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Abstract
The transformative power of AI is undeniable—but as user adoption accelerates, so does the need to understand and
mitigate the environmental impact of AI serving. However, no studies have measured AI serving environmental metrics
in a production environment. This paper addresses this gap by proposing and executing a comprehensive methodology
for measuring the energy usage, carbon emissions, and water consumption of AI inference workloads in a large-scale,
AI production environment. Our approach accounts for the full stack of AI serving infrastructure—including active
AI accelerator power, host system energy, idle machine capacity, and data center energy overhead. Through detailed
instrumentation of Google’s AI infrastructure for serving the Gemini AI assistant, we find the median Gemini Apps
text prompt consumes 0.24 Wh of energy—a figure substantially lower than many public estimates. We also show that
Google’s software efficiency efforts and clean energy procurement have driven a 33x reduction in energy consumption
and a 44x reduction in carbon footprint for the median Gemini Apps text prompt over one year. We identify that the
median Gemini Apps text prompt uses less energy than watching nine seconds of television (0.24 Wh) and consumes
the equivalent of five drops of water (0.26 mL). While these impacts are low compared to other daily activities,
reducing the environmental impact of AI serving continues to warrant important attention. Towards this objective, we
propose that a comprehensive measurement of AI serving environmental metrics is critical for accurately comparing
models, and to properly incentivize efficiency gains across the full AI serving stack.

1 Introduction

Artificial intelligence (AI) is reshaping industries and daily
life, driven largely by the accelerating capabilities of Large
Language Models (LLMs). While much of the initial focus
on AI’s environmental impact rightly centered on the energy-
intensive process of model training [1, 2, 3], the surge in public
adoption of generative AI applications has shifted attention
toward the footprint of AI model inference and serving. With
these AI models now serving billions of user prompts globally,
the energy, carbon emissions, and water impacts associated with
generating responses at scale represents a significant and rapidly
growing component of AI’s overall environmental cost [4, 5].

In response, several research efforts and disclosures have
emerged to quantify the per-prompt energy consumption of in-
ference (Wh/prompt). Early work provided coarse estimates of
energy consumption per prompt, relying on high-level assump-
tions about hardware specifications and model parameters [6].
More recently, initiatives like the the AI Energy Score [7] and
the ML.ENERGY [8] benchmarks have advanced the field by
employing direct empirical measurements. These frameworks
aim to standardize energy transparency by benchmarking mod-
els on specific tasks using consistent hardware. In addition,
other studies have expanded the aperture to consider the carbon
emissions and water consumption associated with serving AI
models.

Despite this progress, the field lacks first-party data from the
largest AI model providers. Based on decades of deploying
software at scale, Google has a unique perspective on the opera-
tional realities of maintaining a large-scale, globally-distributed
AI production fleet, and serving software products at scale—
such as web search. Characterizing and optimizing the environ-
mental impact of AI model serving requires a comprehensive
view of energy consumption—including the power drawn by
the host machine’s CPU and DRAM, the significant energy

consumed by idle systems provisioned for reliability and low
latency, and the full data center overhead as captured by the
Power Usage Effectiveness (PUE) metric [9]. The missing con-
sensus on the energy-consuming activities to include in the
measurement—known as the measurement boundary—has led
to published estimates for similar AI tasks varying by an or-
der of magnitude. A lack of agreed upon methodologies may
have contributed to a lack of first-party data when it is needed
most [10].

Contributions This paper presents the energy, emissions, and
water impacts for a production AI product by establishing a com-
prehensive framework to measure critical aspects of serving AI
at Google’s scale. First, we propose a full-stack measurement
approach that accounts for all material energy sources. Second,
we apply this methodology to Google’s Gemini Apps product
to provide the first analysis of three AI serving environmental
metrics:

• Energy / prompt: the energy consumption required to
serve an AI assistant text prompt

• Emissions / prompt: the market-based (MB) emissions
generated by grid electricity generation (including renew-
able energy procurement), and the embodied emissions
of the AI accelerator hardware

• Water consumption / prompt: the water consumed for
cooling machines and associated infrastructure in data
centers

We demonstrate that existing—and often narrower—
measurement approaches are missing material energy
consumption activities for AI serving. Finally, we illustrate the
compounding AI serving efficiency gains across the serving
stack over a year of development, resulting in a 44x reduction
in the total emissions generated for the median Gemini Apps
prompt. Comprehensive environmental metrics—like those
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proposed in this paper—are critical to properly incentivize effi-
ciency opportunities across a large-scale, globally distributed
production fleet.

2 RelatedWork

Efforts to quantify the environmental impact of AI inference
can be broadly categorized into two approaches: model-based
estimation and empirical measurement. Early work primar-
ily rely on estimation, calculating energy consumption from
publicly available hardware specifications, known model pa-
rameters, and a series of assumptions regarding usage patterns
like prompt complexity and token length [11]. While these theo-
retical models are helpful for highlighting the potential scale of
the problem, their results are highly sensitive to the underlying
assumptions and may suffer from accumulating errors in the
estimated values.

In contrast, more recent initiatives have shifted toward empiri-
cal measurement approaches, using software tools [12, 13] to
directly measure energy consumption on standardized hardware
during the execution of specific tasks. Moving to more empiri-
cal metrics has increased the precision of these metrics, but still
suffers from large differences in the underlying methodologies
and comparability between studies. In this section, we outline
existing approaches to make the case for a more consistent and
complete measurement approach.

