
 

 
 

Measuring 
Aggregate Packets 
Per Second with 
netperf 
 
Sometimes There Is More To Life Than Mbits/s But This Method 
Will Work With a Bulk Transfer 
 
 
Rick Jones 
 
 
 
 
 
 
 
 
 
 

 

 

For more information visit cloud.google.com                                                                                                    1 

 

Disclaimer: In no way, shape, or form should the results presented in this document be 
construed as defining an SLA, SLI, SLO, or any other TLA. The author’s sole intent is to offer 
helpful examples to facilitate a deeper understanding of the subject matter. 

https://www.youtube.com/watch?v=6wzULnlHr8w
https://www.youtube.com/watch?v=6wzULnlHr8w
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://en.wikipedia.org/wiki/Three-letter_acronym


 

 

 

Introduction 
One of the most commonly used measures of network performance for a system is 
unidirectional, bulk transfer - iperf3, netperf TCP_STREAM, etc.  It is usually straightforward 
and easy to do, and easily compared with things like NIC speed.  However, not all systems 
service bulk-transfer workloads.  Sometimes it isn’t how many megabits per second can be 
sent but how many transactions per second which matters. 

This write-up will describe one way one can use netperf to measure aggregate transactions 
per-second and so at least one variation on aggregate packets per second for a system. 

Summary 
1.​ Install netperf on each system: 

a.​ Ensure gcc, make, automake, texinfo and python-rrdtool are installed.  That can 
be python3-rrdtool with an updated version of post_proc.py 

b.​ Bring a netperf source tree to the systems 
c.​ cd to the top of the netperf source tree 
d.​ run ./autogen.sh 
e.​ ./configure --enable-burst --enable-demo --enable-histogram 
f.​ make  # sudo make install if you prefer 
g.​ src/netserver # start the netserver on the load generator systems 

2.​ On the system to be the one under test, cd to  doc/examples/ in the netperf source tree 
3.​ Ensure that runemomniaggdemo.sh and find_max_burst.sh have the execute bit set 

a.​ chmod +x runemomniaggdemo.sh find_max_burst.sh 
4.​ Edit runemomniaggdemo.sh to: 

a.​ Enable aggregate Transactions Per Second (tps) tests - DO_RRAGG set to ‘1’ 
b.​ Disable the other tests - DO_mumble set to ‘0’ 
c.​ Set DURATION to your desired time length for each data point - eg 60 or 120 

(seconds) 
5.​ Add the location of the find_max_burst.sh script to your $PATH variable 

a.​ export PATH=$PATH:. 
6.​ Edit/create a “remote_hosts” file like the following, with the names or IP addresses of 

your load generators:​
REMOTE_HOSTS[0]=lg1​
REMOTE_HOSTS[1]=lg2​
REMOTE_HOSTS[2]=lg3​
REMOTE_HOSTS[3]=lg4​
NUM_REMOTE_HOSTS=4 

7.​ ./runemomniaggdemo.sh   # execute the script 
8.​ ./post_proc.py --intervals netperf_tps.log # script relies on python_rrdtool 

 

 

For more information visit cloud.google.com 

2 

https://github.com/HewlettPackard/netperf


 

 

 

9.​ Enjoy the results.  There will also be a chart in “netperf_tps_overall.svg” for those who 
prefer pictures over text 

 
If you are compiling elsewhere and just bringing binaries rather than putting a netperf source 
tree on every system, you will need to bring the netperf binary to the system under test, along 
with the runemomniaggdemo.sh and find_max_burst.sh scripts and a remote_hosts file.  If you 
wish to post-process results there, bring post_proc.py as well.  The systems acting as load 
generators need only the netserver binary and it started on them. 
 

Theory of Operation 
There are many different ways one can go about running aggregate tests with netperf.  Each 
has advantages and drawbacks.  One way is to simply run N copies of netperf in a shell loop 
and summarize the results.  For example we could run four (4) netperf TCP_RR tests between 
our system under test and a load generator: 
 

jonesrick@sut:~/netperf-2.7.1$ for i in `seq 1 4` 

do 

  netperf -t TCP_RR -H lg1 -P 0 & 

done 

... 

jonesrick@sut:~/netperf-2.7.1$ 16384  87380  1        1       10.00    18929.37    

65536  87380  

16384  87380  1        1       10.00    18229.11    

65536  87380  

16384  87380  1        1       10.00    19218.99    

65536  87380  

16384  87380  1        1       10.00    18666.15    

65536  87380  

 

 

# And then sum-up the transactions/s to arrive at a result.  Say with a simple one 

liner at the shell: 

 

jonesrick@sut:~/netperf-2.7.1$ awk '{sum += $6}END{print "sum",sum}' 

16384  87380  1        1       10.00    18929.37    

65536  87380  

16384  87380  1        1       10.00    18229.11    

65536  87380  

16384  87380  1        1       10.00    19218.99    

65536  87380  

 

 

For more information visit cloud.google.com 

3 



 

 

 

16384  87380  1        1       10.00    18666.15    

65536  87380  

sum 75043.6 

 
 
 
(Using $6 is a cheap way to “ignore” the second line of each netperf’s results and so avoid 
having to be selective in cut-and-paste) 
 
Ninety-nine times out of ten (sic ) that will be fine for small-scale tests - not too many parallel 1

streams.  But it suffers from the threat of skew error.  We are assuming all four netperfs started 
at virtually the same time, and they stopped at virtually the same time, which means they all 
were running at the same time. 
 
However, it is possible that they didn’t start and/or finish at the same time - those times could 
be skewed.  That would mean that not all the netperfs were always running at the same time 
and one cannot simply sum their results. 
 

