183 196 154 163 277 216 203 115 82 77 88 84 95 142 31 25 14 67 66
southamerica-ea 290 303 260 269 383 323 301 241 210 204 215 212 221 142 144 117 130 172 166
us-centralt 154 164 122 131 245 188 172 131 99 94 105 103 111 31 143 35 25 34 35
us-east1 186 198 157 165 276 220 197 124 92 87 98 94 104 26 118 35 12 67 60
us-east4 176 190 146 156 267 209 196 113 81 76 86 84 93 14 129 25 12 58 60
us-west1 119 131 89 98 212 153 161 164 131 127 137 136 147 67 172 34 67 58 25
us-west2 128 142 98 106 219 161 137 166 133 129 140 137 146 66 166 36 60 60 26

Fig. 2: Inter-Region Latency results for Google Cloud. All numbers are in milliseconds.

In the matrix shown in Fig. 2, The labels on the y-axis (left side) represent the sending region
and the labels on the x-axis (across the top) represent the receiving region. So if we look at the
intersection of asia-east2 on the y-axis and asia-east1 on the x-axis, this represents the average
of results from ping benchmarks executed from a VM in asia-east2 to a VM in asia-east1.

5. Viewing and Analyzing Results

The report generated from a PKB run includes the results of the benchmark test along with a
significant quantity of metadata about the test environment. The raw report is a JSON formatted

Google Cloud

For more information visit google.com/cloud

dictionary of key:value pairs. The default location for this file is
<tmp_dir>/perfkitbenchmarker/runs/<run_uri>/perfkitbenchmarker_results.json
KitBenchmarker Complete Results
'metadata'’': {'ip _type': 'external’,

'perfkitbenchmarker version': 'v1.12.0-1586-g647d54fe’,

'receiving machine type': 'nl-standard-4',

'receiving zone': 'us-westl-b’',

'run_number': @,

'runtime_in seconds': 66,

'sending machine type': 'nl-standard-4',

'sending_thread count': 1,

'sending zone': 'us-westl-b’,

u'vm 1 fdev/sda': 10737418240,

'vm_1 boot_disk _size': 10,

'vm_1 boot disk type': 'pd-standard’,

'vm 1 cidr': '19.06.1.8/24°',

'vm 1 cloud': 'GCP',

'vm_1 dedicated host': False,

'vm_1 gce network tier': 'premium',

'vm_1 gce shielded secure boot': False,

'vm 1 image': u'ubuntu-1604-xenial-v20191217"'
PKB includes a number of publishing targets as well, which can be specified on the command
line when the test is launched to store the results in a backend like BigQuery or ElasticSearch
automatically. It is then possible to query these runs from a dashboard provider to visualize the
data.

5.1 Visualizing Results with BigQuery and Data Studio

To use the BigQuery PKB publisher, first create a BigQuery table in your GCP project (the
schema will be created when you first push a sample), and then include the table name and
project name in the PKB run flags:

./pkb.py --benchmarks=iperf --benchmark config file=/path/to/config.yaml
--bigquery_ table=<bqg.table> --bg project=<bqg.project>

The schema for each sample published by a run is described in the table below. Each run can
(and usually does) produce multiple samples. In a network test like ping for example, the latency
from zone_1 to zone_2 and the latency from zone_2 to zone_1 are recorded in separate
samples. Likewise, there are separate samples created when using public and private networks,
as well as samples that describe system metadata like Iscpu and procmap. All of the samples
for a single run share the same run_uri and can be joined on this field for grouping in queries.

[FIELD NAME [TYPE [MoDE [DESCRIPTION |

Google Cloud

unit STRING NULLABLE Unit type of the test/metric. (sec, ms, Mbit/sec, etc)

labels STRING NULLABLE Catch all field that stores any information about the
benchmark that does in any other field. This will contain
a variety of information depending on the specific
benchmark and test setup

timestamp FLOAT NULLABLE Timestamp of benchmark in epoch time

product_name STRING NULLABLE Name of the testing tool (this will always be
‘PerfkitBenchmarker’)

test STRING NULLABLE Name of the specific benchmark that is being run (iperf,
netperf, ping, etc)

official BOOLEAN NULLABLE This will always be false

metric STRING NULLABLE The specific metric that the value and unit type is for.
(Avg latency, TCP Throughput, etc). A test can have
multiple metrics.

value FLOAT NULLABLE The value of the specific test and metric

owner STRING NULLABLE The user who executed PerfKitBenchmarker

run_uri STRING NULLABLE A unigue value assigned to each test run

sample_uri STRING NULLABLE A unique value assigned to each metric in each test run

Once the table is populated you can query run results directly for reporting. If you are capturing
several test types or tests with different parameters in the same table it may be useful to create
views for each test used in your reports. The following BigQuery Standard SQL query shows

how you can capture specific key:value pairs nested in the labels field and how to work with the
time format for use in reporting.