2.1 Estimated metrics

Model-based estimations of AI inference environmental metrics
are widespread and variable, due to their sensitivity on poorly-
constrained input assumptions. Some of the most referenced
and recent studies include:

• De Vries, 2023 [6]: This work takes a model-based esti-
mation approach to calculate prompt energy use based on
publicly available hardware specifications (e.g., NVIDIA
A100 GPUs), AI model parameters (e.g., 175B for GPT-
3.5), and critical assumptions about typical usage patterns,
such as input/output token lengths for a prompt. These re-
sults suggest that a single GPT-3.5 prompt may consume
around 3 watt-hours (Wh) of energy.

• Epoch.AI, 2025 [14]: This analysis employs a model-
based estimation methodology and updates several key
assumptions to reflect more modern AI hardware and us-
age patterns. The calculation assumes that the prompt
was processed by the GPT-4o model, which is believed to
use a mixture-of-experts architecture with about 100 bil-
lion active parameters, running on NVIDIA H100 GPUs.
The energy consumption of a typical ChatGPT prompt is
estimated to be approximately 0.3 Wh.

• EcoLogits [15]: This study defines a regression model
for GPU power based on LLM Performance, CPU and
DRAM model, and applies average data center PUE. For a
small (50 output token) prompt, the EcoLogits calculator
estimates a range from 1.83 Wh to 6.95 Wh.

• Li et al., 2025 [16]: Researchers estimate that inference
for the GPT-3 model in Microsoft’s U.S. data centers
consume a 500 mL bottle of water for roughly 10 to 50

medium-length responses, which translates to approxi-
mately 10-50 mL per prompt.

• Sam Altman, 2025 [17]: In a June 2025 blog post, Ope-
nAI CEO Sam Altman disclosed that an average ChatGPT
prompt consumes approximately 0.34 Wh of energy and
a very small amount of water (0.000085 gallons, or 0.3
mL). The disclosure provides no explanation of the mea-
surement boundary or methodology used to arrive at this
number, making it impossible to compare with other esti-
mates or to understand which components of the serving
stack were included.

• Mistral AI, 2025 [18]: A peer-reviewed lifecycle assess-
ment (LCA) for its Mistral Large 2 model was conducted
in collaboration with the French environmental agency
ADEME and consulting firm Carbone 4. For a typical
400-token response from its "Le Chat" assistant, Mistral
reports a marginal impact of 1.14 grams of CO2e, and 45
milliliters (mL) of water consumed.

There is an order-of-magnitude of variability in the estimated
energy per chat prompt, which makes it difficult for a user to
understand the environmental impact of using an AI assistant.
Moreover, a reliance on estimated environmental impacts limits
our ability to identify and implement environmental impact
reductions.

2.2 Measured metrics

There have been four primary studies directly measuring en-
ergy/prompt metrics from AI accelerator hardware. However,
these studies exhibit notable differences in how they measure
energy consumption, which limits comparability. Figure 1 illus-
trates the differences in methodology, and in summary:

• Luccioni et al., 2022 [19]: This study provides estimates
for the BLOOM model’s energy and emissions footprint
during inference. Using the CodeCarbon library [13], this
measurement includes GPU, CPU and DRAM energy
consumption. The average metrics over 18 days of infer-
ence with no batched inference are 4 Wh/prompt and 1.5
gCO2e/prompt.

• Samsi et al., 2023 [20]: This research benchmarks several
sizes of the LLaMA model (7B, 13B, and 65B parame-
ters) on two generations of NVIDIA GPUs (V100 and
A100). For the LLaMA-65B model, they measure an en-
ergy consumption of approximately 0.3 Wh per response.

• AI Energy Score [7]: This initiative employs empiri-
cal benchmarking of models, and conducts direct en-
ergy measurements on standardized hardware (specifi-
cally NVIDIA H100 GPUs). The primary tool for en-
ergy measurement is CodeCarbon [13] with a focus on
GPU energy consumption to determine a comparative
star rating. AI Energy Score aims to standardize energy
transparency by benchmarking models on specific tasks
using consistent hardware. Prioritizing comparability,
they hold the inference batch size to 1, which is likely not
representative of a production inference environment. We
expect the batch size constraint to reduce AI accelerator
utilization, increasing the energy/prompt metrics.
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Figure 1: Existing and proposed boundaries for AI inference energy measurements. The existing approaches primarily consider
the energy consumption of the active AI Accelerators. We propose including measured energy from all components of the serving
stack to provide a more comprehensive measurement of AI inference energy consumption to inform reduction levers across the
serving stack.

• ML.ENERGY [8]: This framework also relies on empiri-
cal benchmarking using production-grade hardware like
NVIDIA H100s. It places a strong emphasis on emulating
real-world serving conditions, including steady-state op-
eration and sophisticated handling of batching. GPU en-
ergy is measured using the Zeus library [12]. The goal of
this benchmark is to determine per-request energy figures
that accurately reflects operational deployment scenarios.
ML.ENERGY Benchmark emphasizes more realistic in-
ference conditions in production, measuring per-request
energy by considering factors like steady-state operation
and batching, aiming for actionable optimization insights.
Coverage of ML.ENERGY results in the MIT Technol-
ogy Review [21] applied a doubling of energy per prompt
to estimate overhead energy (cooling, other computations,
and other demands).

The move from model estimation to empirical measurement
represents a significant step toward greater accuracy and trans-
parency. However, the specific boundaries of these measure-
ments are critical for interpreting their results. For example,
two of the aforementioned measurement approaches, with dis-
tinct assumptions and boundaries, found a 6x difference in the
energy/query of Llama 3.1 (with 70B parameters) (Figure 2).