 
 
One way to address skew is to simply make the run times much longer so start/stop skew is 
essentially epsilon.  That can mean rather long run times. 
 

1 Never learn expressions from high-school athletics coaches.  And be wary of learning humor from 
high-school Physics teachers.  The half-octopus rule is now in effect.   Forewarned is forearmed… :) 
 

 

For more information visit cloud.google.com 

4 



 

 

 

Another way to address skew would be for each of the streams of tests to actually be three 
sequential runs of netperf, with the length of the first and last of each long enough to be longer 
than any skew, and their results ignored.  Then one could sum the results of the middle netperf 
in each stream: 
 
jonesrick@sut:~/netperf-2.7.1$ for i in `seq 1 4` 
> do 
> (netperf -t TCP_RR -H lg1 > /dev/null; netperf -t TCP_RR -H lg1 -P 0; netperf -t 
TCP_RR -H lg1 > /dev/null) & 
> done 
 
The downside to this is the added time to completion of the test.  In the case above, instead of 
taking 10 seconds for our “datapoint” it took 30 seconds.  More generally, if you know the skew 
in advance, it means running for runtime + 2*skew. 
 
When launching netperfs on the same system, there is usually not too much skew - at least not 
until one has many of them or one runs something like UDP_STREAM and really hammers the 
system.  But suppose we want to start netperfs on several systems.  There we will have the 
added effects of initiating netperf on other systems, and the possibility of skew error is more 
severe. 
 
Ideally, we’d like to be able to tell netperf to start generating load, then be able to tell it when to 
start measuring results, when to stop measuring, when to stop generating load and then report 
only the measurement interval.  But netperf is a simple benchmark.  It runs.  It stops.  That’s it.  
It’s bliss. 
 
So, what can we do? 
 
One other option would be to just start the netperfs, and then look at other sources for how 
fast things were going.  Take snapshots of ifconfig or netstat statistics at a given cadence and 
use those for the results.  That will work, but requires more coordination, and we can get 
something very similar from netperf. 
 
When building netperf from source, one can enable a mode called “demo mode” whereby 
netperf can be asked to emit interim results at a desired rate. 
 

./configure --enable-demo 

make netperf 

 
 

 

 

For more information visit cloud.google.com 

5 



 

 

 

With that in place, and a global “-D” option  (“Demo output”) added to the command-line, 
netperf output becomes: 
 

jonesrick@sut:~/netperf-2.7.1$ netperf -t TCP_RR -H lg1 -D -1.0 

MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 

lg1.c.netperf-163 

618.internal () port 0 AF_INET : histogram : spin interval : demo : first burst 0 

Interim result: 18076.95 Trans/s over 1.000 seconds ending at 1542304520.045 

Interim result: 17869.57 Trans/s over 1.000 seconds ending at 1542304521.045 

Interim result: 17842.14 Trans/s over 1.000 seconds ending at 1542304522.045 

Interim result: 18115.64 Trans/s over 1.000 seconds ending at 1542304523.045 

Interim result: 18570.33 Trans/s over 1.000 seconds ending at 1542304524.045 

Interim result: 18254.73 Trans/s over 1.000 seconds ending at 1542304525.045 

Interim result: 18180.56 Trans/s over 1.000 seconds ending at 1542304526.045 

Interim result: 17871.89 Trans/s over 1.000 seconds ending at 1542304527.045 

Interim result: 18457.91 Trans/s over 1.000 seconds ending at 1542304528.045 

Interim result: 18473.11 Trans/s over 1.000 seconds ending at 1542304529.045 

Local /Remote 

Socket Size   Request  Resp.   Elapsed  Trans. 

Send   Recv   Size     Size    Time     Rate          

bytes  Bytes  bytes    bytes   secs.    per sec    

16384  87380  1        1       10.00    18170.89    

65536  87380  

 
 
 
You can use different lengths of time with the -D option.  The negative for the value tells 
netperf to be more aggressive about actually hitting the desired interval by making many more 
checks for the time . 2

 
How does “demo mode” help?  It helps because we can use the timestamps of the interim 
results to know what was running when.  Bundle-up the interim results across the different 
instances of netperf for a given point in time and then if one or another of the netperfs weren’t 
running there, we won’t be getting bogus results.    We can trade a dependency on time 
synchronization for explicit load and measure modes to address the issue of skew.  And when 
running netperfs on just a single system, we don’t even need time synchronization as there is 
just the one clock. 
 

2 There is a whole history behind that which involves times when a gettimeofday() wasn’t overly cheap, 
especially on a multi-CPU system.  That discussion is best left for another day.  However, even in the 
aggressive mode, netperf will not always hit the interval.  It can go long by the length of time netperf 
remains in a send or receive socket call depending on the test type. 
 

 

For more information visit cloud.google.com 

6 

https://en.wikipedia.org/wiki/Segal%27s_law


 

 

 

The downside is we have much more data to process, so we cannot just start the netperfs and 
post-process the results with a one-line awk script.  Of course, one benchmarker’s downside is 
another benchmarker’s fodder - there can be value to those interim results just besides 
avoiding the need for explicit benchmark phases.  We can get into that later. 
 

How Many Systems Do I Need? 
Having decided on a methodology for our aggregate performance measures, we need to 
decide how many systems we want to use when implementing it. 
 