SELECT
value,
unit,

metric,

test,

TIMESTAMP MICROS (CAST (timestamp * 1000000 AS int64)) AS thedate,
REGEXP_EXTRACT (labels, r"\|vm_1 cloud: (.*?)\|") AS vm 1 cloud,
REGEXP_EXTRACT (labels, r"\|vm_2 cloud: (.*?)\|") AS vm 2 cloud,

REGEXP_EXTRACT (labels,
REGEXP_EXTRACT (labels,
REGEXP_EXTRACT (labels,
REGEXP_EXTRACT (labels,
REGEXP_EXTRACT (labels,

r"\|sending zone: (.*?)\|") AS sending_ zone,

r"\ |receiving zone: (.*?)\|") AS receiving_ zone,

r"\|sending zone: (.*?-.%*?)-.*?\|") AS sending region,

r"\|receiving zone: (.*?-.%*?)-.*?\|") AS receiving region,

r"\|vm_1 machine type: (.*?)\|") AS machine_ type,
REGEXP_EXTRACT (labels, r"\|ip_type: (.*?)\|") AS ip type
FROM <PROJECT>.<dataset>.<table>

To create a visualization using Data Studio, start by adding a connection to the BigQuery table
you specified above. If using separate views, you can make each view its own data source.

Google Cloud

https://datastudio.google.com/

Q Search

Google Connectors (18)

Connectors built and supported by Data Studio. Learn more

f File Upload @ BigQuery Campalgn Mz

— By Google By Google By Google
Connect to CSV (comma-separated values) files Connect to BigQuery tables and custom queries Connect to Campaign Mz
Learn more Learn more

Display & Video 360 : * Extract Data : 4;:& Google Ad M;
By Google By Google “?y By Google

aw
e

Connect to Display & Video 360 report data, Connect to Extract Data Learn more Connect to Google Ad M;
Google Cloud Storage : . Google Sheets : MysOL
By Gaogle 22} By Goagle By Google

See your files in Google Cloud Storage. Learn more Connect to Google Sheets. Learn more Connect 1o MySQL datab

Once Data Studio can see the PKB results table, you can design your charts and visualizations
accordingly using the full range of reporting tools available. The example report below shows
inter-region ping latency results:

L ™~ ¥
—— us-east1-us-west1 — us-west1-us-east1 — us-west2-us-east1 —— us-eastl-us-west2 ~—— us-west2-us-east4 >
—— us-eastd-us-west2 ~ —— us-eastd-us-west1 —— us-west1-us-east4 ~—— us-centrall-us-west2 ~—— us-west2-us-centrall
80
60 =
8
=
g
g a0 —
2 ——
= e —
E
20
0
Jan 2019 Feb 2019 Mar 2019 Apr 2019 May 2019 Jun 2019 Jul 2019 Aug 2019 Sep 2019 Oct 2019 Nov 2019 Dec 2019

Google Cloud

For more information visit google.com/cloud

Example PerfKit Benchmarker report in Google Data Studio

6. Summary

Perfkit Benchmarker simplifies cloud network performance testing, allowing you to collect your
measurements of interest in an easy and repeatable manner. In this whitepaper we have
covered benchmark testing network latency and throughput using familiar tools like iperf,
netperf, and ping. The scenarios we described allow you to verify network performance claims
within a single cloud, across cloud providers, or from your site to the cloud. For more information
about PKB including the other available benchmarks (~100), supported cloud providers (~12), or
to reach out to the community, please visit:
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker

Google Cloud

https://github.com/GoogleCloudPlatform/PerfKitBenchmarker

Authors & Acknowledgements
Authors: Derek Phanekham (SMU), Matthew Zaber (SMU), Suku Nair (SMU)

Reviewers/Contributors: Steve Deitz (Google), Rick Jones (Google), Manasa Chalasani (Google), Mike
Truty (Google)

Publication Date: January 13, 2020

Google Cloud

For more information visit google.com/cloud