As we explore in this study, a large-scale inference system can
vary significantly from the benchmarks seen in the literature.
Most notably, the utilization of AI accelerators directly impacts
the energy consumption per unit of computation, and large-scale
inference systems strive to maximize compute efficiency. Ex-
amples of approaches to improve AI serving compute efficiency
(many of which Google has pioneered or implemented at scale)
include:

1. Batch Inference allows for multiple inference prompts
to be handled concurrently to maximize the utilization
of the AI accelerators. Smaller batch size prioritizes

latency, while a larger batch size prioritizes throughput
and efficiency [8].

2. Speculative Decoding employs a small embedded draft
model for decoding, and verifies the result with the larger
model. Successful speculation skips a significant amount
of the full model decoding steps, leading to more efficient
inference [23].

3. Disaggregated Serving places Transformer’s prefill and
decoding on separate accelerators, and optimizes each
computation separately. This split allows for more effi-
cient prefill and decoding steps with lower latency and
higher throughput [24].

4. KV Caching is an optimization technique that makes
Transformer models more efficient by saving interim re-
sults. It works by saving the calculated key and value ma-
trices from the attention mechanism for previous tokens,
which avoids redundant computations when generating
the next token [25].

5. Optimized Software-Hardware Stack allows for optimiza-
tions across stack layers of LLM serving, including com-
pilation/kernel optimizations that make things more effi-
cient than what external studies might assume for their
models. For example, Google’s XLA ML compiler [26],
Pallas kernels [27], and Pathways systems [28] enable
model computations expressed in higher-level systems
like JAX to be run efficiently on accelerator serving hard-
ware.

Relative to earlier work, this study provides a production fleet
perspective on the realities of serving AI products. In the fol-
lowing sections, we strive to define AI serving environmental
metrics that:

1. allow meaningful comparison between scaled AI Prod-
ucts
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Figure 2: Energy per prompt results for large production AI models plotted against LMArena score [22] – estimated metrics
(gray text) and measured metrics (black, red, and blue text). For similar models and parameter counts, the different measurement
approaches can lead to large differences in results, e.g. Llama 3.1 (70B) varies from ~580 to ~3600 prompts per kWh. The results
for the median Gemini Apps text prompt presented in this paper vary from a more narrowly defined Existing Approach (10,000
prompts per kWh) to the more complete Comprehensive Approach (4,167 prompts per kWh) proposed.

2. Set a reasonably broad standard for the measurement,
boundary, to encourage future work to accurately and
comprehensively measure environmental costs, and

3. Incentivize actions to optimize the full-stack of energy-
consuming activities.

However, we understand that this contribution does not address
all priorities of previous studies—which include controlling for
hardware differences, ease of measurement, or relative visibility
into layers of the serving stack.

3 Methodology

This paper proposes a comprehensive approach to measure en-
ergy usage, emissions generation, and water consumption for
serving production AI models at scale. We believe that this
comprehensive approach can form a consistent standard that
accurately measures AI serving carbon emissions and aligns
incentives for emissions reduction. The methodology has four
parts: 1) a comprehensive measurement boundary and transpar-
ent exclusions, 2) energy measurement methodology, 3) emis-
sions and water measurement methodologies, and 4) choice of
an aggregate representative metric.

3.1 Measurement Boundary & Exclusions

The measurement boundary is a definition of the activities that
are included in metrics. In this case, the measurement bound-
ary includes energy consuming activities associated with LLM
serving, which drives emissions generation and water consump-
tion. We consider the measurement boundary for LLM serving
energy consumption to include material energy sources under
Google’s operational control—i.e. the ability to implement

changes to behavior. The functional unit for this study is one
serving AI computer deployed in the data center, which includes
one or more AI accelerator trays (containing AI accelerators)
connected to one host tray. Specifically, we decompose energy
consumption as:

1. Active AI Accelerator energy: This metric includes the
energy consumed by all AI accelerators connected to the
active AI computer, including Tranformer prefill and de-
code. This energy consumption includes the networking
communication between AI accelerators in the same AI
computer. This result is based on direct measurements
during serving, so it accounts for actual accelerator uti-
lization in a production system.

2. Active CPU & DRAM energy: A host tray’s CPU and
DRAM are necessary to run the accelerators, and both of
these components are considered within scope of the en-
ergy consumption. This metric includes energy consumed
by the CPU and DRAM on the active AI computer.

3. Idle Machine energy: To ensure high availability and low
latency for users globally, production systems require a
reserved capacity that may be idle at any given moment
but is ready to handle traffic spikes or failover. In addition,
systems may have temporary idle states during workload
transitions. The energy consumed by these idle AI com-
puters, which are essential for service uptime, must be
factored into the total energy footprint. This metric in-
cludes the energy consumed by idle AI accelerators and
associated host trays that are provisioned to serve the
relevant model and product.

4. Overhead energy: The infrastructure supporting data
centers—including cooling systems, power conversion,
and other overhead within the data center—also consumes
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energy. This overhead is captured by the Power Usage
Effectiveness (PUE) metric [9]. This metric includes the
energy consumption associated with overhead data center
activities.

The definition of the serving AI computer functional unit leads
to a few notable exclusions to the measurement boundary that
include:

• Networking: AI model prompts arrive at the edge of
Google’s network through external networking, and are
routed to and dispatched to an AI computer through data
center networking. External networking energy consump-
tion is excluded due to a lack of operational control, and
data center networking energy is estimated to be negligi-
ble for an AI assistant text prompt.
• End user devices: Energy consumption of end user de-

vices, including edge compute, is excluded due to a lack
of operational control on these devices.
• LLM training & data storage: This study specifically

considers the inference and serving energy consumption
of an AI prompt. We leave the measurement of AI model
training to future work.