Let’s consider a simple, four-stream unidirectional bulk-transfer test between two, 
equally-sized systems, “sut” and “lg1”: 
 

jonesrick@sut:~/netperf-2.7.1$ for i in seq 1 4 

> do 

> netperf -H lg1 -P 0 & 

> done 

... 

jonesrick@sut:~/netperf-2.7.1$  87380  16384  16384    10.00    3514.45    

 87380  16384  16384    10.01    5606.68    

 87380  16384  16384    10.01    2206.63    

 87380  16384  16384    10.01    3886.70    

... 

jonesrick@sut:~/netperf-2.7.1$ awk '{sum += $5}END{print "sum",sum}' 

 87380  16384  16384    10.00    3514.45    

 87380  16384  16384    10.01    5606.68    

 87380  16384  16384    10.01    2206.63    

 87380  16384  16384    10.01    3886.70    

sum 15214.5 

 
 
 
Data transferred at ~15 Gbit/s. Where was the bottleneck? 
 
From the netperf results alone, we don’t really know.  Perhaps “lg1” wasn’t able to receive data 
any faster.  Perhaps “sut” wasn’t able to send data any faster.  Without other information, we 
really don’t know.  
 
Suppose instead of running four streams to one load generator, we ran one stream to each of 
four load generators, each of which are still equally-sized: 

 

 

For more information visit cloud.google.com 

7 



 

 

 

 

jonesrick@sut:~/netperf-2.7.1$ for i in lg1 lg2 lg3 lg4 

do 

  netperf -H ${i} -P 0 & 

done 

... 

jonesrick@sut:~/netperf-2.7.1$  87380  16384  16384    10.00    2917.23    

 87380  16384  16384    10.00    5383.15    

 87380  16384  16384    10.01    3633.49    

 87380  16384  16384    10.01    3608.63    

... 

jonesrick@sut:~/netperf-2.7.1$ awk '{sum += $5}END{print "sum",sum}' 

 87380  16384  16384    10.00    2917.23    

 87380  16384  16384    10.00    5383.15    

 87380  16384  16384    10.01    3633.49    

 87380  16384  16384    10.01    3608.63    

sum 15542.5 

 
 
 
Now we know something more.  We know the bottleneck is in how much “sut” can send.  Why?  
Because we know lg1 can receive at 15 Gbit/s, and can assume   the same of lg2, lg3, and lg4, 3

and because we still didn’t go any faster than ~15 Gbit/s.  
 
To reinforce that sending and receiving bottlenecks/limits are not always the same, let’s flip the 
direction of data flow with our four load-generator test: 
 

jonesrick@sut:~/netperf-2.7.1$ for i in lg1 lg2 lg3 lg4 

do 

  netperf -t TCP_MAERTS -H ${i} -P 0 & 

done 

... 

jonesrick@sut:~/netperf-2.7.1$  87380  16384  16384    10.00    11326.09    

 87380  16384  16384    10.00    7582.45    

 87380  16384  16384    10.00    11307.62    

 87380  65536  65536    10.00    1803.26    

... 

jonesrick@sut:~/netperf-2.7.1$ awk '{sum += $5}END{print "sum",sum}' 

 87380  16384  16384    10.00    11326.09    

 87380  16384  16384    10.00    7582.45    

 87380  16384  16384    10.00    11307.62    

3 OK, strictly speaking we are ass-u-me-ing, but it is a very reasonable assumption. 
 

 

For more information visit cloud.google.com 

8 



 

 

 

 87380  65536  65536    10.00    1803.26    

sum 32019.4 

 
 
 
Sut received at ~32 Gbit/s but sent at no more than about 15.  One thing I haven’t said yet is that 
sut and the lg instances are all 8-vCPU instances in GCP and so have a network egress  throttle 4

of 16 Gbit/s. 
 
So, for aggregate tests, we want to have load-generating capacity well in excess of our system 
under test.  That means at least two load-generators of equal “capacity” to the SUT , preferably 5

four.  Had we used just two load generators in the “sut-receives” test, we might have been 
limited by their network egress throttles and not seen “sut” receive at >32 Gbit/s. 
 

How Many Streams Do I Need? 
It Depends. (™) 
 
OK, that isn’t a terribly satisfying answer, but it is accurate.  The runemomniaggdemo.sh script 
is set to run from one to 2*NumvCPUs streams.  It has been my experience that this is usually 
sufficient.  However, if you think a true peak hasn’t been reached with that many concurrent 
streams, you can always edit the script. 
 

Why Burst-Mode UDP_RR?  My Application Uses TCP. 
Netperf is a simple benchmark.  Each instance of netperf is pushing data on just a single 
stream/connection/flow.   One could run lots of individual TCP_RR tests, but then to get enough 
transactions in flight to get the system to saturation would require so many parallel netperfs 
running (hundreds or thousands) that we could be running a context switching benchmark as 
much as a networking benchmark. 
 
Burst mode is a feature in netperf where it can have more than a single transaction in flight at 
one time on a single flow/connection (hence the --enable-burst in the short version of the 
instructions).  And in fact, many years ago, the runemomniaggdemo.sh script would use 
burst-mode and TCP.  It was possible to be careful enough about building-up the number of 

5 System Under Test - sometimes in Cloud we will call it the Instance Under Test or IUT 

4 While Google Cloud does not impose Internal IP ingress caps at the present time, that can change in 
the future. 

 

 

For more information visit cloud.google.com 

9 



 

 

 

in-flight transactions to “ensure” that each TCP segment sent carried only a single request or a 
single response depending on direction.  Thus we could convert the transaction rate to a 
packet per second rate when using small request/response sizes.  Packets sent per second 
would equal transaction rate.  Packets received per second would equal transaction rate.  
Simple. 
 
However, even then if there was non-trivial packet loss, things could “bunch-up” and a single 
TCP segment could end-up carrying multiple requests or multiple responses, breaking our 
ability to convert transaction rate to a packet rate.  And TCP stacks have become much more 
adept at coalescing user sends into single segments in the name of efficiency and queue 
minimization and the like, so we cannot make that simple conversion any longer even without 
packet loss.  For example, here is a packet capture from the midst of a burst-mode TCP_RR test 
with single-byte requests and responses and a burst size of 32, with a 4.15 Linux kernel from 
Ubuntu 18.04: 
 
. . .  
19:13:30.384027 IP 10.150.0.2.65432 > 10.150.0.4.65432: Flags [P.], seq 1535:1545, 
ack 1559, win 3, options [nop,nop,TS val 2118079153 ecr 4035274653], length 10 
19:13:30.384029 IP 10.150.0.4.65432 > 10.150.0.2.65432: Flags [P.], seq 1559:1568, 
ack 1545, win 222, options [nop,nop,TS val 4035274653 ecr 2118079153], length 9 
. . . 
 
You can see from the data lengths that a single TCP segment was carrying either multiple 
requests or multiple responses.  Great when we want to maximize efficiency, not so much 
when we want simple conversion from transaction rate to packet rate. 
 
Thankfully, UDP is not too smart for our own good here :)  No matter the burst size, each 
transaction with UDP_RR will be the exchange of a UDP datagram carrying a single request and 
a UDP datagram carrying a single response.  And if we keep our request/response sizes small, 
the IP datagram carrying the UDP datagram carrying our request/response will not be 
fragmented into multiple IP datagram fragments.  So our relationship between transactions per 
second and packets per second in each direction holds. 
 
Of course, you can still tweak the script to use TCP rather than UDP for the DO_RRAGG testing, 
but then you must not assume that the transaction/s rate relates cleanly to the packet per 
second rate.  Unless you use a burst size of zero.  And then you will likely need many more 
parallel streams. 
 

 

 

For more information visit cloud.google.com 

10 



 

 

 

Picking the Burst Size 
That is done by the “find_max_burst.sh” script.  Basically, all it does is keep increasing the burst 
size (simultaneous transactions in flight) until it no longer sees an increase in transactions per 
second. For small-packet request/response, this is usually reached once a CPU is saturated on 
either one side or the other.  It then reports the burst size for which it saw peak transactions 
per second.   
The script doesn’t try to zero-in on “the best” burst size.  It assumes “good enough” is, well, 
good enough.  Particularly since we will be going to twice as many streams as there are CPUs, 
we can be reasonably confident that if CPU “oomph” in the SUT is going to be the bottleneck, 
we will reach it.  Still, best to trust but verify from time to time.   6

If the idea of a different burst size each time bothers you from a standpoint of test 
reproducibility, feel free to pick a fixed burst size.  Say 64.  Then the burst size will be the same 
each time, but you may not have CPU saturation on a single-stream. 

Picking the Tests 
The runemomniaggdemo.sh script can be set to run several different tests based on 
“DO_mumble” variables within it: 
 

1.​ DO_STREAM - run netperf TCP_STREAM tests from the SUT sending data to the load 
generators. 

2.​ DO_MAERTS - run netperf TCP_MAERTS (MAERTS is STREAM spelled backwards) tests 
from the SUT receiving data from the load generators. 

3.​ DO_BIDIR - run large request/response, burst-mode TCP_RR tests between the SUT and 
the load generators in a way which becomes bidirectional bulk transfer on each 
connection. 

4.​ DO_RRAGG - run single-byte, burst-mode UDP_RR tests between the SUT and the load 
generators.  This is the one we want in the context of this write-up. 

5.​ DO_RR - run a single-byte, synchronous TCP_RR test between the SUT and each load 
generator in turn. 

6.​ DO_ANCILLARY - gather various bits of information about the SUT. 
 
When the given variable is set to 1 (one) then that test will be run by the script.  Otherwise, that 
test is ignored. DO_ANCILLARY isn’t all that useful.  If you enable tests 1 through 5 you will have 

6 If what the system sees as the “NIC” or the network is particularly poor in packet per second 
performance, that may bottleneck before a or the CPUs of the SUT.  And if you increase the request 
and/or response size, or run bulk-transfer instead, you can end-up at a bitrate limitation before 
saturating CPUs. 
 

 

For more information visit cloud.google.com 

11 



 

 

 

results which can be post-processed for aggregate outbound, inbound, bidirectional and 
packets-per-second results, along with single-stream latency.  This represents a quite 
reasonable snapshot of the network performance of the SUT for the conditions of the tests. 
 
There is also a “DURATION” variable in the script which controls how long the script will pause 
at a given number of parallel streams.  DURATION=60 is generally good, but you can go longer 
if you wish.  All a matter of what you want to see and how soon.   If DURATION multiplied by the 
number of intervals (times it takes to double one’s way to 2x the SUT CPU count) is going to 
approach 7200 seconds (two hours) you will need to alter the “LENGTH” variable accordingly to 
ensure netperfs to not terminate prematurely . The DO_RR test script code currently enforces a 7

minimum DURATION of 60 seconds. 

Specifying the Load Generators 
The runemomniaggdemo.sh script will obtain a list of load generators to use from a file called 
“remote_hosts” which should have the following format: 
 
REMOTE_HOSTS[0]=127.0.0.1 
REMOTE_HOSTS[1]=127.0.0.1 
NUM_REMOTE_HOSTS=2 
 
The first N lines of the remote_hosts file will list the means by which netperf will connect to the 
load generators - it can be anything you want which will be resolved by getaddrinfo() on the 
SUT, so it can be a name or an IP address.  The last line should be the number of 
REMOTE_HOSTS entries in the file.  8

The script will simply round-robin between the entries.  If for some reason you wanted more 
going to one load generator than another, you could simply list that load generator more than 
once. 
The runemomniaggdemo.sh script assumes the remote_hosts file is in the current working 
directory. 