3.2 Energy Measurement Methodology

To measure the in-situ fleet environmental metrics of a Gemini
Apps prompt, we have developed a methodology following the
measurement boundary outlined in Section 3.1. We denote this
proposed methodology as the Comprehensive Approach, and
it is based on internal telemetry deployed across Google’s AI
serving fleet. The approach follows:

1. Identify all LLM models serving the Gemini app, includ-
ing all supporting models for scoring, ranking, classifica-
tion, and other prompt routing tasks.

2. Map LLM models to the job IDs (i.e. a set of tagged com-
putations) and machine IDs (i.e. AI computers assigned
to serve those jobs) to measure power supply unit (PSU)
energy consumption for the machines during inference
runtime, following the underlying energy measurement
approach from Schneider and Mattia [29].
Specifically, we collect tray power, P, measurements for
the host and AI accelerators based on external power
supply units (PSUs). Concurrently, we track the total
time each machine is allocated to a given job (ttotal) and
the portion of that time it spends idle (tidle), where tidle <
ttotal. Therefore, the energy components for a given model
shown in Figure 3 are defined as:

ETotal =
∑

machine, hour

Ptotal ∗ ttotal ∗ PUE

EOverhead =
∑

machine, hour

Ptotal ∗ ttotal ∗ (PUE − 1)

EIdle =
∑

machine, hour

Pidle ∗ tidle

EActiveMachines = ETotal − EOverhead − EIdle

EActiveCPU&DRAM = EActiveMachines ∗ Phost/Ptotal

EActiveAIAccelerators = EActiveMachines ∗ Paccel/Ptotal

Figure 3: Components of the total LLM energy consumption
per prompt across a production LLM serving stack. The relative
size of the energy components is based on the median Gem-
ini Apps text prompt in May 2025 using the Comprehensive
Measurement approach.

where

• Ex: An individual energy component x (x = total, over-
head, idle, active CPU & DRAM, active AI Accelera-
tors)
• ttotal: Total time allocated to the model.
• tidle: The time that the machine is idle. The active time

is therefore ttotal - tidle.
• Pidle: The machine’s baseline power consumption

when idle.
• Phost: Hourly average power consumed by the host

system (CPU & DRAM).
• Paccel: Hourly average power consumed by the AI Ac-

celerators.
• Ptotal: Hourly average total machine power, given by

the sum Ptotal = Phost + Paccel.
• PUE: Campus-level power utilization effectiveness.

3. Measure total user prompt count across Gemini Apps
products for each LLM model, denoted as Q.

4. Divide each energy component, Ex, by total user prompt
count over the same measured time period to get en-
ergy/prompt,

Ex/prompt =
Ex

Q

We measure over a day or longer. This is sufficiently
longer than the prompt duration, so partial prompt counts
do not measurably impact the results.

In contrast to the proposed Comprehensive Approach, we also
define an Existing Approach that more narrowly considers a
highly utilized benchmark being run on a standalone AI acceler-
ator. This Existing Approach is more comparable to that found
in the existing literature. It differs from the Comprehensive
Measurement in two ways. First, it measures EActiveAIAccelerators
instead of ETotal. Second, it subsamples energy consumption
data from the top 10% most energy-efficient data centers, de-
fined by lowest daily average energy/prompt. The higher effec-
tive utilization from this subsampling mimics a highly utilized
benchmark study. This and the more narrow boundary allow
for a more direct comparison with existing benchmarks in the
literature (see Figure 1).
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Table 1: Energy consumption of the median Gemini Apps text prompt (Wh/prompt) in May 2025 using the Existing and
Comprehensive methodologies illustrated by Figure 1. In the more narrow Existing Approach, CPU & DRAM, Idle Machines, and
Overhead energy consumption are not included—so they are presented, but not included in the total energy.

Active AI Accelerators Gemini
Wh/promptAI Accel. Power Util. sample CPU & DRAM Idle Machines Overhead

Existing
Approach 0.10 Prompts in Top 10%

most efficient DCs 0.04 0.02 0.01 0.10

Comprehensive
Approach 0.14 Average across fleet 0.06 0.02 0.02 0.24

3.3 Emissions & Water Metrics Methodology

Emissions: Carbon emissions are generated based on the local
grid energy mix of the consumed electricity, and the embodied
emissions of the compute hardware. Therefore, we calculate
the carbon emissions of LLM serving as,

CO2e/prompt = ETotal/prompt ∗ EF + (S cope1 + S cope3)/Q

where EF is the previous calendar-year’s average annual grid
emission factors across Google data centers, following market-
based (MB) standards from the greenhouse-gas (GHG) pro-
tocol [30]. Market-based (MB) GHG emissions account for
the GHG emissions emitted by generating sources from which
a company purchases electricity and associated environmen-
tal attributes. Therefore MB emissions credit companies for
carbon-free energy purchases, allowing them to reduce their
associated MB emissions. Alternatively, location-based (LB)
GHG emissions refer to the GHG emissions emitted within a
specific geographic boundary, such as a country or grid region,
and exclude the impact of a company’s CFE procurement. We
consider MB GHG emissions for all metrics presented in this
paper.