Running the Tests 
When looking to run DO_RRAGG tests, the script will attempt to run “find_max_burst.sh” and so 
the location of that script needs to be in $PATH.  If it is unable to run the test, the burst size will 

8 Well, it doesn’t have to be the last line.  The script will simply “source” the file so they can be in any 
order, but the given ordering is easiest for us humans to understand. 

7 99 times out of 10 (sic) two hours has been more than enough, and the script will actually terminate (or 
at least try to) the netperfs when it is finished.  It is possible to have netperf run forever by giving the test 
length of ‘0’ but then if the cleanup ever failed, there would be netperfs forever... 

 

 

For more information visit cloud.google.com 

12 



 

 

 

likely be undefined, so be certain it can run the test or hardcode the BURST size in the 
runemomniaggdemo.sh script.  The script does try to pick something else when the 
find_max_burst.sh explicitly fails but doesn’t handle the case when it isn’t run. 
 
Assuming you have netperf configured and installed correctly on the SUT and load generators 
and  have a valid remote_hosts file and such you can just do: 
 
./runemomniaggdemo.sh 
 
And wait.  The find_max_burst.sh script does not emit anything while it is running, so there will 
be a pause before you see any output (this will not be the case with the other sorts of tests the 
script can be asked to run).  After that, things should look something like: 
 
jonesrick@sut:~/netperf-2.7.1/doc/examples$ ./runemomniaggdemo.sh  
Starting netperfs at 1543515682.686378423 for tps 
Starting netperfs on localhost targeting lg1 for tps 
Pausing for 60 seconds at 1543515683.697678277 with 1 netperfs running for tps 
Resuming at 1543515743.706375807 for tps 
Starting netperfs on localhost targeting lg2 for tps 
Pausing for 60 seconds at 1543515744.718770555 with 2 netperfs running for tps 
Resuming at 1543515804.725203487 for tps 
Starting netperfs on localhost targeting lg3 for tps 
Starting netperfs on localhost targeting lg4 for tps 
Pausing for 60 seconds at 1543515806.742176064 with 4 netperfs running for tps 
Resuming at 1543515866.748907082 for tps 
Starting netperfs on localhost targeting lg1 for tps 
Starting netperfs on localhost targeting lg2 for tps 
Starting netperfs on localhost targeting lg3 for tps 
Starting netperfs on localhost targeting lg4 for tps 
Pausing for 60 seconds at 1543515870.807903819 with 8 netperfs running for tps 
Resuming at 1543515930.818608169 for tps 
Starting netperfs on localhost targeting lg1 for tps 
Starting netperfs on localhost targeting lg2 for tps 
Starting netperfs on localhost targeting lg3 for tps 
Starting netperfs on localhost targeting lg4 for tps 
Starting netperfs on localhost targeting lg1 for tps 
Starting netperfs on localhost targeting lg2 for tps 
Starting netperfs on localhost targeting lg3 for tps 
Starting netperfs on localhost targeting lg4 for tps 
Netperfs started by 1543515939.171480464 for tps 
Netperfs stopping 1543516002.219344070 for tps 

 

 

For more information visit cloud.google.com 

13 



 

 

 

Netperfs stopped 1543516002.255764921 for tps 
 
You will see output like that for each test enabled in the script. 

Post-processing the Test Results 
One your test(s) has finished, you will have a possibly large number of files.  They will be of two 
types: 
 
netperf_<testtype>.log 
 
Where testtype will be: 

●​ “tps” -  Transactions Per Second - the DO_RRAGG test - "netperf_tps.log" 
●​ “bidirectional” - the DO_BIDIR test - "netperf_bidirectional.log" 
●​ “outbound” - the DO_STREAM test - “netperf_outbound.log” 
●​ “inbound” - the DO_MAERTS test - “netperf_inbound.log” 
●​ “sync” - single-stream synchronous TCP_RR - the DO_RR test - “netperf_sync_tps.log” 

 
which will have contents matching what the script emitted to the screen during the run and: 
 
netperf_<testtype>_<instancenum>_to_<loadgenerator>.out 
 
which will have the results of each individual netperf.  Testtype is as for the log file.  Instance 
number marks the netperfs in the order in which they were started, starting from “00000”. 
Loadgenerator will be whatever was in the remote_hosts entry used to pick the load generator 
for that instance of netperf.  These results files will have contents along the lines of: 
 
$ less netperf_tps_00000_to_lg1.out 
205738.23,Trans/s,0.504,1543515683.205 
206284.00,Trans/s,0.500,1543515683.705 
208416.49,Trans/s,0.500,1543515684.205 
217180.43,Trans/s,0.501,1543515684.706 
209459.24,Trans/s,0.518,1543515685.224 
… 
8039.67,Trans/s,0.531,1543516001.603 
67503.78,Trans/s,0.504,1543516002.107 
73930.69,Trans/s,0.139,1543516002.246 
<other stuff we’ll ignore for the moment> 
 
You can see how the *.out files are not all the same size: 
 
$ ls -l *.log *.out 

 

 

For more information visit cloud.google.com 

14 



 

 

 

-rw-rw-r-- 1 jonesrick jonesrick  1520 Nov 29 18:42 netperf_tps.log 
-rw-rw-r-- 1 jonesrick jonesrick 25275 Nov 29 18:42 netperf_tps_00000_to_lg1.out 
-rw-rw-r-- 1 jonesrick jonesrick 21087 Nov 29 18:42 netperf_tps_00001_to_lg2.out 
-rw-rw-r-- 1 jonesrick jonesrick 15952 Nov 29 18:42 netperf_tps_00002_to_lg3.out 
-rw-rw-r-- 1 jonesrick jonesrick 16782 Nov 29 18:42 netperf_tps_00003_to_lg4.out 
-rw-rw-r-- 1 jonesrick jonesrick 11311 Nov 29 18:42 netperf_tps_00004_to_lg1.out 
-rw-rw-r-- 1 jonesrick jonesrick 12030 Nov 29 18:42 netperf_tps_00005_to_lg2.out 
-rw-rw-r-- 1 jonesrick jonesrick 11223 Nov 29 18:42 netperf_tps_00006_to_lg3.out 
-rw-rw-r-- 1 jonesrick jonesrick 11909 Nov 29 18:42 netperf_tps_00007_to_lg4.out 
-rw-rw-r-- 1 jonesrick jonesrick  6986 Nov 29 18:42 netperf_tps_00008_to_lg1.out 
-rw-rw-r-- 1 jonesrick jonesrick  7058 Nov 29 18:42 netperf_tps_00009_to_lg2.out 
-rw-rw-r-- 1 jonesrick jonesrick  6726 Nov 29 18:42 netperf_tps_00010_to_lg3.out 
-rw-rw-r-- 1 jonesrick jonesrick  7058 Nov 29 18:42 netperf_tps_00011_to_lg4.out 
-rw-rw-r-- 1 jonesrick jonesrick  6876 Nov 29 18:42 netperf_tps_00012_to_lg1.out 
-rw-rw-r-- 1 jonesrick jonesrick  6740 Nov 29 18:42 netperf_tps_00013_to_lg2.out 
-rw-rw-r-- 1 jonesrick jonesrick  6719 Nov 29 18:42 netperf_tps_00014_to_lg3.out 
-rw-rw-r-- 1 jonesrick jonesrick  6634 Nov 29 18:42 netperf_tps_00015_to_lg4.out 
 
This stems from how the runemomniaggdemo.sh script works.   It starts with a single 
netperf/stream/flow, then adds more as it goes.  So, the first stream runs the entire length of 
the test, the second from its start until the end of the test, and so on.   This has properties we 
may get into later. 
 
Finally… let’s post-process: 
$ ./post_proc.py --intervals netperf_tps.log  
Prefix is netperf_tps 
Average of peak interval is 1445231.820 Trans/s from 1543516897 to 1543516957 
Minimum of peak interval is 1410508.670 Trans/s from 1543516897 to 1543516957 
Maximum of peak interval is 1472099.010 Trans/s from 1543516897 to 1543516957 
Average of interval 0 is 254809.880 Trans/s from 1543516642 to 1543516700 
Minimum of interval 0 is 205000.290 Trans/s from 1543516642 to 1543516700 
Maximum of interval 0 is 478192.120 Trans/s from 1543516642 to 1543516700 
Average of interval 1 is 439432.490 Trans/s from 1543516703 to 1543516761 
Minimum of interval 1 is 373932.010 Trans/s from 1543516703 to 1543516761 
Maximum of interval 1 is 611069.570 Trans/s from 1543516703 to 1543516761 
Average of interval 2 is 738828.780 Trans/s from 1543516765 to 1543516823 
Minimum of interval 2 is 654077.820 Trans/s from 1543516765 to 1543516823 
Maximum of interval 2 is 832886.660 Trans/s from 1543516765 to 1543516823 
Average of interval 3 is 1178252.900 Trans/s from 1543516829 to 1543516887 
Minimum of interval 3 is 1137790.040 Trans/s from 1543516829 to 1543516887 
Maximum of interval 3 is 1309966.880 Trans/s from 1543516829 to 1543516887 
Average of interval 4 is 1445231.820 Trans/s from 1543516897 to 1543516957 
Minimum of interval 4 is 1410508.670 Trans/s from 1543516897 to 1543516957 
Maximum of interval 4 is 1472099.010 Trans/s from 1543516897 to 1543516957 
 

 

 

For more information visit cloud.google.com 

15 



 

 

 

We can see the Transaction per second rate for each of the intervals of the test from interval 0 
where 2^0 or 1 (one) stream was running through interval 4 where 2^4 or 16 streams were 
running.   The script will default to reporting only the peak interval, the --intervals option has it 9

include all of them in its ASCII output. 
 
Since we know this was an aggregate, burst-mode UDP_RR test, and the transaction rate was 
~1.4 million transactions per second, we know the SUT here was sending ~1.4 million packets 
and receiving ~1.4 million packets per second. 
 
As the script uses rrdtool, it can also generate some graphs.  In particular, it will always 
generate an “overall” graph with a name of the form: 
netperf_<testtype>_overall.svg 
which you can look at by various means.  The one from the test results we see above looks like: 
 

 
 
The text may be a bit difficult to read, but the red lines mark the start of an interval.  The black 
lines mark the start of a period where the number of netperfs is ramped-up.  Those are getting 
longer each time because the script pauses one second between each netperf launch .  The 10

green line is the second-by-second aggregate throughput, and the grey line is the average for 
the various intervals.  Rrdtool’s facilities are used to get the min, average and max over a 
measurement interval, which today is defined as starting and ending one second “in” on either 

10 That very likely could be much shorter and still be OK. 

9 If the SUT had something other than a power of two vCPUs, the number of streams at the last interval 
will not be a power of two, but 2xNUMvCPUs. 

 

 

For more information visit cloud.google.com 

16 



 

 

 

side.  We keep all the results, even those from when netperfs were being added, which can be 
occasionally interesting. 
 