For 2023 [31], Google’s LB emission factor was 366
gCO2e/kWh and the reduction associated with its procured
CFE was equivalent to 231 gCO2e/kWh, so the net MB emis-
sion factor was 135 gCO2e/kWh. For 2024 [32], Google’s LB
emission factor was 345 gCO2e/kWh and the reduction associ-
ated with its procured CFE was equivalent to 251 gCO2e/kWh,
so the net MB emission factor was 94 gCO2e/kWh. We ap-
ply the previous calendar-year’s average emissions factors to
account for the fact that these metrics are published once per
year.

For metrics on carbon emissions, Schneider et al. [33] highlight
the need to include full lifecycle emissions—including oper-
ational (Scope 1 & 2) and embodied (Scope 3) contributions.
While including embodied (Scope 3) emissions is not common
in the literature [33], we include it in this study to be as com-
prehensive as possible in the measurement boundary. S cope1,
S cope3 are the associated Scope 1 and Scope 3 GHG emissions
for the AI accelerators and host CPU & DRAM based on results
in Schneider et al. [33].

Water Consumption: Google’s data centers often rely on water
for cooling to reduce overhead energy consumption. Water
consumption efficiency is measured using the Water Usage Ef-
fectiveness (WUE) metric, specifically the consumptive use
variant (ISO WUE Category 2) calculated as water input minus
water returned. Though we calculate both the withdrawal and

consumption intensity, we consider consumption to best repre-
sent our impact on local water availability, as it represents the
volume of water that is evaporated and therefore unavailable for
reuse. On average, Google consumes 80% of the water with-
drawn. We calculate the water consumption of LLM serving as
a function of energy/prompt as,

Water/prompt = (ETotal/prompt − EOverhead/prompt) ∗WUE

where WUE is the previous calendar-year average freshwater
Water Usage Effectiveness Category 2 [34] of Google’s data
centers supporting LLM models to normalize for seasonal or
site-specific variation. For both 2023 and 2024, Google’s WUE
Category 2 value was 1.15 L/kWh.

3.4 Aggregate Metric Definition

We attempt to define aggregate energy, emissions, and water
metrics that are representative of a typical user’s behavior and
comparable over time. However, we recognize that this can
be difficult with the rapidly evolving landscape of AI model
architectures and AI assistant user behavior. We find that the
distribution of energy/prompt metrics can be skewed, with the
skewed outliers varying significantly over time. Part of this
skew is driven by small subsets of prompts served by models
with low utilization or with high token counts, which consume
a disproportionate amount of energy. In such skewed distribu-
tions, the arithmetic mean is highly sensitive to these extreme
values, making it an unrepresentative measure of typical user’s
impact. In contrast, the median is robust to extreme values and
provides a more accurate reflection of a typical prompt’s energy
impact. Consequently, we use the daily median as the aggregate
value for the metrics defined in Section 3.2 and Section 3.3.

To calculate the energy consumption for the median Gemini
Apps text prompt on a given day, we first determine the average
energy/prompt for each model, and then rank these models by
their energy/prompt values. We then construct a cumulative
distribution of text prompts along this energy-ranked list to
identify the model that serves the 50-th percentile prompt. The
average energy/prompt is defined as the energy of the median
Gemini Apps text prompt on that day, and the monthly median
energy/prompt is calculated as described above for the corre-
sponding month. Finally, the corresponding carbon emissions
and water consumption are derived by applying the conversion
factors defined in Section 3.3 on these median energy metrics.
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4 Results

This section presents the environmental impact metrics for the
Gemini Apps AI assistant, calculated using both an existing, nar-
rower measurement standard and our proposed comprehensive
methodology (see Figure 1). The results highlight the signifi-
cant differences between the two approaches and underscore
the importance of a full-stack measurement framework.

4.1 Gemini Energy Consumption

Applying our comprehensive measurement methodology, we
find that the median energy consumption for a Gemini Apps text
prompt in May 2025 is 0.24 Wh. As Table 1 and Figure 3 show,
the primary energy draw originates from the active AI Acceler-
ator power (0.14 Wh, 58% of total) and the necessary host CPU
& DRAM power (0.06 Wh, 25%). The energy consumed by
provisioned idle machines and the data center overhead (PUE)
each contribute 0.02 Wh (10% and 8% respectively). This sug-
gests that a scaling of 1.72 would need to be applied to active
AI accelerator energy consumption to include the energy con-
sumed in a production serving environment, compared to a 2
times scaling from existing estimates [21].

In contrast, when applying a methodology aligned with a more
narrow, existing approach (Figure 1), the calculated energy
consumption is only 0.10 Wh per prompt. This lower figure
results from both the more limited measurement boundary, and
considering a sample of more highly utilized machines (similar
to an idealized benchmark study where utilization is highly
optimized). The comprehensive approach reveals a total energy
consumption that is 2.4 times greater than the estimate from
the existing approach, demonstrating the need to standardize
measurement approaches and boundaries to be more inclusive
of all energy consumptive activities.

Both approaches show a per-prompt energy consumption figure
that is lower than many results presented in the literature (see
Figure 2). See Section 4.3 for a discussion of likely contributors.

4.2 Gemini Emissions & Water Consumption

While energy per-prompt is an important factor to consider and
the most directly comparable between models, environmental
impact ultimately comes from generating emissions and con-
suming water. Google’s efforts to reduce the emissions intensity
(gCO2e/kWh) and limit water use in high-stress watersheds
have significantly reduced the impact of AI serving on the envi-
ronment [35].

Table 2: Energy, emissions, and water usage of the median
Gemini Apps text prompt in May 2025 using the existing and
proposed approaches described in Section 3.2.

Existing
Approach

Comprehensive
Approach

Energy (Wh/prompt) 0.10 0.24

Emissions (gCO2e/prompt) 0.02 0.03
(Scope 2 MB) (0.016) (0.023)

(Scope 1+3) (0.007) (0.010)

Water (mL/prompt) 0.12 0.26

Figure 4: Median Gemini Apps text prompt emissions over
time—broken down by Scope 2 MB emissions (top) and Scope
1+3 emissions (bottom). Over 12 months, we see that AI model
efficiency efforts have led to a 47x reduction in the Scope 2
MB emissions per prompt, and 36x reduction in the Scope 1+3
emissions per user prompt—equivalent to a 44x reduction in
total emissions per prompt.

As Table 2 shows, a median Gemini Apps text prompt generates
0.03 gCO2e and consumes 0.26 mL of water when measured
comprehensively. These values are even lower when consider-
ing a methodology more similar to a narrow, existing approach
(0.01 gCO2e and 0.15 mL of water consumption). To put this
into context: a modern television consumes approximately 100
watts of electricity [36], so 0.24 Wh represents less energy than
watching TV for 9 seconds. The water use of 0.26 mL equals
five drops of water (based on a standard 0.05 mL drop), or-
ders of magnitude less than previous estimates of 45 [18] to 50
mL [16].

Google’s Water Risk Framework adopted in 2023, and our
commitment to Responsible Water Use [35], ensures that all
new data centers developed in high-stress locations will make
use of air-cooled technology during normal operations. As a
result, we anticipate our water usage effectiveness in high-stress
areas will trend significantly lower than the fleet average and
approach zero as legacy assets reach end of life. Improvements
in AI serving energy efficiency and water usage effectiveness
will compound to further reduce the water consumption impact
of AI assistant prompts.

The breakdown of the total per-prompt emission between mar-
ket based electricity-related emissions and embodied emissions
remains consistent with results presented in Schneider et al.
[33], where electricity-related emissions dominate. This in-
forms that the most impactful reduction initiatives are energy
efficiency improvements and decarbonization of electricity con-
sumed.

4.3 Gemini Emissions Efficiency Gains

A key motivation for the comprehensive measurement of AI
serving environmental metrics is to track and incentivize op-
timizations across the entire serving stack. By tracking these
metrics from May 2024 to May 2025, we demonstrate a 44x
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reduction in the total emissions per median Gemini Apps text
prompt over 12 months (Figure 4). This impact results from:

1. A 33x reduction in per-prompt energy consumption
driven by software efficiencies—including a 23x reduc-
tion from model improvements, and a 1.4x reduction from
improved machine utilization.

2. A 1.4x reduction in MB emissions intensity (gCO2e/kWh)
of Google’s data center electricity from workload location
impacts and clean energy procurement.

3. A 36x reduction in Scope 1+3 emissions per prompt
driven by lower machine-hours per prompt, and the asso-
ciated reduction in amortized embodied emissions.

We expect these dramatic emissions-efficiency gains to come
from a combination of efforts, including:

• Smarter model architectures: Gemini models are built on
the Transformer model architecture [37], which provided
a 10-100x efficiency boost over the previous state-of-
the-art architectures for language modeling [38]. We
design models with inherently efficient structures and
techniques like Mixture-of-Experts (MoE) and hybrid
reasoning. MoE, for example, allows us to activate a small
subset of a large model specifically required to respond
to a prompt, reducing computations and data transfer by
a factor of 10-100x. We also make use of more efficient
implementations of the attention computation than those
described in the original Transformer paper.
• Efficient algorithms & quantization: We continuously

refine the algorithms that power our models with methods
like Accurate Quantized Training (AQT) [39] that uses
narrower data types to maximize efficiency and reduce
energy consumption for serving without compromising
response quality.
• Optimized inference and serving: We constantly improve

AI models delivery for responsiveness and efficiency.
Technologies like Speculative Decoding serve more re-
sponses with fewer AI accelerators [23]. We use distil-
lation [40] to create more efficient, serving-optimized
models (such as Gemini Flash and Flash-Lite) using our
larger, more capable models as teachers. As an added
benefit of using smaller, serving-optimized models, we
can push the batch size higher for serving while still meet-
ing the same latency goals, further pushing up efficiency
and hardware utilization.
• Custom-built hardware: We design our TPUs from the

ground up to give higher performance per watt. Our AI
models and TPUs are co-designed, ensuring our software
takes full advantage of our hardware. Our latest genera-
tion, Ironwood, is 30x more energy-efficient than our first
publicly-available TPU.
• Optimized idling: Our serving stack makes highly effi-

cient use of CPUs and minimizes accelerators idling by
dynamically moving models based on demand in near-
real-time, rather than a “set it and forget” approach.
• ML software stack: Our XLA ML compiler [26], Pallas

kernels [27], and Pathways [28] systems enable model
computations expressed in higher-level systems like JAX
to be run efficiently on our accelerators serving hardware.

• Ultra-efficient data centers: Google data centers are
among the industry’s most efficient, operating at a fleet-
wide average PUE of 1.09—only 9% over zero overhead—
and delivering over six times more computing power per
unit of electricity than five years ago [41]. Google con-
tinues to advance our 120% replenishment goal to drive
net water consumption to zero, and optimize our cooling
systems—balancing the local trade-off between energy,
water, and emissions by conducting science-backed wa-
tershed health assessments to guide cooling type selection
and limit water use in high-stress locations.
• Clean energy procurement: Google continues to procure

clean energy generation in pursuit of our 24/7 carbon-
free ambition. In the 2025 annual Environmental Re-
port [32], we have shown that despite continued growth
of electricity consumption from 2023 to 2024, Scope 2
MB emissions have decreased over the same timeframe.
This demonstrates an important decoupling between elec-
tricity consumption and emissions impact for Google’s
data centers – decreasing Google’s fleetwide Scope 2 MB
emissions factor by 30% from 2023 to 2024.