Other post_proc.py Options 
You have some control over what is listed in the charts, and also whether charts are created for 
individual netperfs/flows: 
jonesrick@sut:~/netperf-2.7.1/doc/examples$ ./post_proc.py --help 
usage: post_proc.py [-h] [-i] [-I] [-a ANNOTATION] [-t TITLE] filename 
positional arguments: 
  filename 
optional arguments: 
  -h, --help            show this help message and exit 
  -i, --individual      Generate graphs of individual tests 
  -I, --intervals       Emit the results for all intervals, not just peak 
  -a ANNOTATION, --annotation ANNOTATION 
                        Annotation to add to chart titles 
  -t TITLE, --title TITLE 
                        String to use for chart title. Default based on test 
 

Other Matters 
Earlier, we looked at the output of an individual test, and there was some output we ignored.  
Let’s take a look at that here: 
$ tail -20 netperf_tps_00000_to_lg1.out 
54895.44,Trans/s,0.924,1543516956.323 
73910.55,Trans/s,0.558,1543516956.881 
55443.87,Trans/s,0.667,1543516957.548 
97811.82,Trans/s,0.506,1543516958.054 
86643.33,Trans/s,0.564,1543516958.618 
113881.19,Trans/s,0.504,1543516959.122 
87068.96,Trans/s,0.591,1543516959.713 
Stream,UDP,Send|Recv,319.54,166423.74,Trans/s,-1,212992,212992,-1,212992,212992,-1,212992,212992,-1,212
992,212992,0,0,1,1,1,1,54.63,5.59,32.11,0.00,0.00,16.94,S,26.261,12.27,1.05,8.15,0.00,0.00,3.06,S,5.896
,usec/Tran,0,-1.000000,1,-1.000,-1.000,-1.000,166423.736,390.569,64,-1,-1,-1,1.33,1.33,1.33,1.33,-1,8,9
8.62,7,Deprecated,0,-1,8,67.84,7,Deprecated,0,0,0.0.0.0,0,0,lg1,2,53179690,53179626,1.00,1.00,53179626,
53179626,106359252,0,0,8,8,1,1,-1,-1,-1,0,0,53179690,53179690,1.00,1.00,53179690,53179690,106359380,0,0
,8,8,1,1,-1,-1,-1,0,0,Deprecated,Deprecated,Deprecated,Deprecated,Deprecated,Deprecated,Deprecated,Depr
ecated,Deprecated,Deprecated,Deprecated,0xfffffffe,0xfffffffe,0xfffffffe,0xfffffffe,Deprecated,Deprecat
ed,Deprecated,Deprecated,Deprecated,Deprecated,0xfffffffe,0xfffffffe,0xfffffffe,0xfffffffe,Deprecated,D

 

 

For more information visit cloud.google.com 

17 



 

 

 

eprecated,Deprecated,Deprecated,Deprecated,0,0,0,0,0,Deprecated,0,Deprecated,Deprecated,0,Deprecated,0,
Deprecated,Deprecated,, 
a1a69991-807f-40d1-b4a6-bbd0dee40a33,156,52766,293,538,1583,390.40,645.31,-1,-1,0xffffffff,0xffffffff,,
,,,"netperf -H lg1 -D 0.5 -c -C -f x -P 0 -t omni -l 7200 -v 2 -- -r 1 -b 64 -e 1 -T udp -u 
a1a69991-807f-40d1-b4a6-bbd0dee40a33 -o all" 
Histogram of request/response times 
UNIT_USEC     :    0:    0:    0:    0:    0:    0:    0:    0:    0:    0 
TEN_USEC      :    0:    0:    0:    0:    0:    0:    0:    0:    0:    0 
HUNDRED_USEC  :    0: 444513: 27198880: 12143194: 6692740: 2980848: 1488286: 700252: 324291: 202127 
UNIT_MSEC     :    0: 602280: 122579: 52956: 52096: 33147: 23132: 17678: 25286: 16995 
TEN_MSEC      :    0: 51750: 6187:  358:   40:   11:    0:    0:    0:    0 
HUNDRED_MSEC  :    0:    0:    0:    0:    0:    0:    0:    0:    0:    0 
UNIT_SEC      :    0:    0:    0:    0:    0:    0:    0:    0:    0:    0 
TEN_SEC       :    0:    0:    0:    0:    0:    0:    0:    0:    0:    0 
>100_SECS: 0 
HIST_TOTAL:      53179626 

 
The very long line starting “Stream,UDP,Send|Recv” is the result of a test-specific (after the 
“--”)  “-o all” in the command line as an output selector.  You can see that also causes netperf to 
emit the command line used to invoke it :)   Sadly, since “-P 0” is used to avoid emitting test 
banners, we don’t get the “headers” saying what each of those are, so doing interesting things 
with them can be a bit of a challenge.  Using keyval output format (“-k all”) in the netperf 
command-line would result in their being emitted one to a line with their omni selector name.  
Whether the post-processing script would handle that is unknown.  It has code for it but that 
code hasn’t been well exercised. 
 
The next bit comes thanks to netperf having been ./configure’d with “--enable-histogram” and 
a “-v 2” on the command line.  It is a histogram of all the individual transactions’ round-trip 
times. 

You need to be careful with these! 
 
Remember how the runemomniaggdemo.sh script works by ramping-up the number of 
connections/flows.  That means save for the last M flows (those started in the last interval, 
though strictly speaking even those weren’t all started at the very same time) those statistics 
include times with different numbers of flows.  That can be interesting if one wants to look at 
the effect of adding flows on existing ones, say from the first stream’s start using its 
interim/demo results, since it is one which will be running the entire time (or expected to at 
least). 
 