5 Conclusions
The proliferation of large-scale AI products necessitates a trans-
parent and comprehensive understanding of their AI serving
environmental footprint. This paper addresses a critical gap in
the field by proposing and applying a comprehensive, full-stack
methodology for measuring the energy consumption, carbon
emissions, and water consumption of AI inference in a live
production environment.

Our primary finding is that the environmental impact of AI serv-
ing can be significantly underestimated by existing, narrower
measurement approaches. For Google’s Gemini Apps products,
a median text prompt consumes 0.24 Wh of energy, generates
0.03 gCO2e, and consumes 0.26 mL of water. These figures are
more comprehensive than many previously published metrics,
but also end up being one or two orders of magnitude smaller
than many existing estimates or measurements of AI inference
benchmarks. We interpret this difference to come from three
factors:

1. In-situ measurement of energy consumption will be a
more precise representation of actual energy consumption,
and this study uses primary data on user prompt volumes.

2. Existing measurements of AI inference energy consider
open-source models that are likely not at the Pareto fron-
tier of performance efficiencies.

3. Deployment of AI inference in a production environment
may be more efficient than benchmark experiments due
to efficient batching of prompts at scale.

The implications of this work are twofold. First, it establishes
that for environmental metrics to be actionable and comparable
across different models and providers, it is critical to consider a
standardized, comprehensive measurement boundary. Without
it, reported figures can vary by orders of magnitude for similar
tasks, hindering transparency and accountability. Second, this
holistic approach provides the necessary visibility to hotspot
and properly incentivize efficiency gains across the entire AI
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serving stack. Optimizing for a comprehensive metric can drive
substantial environmental improvements, highlighted by the
33x reduction in the median Gemini Apps’ per-prompt energy
use and 44x reduction in per-prompt emissions over the past
year.

While the impact of a single prompt is low compared to many
daily activities, the immense scale of user adoption globally
means that continued focus on reducing the environmental cost
of AI is imperative. We advocate for the widespread adoption
of this or similarly comprehensive measurement frameworks to
ensure that as the capabilities of AI advance, their environmen-
tal efficiency does as well. We hope that this study contributes
to ongoing efforts to develop efficient AI at this critical time to
address human-induced climate impacts, and nascent time for
AI capabilities.
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con, Michał Stęchły, Christian Bauer, Lucas Otávio N. de Araújo,
JPW, and MinervaBooks. mlco2/codecarbon: v2.4.1, May 2024.
URL https://doi.org/10.5281/zenodo.11171501.

[14] Josh You. How much energy does ChatGPT use?, 2025. URL
https://epoch.ai/gradient-updates/how-much-energ
y-does-chatgpt-use.

[15] Samuel Rincé and Adrien Banse. Ecologits: Evaluating the
environmental impacts of generative AI. Journal of Open Source
Software, 10(111):7471, 2025.

[16] Pengfei Li, Jianyi Yang, Mohammad A. Islam, and Shaolei Ren.
Making AI less "thirsty": Uncovering and addressing the secret
water footprint of AI models, 2025. URL https://arxiv.or
g/abs/2304.03271.

[17] Sam Altman. The gentle singularity, June 2025. URL https:
//blog.samaltman.com/the-gentle-singularity.

[18] Mistral AI. Our contribution to a global environmental standard
for AI, July 2025. URL https://mistral.ai/news/our-
contribution-to-a-global-environmental-standard-
for-ai.

[19] Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure
Ligozat. Estimating the carbon footprint of bloom, a 176B pa-
rameter language model. Journal of machine learning research,
24(253):1–15, 2023.

[20] Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam
Michaleas, Michael Jones, William Bergeron, Jeremy Kepner,
Devesh Tiwari, and Vijay Gadepally. From words to watts:
Benchmarking the energy costs of large language model infer-
ence. In 2023 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–9. IEEE, 2023.

[21] James O’Donnell and Casey Crownhart. We did the math on
AI’s energy footprint. here’s the story you haven’t heard. MIT
Technology Review. URL https://www.technologyreview
.com/2025/05/20/1116327/ai-energy-usage-climate-
footprint-big-tech/.

[22] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Niko-
las Angelopoulos, Tianle Li, Dacheng Li, Banghua Zhu, Hao
Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena:
An open platform for evaluating LLMs by human preference. In
Forty-first International Conference on Machine Learning, 2024.

[23] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast infer-
ence from transformers via speculative decoding. In International

https://huggingface.co/spaces/AIEnergyScore/Leaderboard
https://huggingface.co/spaces/AIEnergyScore/Leaderboard
https://iea.blob.core.windows.net/assets/601eaec9-ba91-4623-819b-4ded331ec9e8/EnergyandAI.pdf
https://iea.blob.core.windows.net/assets/601eaec9-ba91-4623-819b-4ded331ec9e8/EnergyandAI.pdf
https://iea.blob.core.windows.net/assets/601eaec9-ba91-4623-819b-4ded331ec9e8/EnergyandAI.pdf
https://doi.org/10.5281/zenodo.11171501
https://epoch.ai/gradient-updates/how-much-energy-does-chatgpt-use
https://epoch.ai/gradient-updates/how-much-energy-does-chatgpt-use
https://arxiv.org/abs/2304.03271
https://arxiv.org/abs/2304.03271
https://blog.samaltman.com/the-gentle-singularity
https://blog.samaltman.com/the-gentle-singularity
https://mistral.ai/news/our-contribution-to-a-global-environmental-standard-for-ai
https://mistral.ai/news/our-contribution-to-a-global-environmental-standard-for-ai
https://mistral.ai/news/our-contribution-to-a-global-environmental-standard-for-ai
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/


Measuring the environmental impact of delivering AI at Google Scale 10

Conference on Machine Learning, pages 19274–19286. PMLR,
2023.

[24] Cunchen Hu, Heyang Huang, Junhao Hu, Jiang Xu, Xusheng
Chen, Tao Xie, Chenxi Wang, Sa Wang, Yungang Bao, Ninghui
Sun, et al. Memserve: Context caching for disaggregated
LLM serving with elastic memory pool. arXiv preprint
arXiv:2406.17565, 2024.

[25] Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao
Xu, Xuejia Chen, Nicole Hu, Wei Dong, Qing Li, and Lei Chen.
A survey on large language model acceleration based on KV
cache management. arXiv preprint arXiv:2412.19442, 2024.

[26] OpenXLA Authors. XLA: A machine learning compiler for
GPUs, CPUs, and ML accelerators. https://github.com/o
penxla/xla, 2023.

[27] The JAX Authors. Pallas: a JAX kernel language. https:
//docs.jax.dev/en/latest/pallas/index.html, 2024.

[28] Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghe-
mawat, Steven Hand, Daniel Hurt, Michael Isard, Hyeontaek
Lim, Ruoming Pang, Sudip Roy, et al. Pathways: Asynchronous
distributed dataflow for ML. Proceedings of Machine Learning
and Systems, 4:430–449, 2022.

[29] Ian Schneider and Taylor Mattia. Carbon accounting in the Cloud:
a methodology for allocating emissions across data center users.
arXiv preprint arXiv:2406.09645, 2024.

[30] Mary Elizabeth Sotos. GHG Protocol Scope 2 guidance. 2015.

[31] Google. Google environmental report 2024, . URL https:
//sustainability.google/reports/google-2024-envi
ronmental-report/.

[32] Google. Google environmental report 2025, . URL https:
//sustainability.google/reports/google-2025-envi
ronmental-report/.

[33] Ian Schneider, Hui Xu, Stephan Benecke, David Patterson, Keguo
Huang, Parthasarathy Ranganathan, and Cooper Elsworth. Life-
cycle emissions of AI hardware: A cradle-to-grave approach and
generational trends. arXiv preprint arXiv:2502.01671, 2025.

[34] Dan Azevedo, Symantec Christian Belady, and Jack Pouchet.
Water usage effectiveness (WUE): A green grid datacenter sus-
tainability metric. The Green Grid, 32, 2011.

[35] Google. A data-driven approach to data center water stewardship:
A framework for evaluating and advancing responsible water use
in our data centers. Technical report, Google, 2023. URL https:
//www.gstatic.com/gumdrop/sustainability/2023-da
ta-center-water-risk-framework-whitepaper.pdf.

[36] Jacob Marsh. How many watts does a tv use?, November 2024.
URL https://www.energysage.com/electricity/house
-watts/how-many-watts-does-a-tv-use/.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-
sukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[38] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown,
Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey
Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

[39] Lukasz Lew, Vlad Feinberg, Shivani Agrawal, Jihwan Lee,
Jonathan Malmaud, Lisa Wang, Pouya Dormiani, and Reiner
Pope. AQT: Accurate quantized training, 2022. URL http:
//github.com/google/aqt.

[40] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

[41] Google. Power usage effectiveness - Google Data Centers, 2025.
URL https://datacenters.google/efficiency/.

Appendix

Appendix A: Normalization

The factors impacting overhead energy consumption, water consump-
tion, and emissions typically vary over time, and by location, climatic
condition, cooling technology, and other external variables.

• Overhead Energy Consumption: Power demand from cooling
systems varies significantly based on technology and local cli-
mate. Generally, air-cooled systems are less energy efficient
than adiabatic or evaporative cooled systems. Regardless of
technology, power consumption increases during hotter and
more humid periods.

• Water Consumption: The data center’s water demand varies
significantly with cooling technology and climatic conditions.
Air-cooled systems consume little to no water, while adiabatic
or evaporative systems consume increasingly more water during
hotter and drier periods.

• Emission Factors: Scope 2 emissions vary based on seasonal
patterns, reflecting changes in energy demand and the grid’s
mix of power generation sources.

This variability can skew benchmarking and trends. For example,
an AI model running during the winter season in optimal cooling
conditions may appear more efficient due to lower overhead energy
and water consumption. Similarly, an AI model running in an advanced
or optimally sited data center will have a smaller footprint than the
same model running in a less modern or suboptimally sited data center.

To ensure accurate AI model benchmarking and comparison, Power Us-
age Effectiveness (PUE), Water Usage Effectiveness (WUE), and grid
emission factors should be applied on a trailing-twelve-month (TTM)
or annual-average basis. To normalize for site-specific variations, the
fleetwide average weighted by the energy serving AI compute should
be used. We did both of these things. For example, this means that a
May 2024 estimate uses May 2024-specific numbers for energy/query,
while using annual fleetwide average numbers for PUE, WUE, and
grid emissions factors. This ensures that the data accurately reflect
the operational profile of the entire data center fleet serving AI during
typical operation, and not a single facility in an optimal climate.
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