If the last interval has a “reasonable” number of added flows, you might be able to wave your 
hands and say that the histograms and full results from those added flows are a good sampling 
of what all streams were seeing at that time. 
 

 

 

For more information visit cloud.google.com 

18 



 

 

 

For the “inbound” (DO_MAERTS) tests, the histograms will be time spent in a receive call. 
For the “outbound” (DO_STREAM) tests, the histograms will be time spent in send calls.  For the 
_RR tests the histograms will be individual transaction times. 
 
Remember that netperf uses blocking socket calls.  Also remember that a send call will 
complete once the data is in the send socket buffer, not when the data is received by the 
remote. 
 
The UDP_RR test has very crude recovery from lost datagrams.  It is based on a socket read 
timeout on the netperf side, set via a test-specific -e option.   The runemomniaggdemo.sh 
script sets that to one (1) second.  If that timeout is hit, netperf will zero-out the histogram of 
transaction times and issue a new request to get traffic flowing again. 
 
In a classic, physical world, 99 times out of 10 (sic) to a NIC a packet is just a packet.  To the NIC 
a frame with any other payload is just as sweet.  And if one managed to achieve N packets per 
second through a NIC with aggregate, burst-mode UDP_RR, you would be reasonably 
confident to see that many packets per second with TCP.  However, in a software-defined 
networking world, a packet is not always just a packet to a vNIC (and what is behind it).  What 
that software does/needs to do can be different if the packet is a UDP datagram or a TCP 
SYN(chronize) segment.  So, an aggregate, burst-mode UDP_RR packet per second level 
through a vNIC may not match what one might expect to see with say a small-URL, 
non-persistent HTTP connection workload. 

Recommended Patches 
Since the initial writing of this document, it has been noticed that a UDP_RR test will 
throw-away all the good work (transactions) completed in a demo interval which includes a 
socket read timeout.  A patch to address this has been sent to the netperf upstream 
maintainer(s).  Until that patch is incorporated into the mainline source, you can take it from 
here: 
 
diff --git a/src/netlib.c b/src/netlib.c 
index 884319a..ec501b5 100644 
--- a/src/netlib.c 
+++ b/src/netlib.c 
@@ -3986,16 +3986,6 @@ void demo_first_timestamp() { 
   HIST_timestamp(demo_one_ptr); 
 } 
  
-void demo_reset() { 
-  if (debug) { 

 

 

For more information visit cloud.google.com 

19 

https://github.com/HewlettPackard/netperf/pull/34


 

 

 

-    fprintf(where, 
-           "Resetting interim results\n"); 
-    fflush(where); 
-  } 
-  units_this_tick = 0; 
-  demo_first_timestamp(); 
-} 
- 
 /* for a _STREAM test, "a" should be lss_size and "b" should be 
    rsr_size. for a _MAERTS test, "a" should be lsr_size and "b" should 
    be rss_size. raj 2005-04-06 */ 
@@ -4126,6 +4116,26 @@ void demo_interval_tick(uint32_t units) 
   } 
jonesrick@jonesrick:~/netperf$ git diff src/netlib.c > /tmp/patch 
jonesrick@jonesrick:~/netperf$ cat /tmp/patch 
diff --git a/src/netlib.c b/src/netlib.c 
index 884319a..ec501b5 100644 
--- a/src/netlib.c 
+++ b/src/netlib.c 
@@ -3986,16 +3986,6 @@ void demo_first_timestamp() { 
   HIST_timestamp(demo_one_ptr); 
 } 
  
-void demo_reset() { 
-  if (debug) { 
-    fprintf(where, 
-​     "Resetting interim results\n"); 
-    fflush(where); 
-  } 
-  units_this_tick = 0; 
-  demo_first_timestamp(); 
-} 
- 
 /* for a _STREAM test, "a" should be lss_size and "b" should be 
    rsr_size. for a _MAERTS test, "a" should be lsr_size and "b" should 
    be rss_size. raj 2005-04-06 */ 
@@ -4126,6 +4116,26 @@ void demo_interval_tick(uint32_t units) 
   } 
 } 
  
+/* called when we have a recv timeout on a socket for a UDP_RR test.  until we 
+   decide otherwise, we'll force an interval display whenever this happens, 
and 
+   will not attempt to compensate for the time spent sitting there waiting for 
+   the timeout. */ 
+void demo_reset() { 

 

 

For more information visit cloud.google.com 

20 



 

 

 

+  double actual_interval = 0.0; 
+  if (debug) { 
+    fprintf(where, 
+​     "Resetting interim results\n"); 
+    fflush(where); 
+  } 
+  HIST_timestamp(demo_two_ptr); 
+  actual_interval = delta_micro(demo_one_ptr,demo_two_ptr); 
+  demo_interval_display(actual_interval); 
+  units_this_tick = 0; 
+  temp_demo_ptr = demo_one_ptr; 
+  demo_one_ptr = demo_two_ptr; 
+  demo_two_ptr = temp_demo_ptr; 
+} 
+ 
 void demo_interval_final() { 
   double actual_interval; 

 

 

For more information visit cloud.google.com 

21 


	Introduction 
	Summary 
	Theory of Operation 
	How Many Systems Do I Need? 
	How Many Streams Do I Need? 
	Why Burst-Mode UDP_RR?  My Application Uses TCP. 
	Picking the Burst Size 

	Picking the Tests 
	Specifying the Load Generators 
	Running the Tests 
	Post-processing the Test Results 
	Other post_proc.py Options 
	Other Matters 
	Recommended Patches 

