

Mitigating OWASP
Top 10 API Security
Risks with Apigee
and Advanced API
Security
December 2024

For more information visit cloud.google.com

Keep your APIs secure.
OWASP’s 2023 Top 10 for API Security list outlines the latest cybersecurity

risks associated with APIs. By using Apigee and Advanced API Security

together, you can improve your security posture and better protect your

organization against these common attack types.

Executive Summary

APIs are essential to modern software, enabling communication between systems and facilitating digital
partnerships and ecosystems. But the widespread use of APIs makes them attractive targets for
cyberattacks. This document describes the key risks associated with APIs, relying heavily on work done
by the OWASP project. This document also describes some best practices for addressing those risks
using Apigee, Google Cloud’s API management platform, and Advanced API Security, a security add-on
for Apigee.

By implementing the recommendations outlined in this whitepaper and taking advantage of both
Apigee's native security capabilities and additional capabilities provided in Advanced API Security,
organizations can establish a comprehensive defense against the OWASP Top 10 API Security Risks and
other emerging threats. This proactive approach can significantly reduce the risk of successful attacks,
safeguard sensitive data, and maintain the trust of customers and partners. A well-designed and
implemented security strategy is crucial for protecting your API ecosystem and ensuring the long-term
success of your digital initiatives.

This document includes the following information:

01

Overview of the OWASP top
10 API security risks

The most recent list of OWASP
Top 10 API security risks,
updated in 2023.

02

Details and potential impact
on your organization

More information on each
security risk and how it can
impact your organization.

03

Mitigation strategies
with Apigee

Ways to mitigate these
security risks using
Apigee and Advanced
API Security.

For more information visit cloud.google.com 1

https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://cloud.google.com/apigee?utm_source=google&utm_medium=cpc&utm_campaign=na-US-all-en-dr-bkws-all-all-trial-e-dr-1707554&utm_content=text-ad-none-any-DEV_c-CRE_665665924747-ADGP_Hybrid+%7C+BKWS+-+MIX+%7C+Txt-API+Management-Apigee-KWID_43700077225653148-kwd-303434170497&utm_term=KW_apigee-ST_apigee&gad_source=1&gclid=CjwKCAjw-JG5BhBZEiwAt7JR62uKYNSTIHLSwIPuD85SlshgNWM5jF9yDKCD06_djdglVLTH6BLrZBoCxVoQAvD_BwE&gclsrc=aw.ds&hl=en
https://cloud.google.com/apigee/docs/api-security?_gl=1*1m6cslv*_up*MQ..&gclid=CjwKCAjw-JG5BhBZEiwAt7JR62uKYNSTIHLSwIPuD85SlshgNWM5jF9yDKCD06_djdglVLTH6BLrZBoCxVoQAvD_BwE&gclsrc=aw.ds
https://cloud.google.com/architecture/best-practices-securing-applications-and-apis-using-apigee
https://cloud.google.com/architecture/best-practices-securing-applications-and-apis-using-apigee

About Apigee and Advanced API Security

Apigee is Google Cloud's native API management platform that can be used to build, manage, and
secure APIs — for any use case, environment, or scale. Apigee offers high performance API proxies to
create a consistent, reliable interface for your backend services. The proxy layer provides granular
control over security, rate limiting, quotas, analytics, and more for all of your services. Apigee supports
REST, gRPC, SOAP, and GraphQL, providing the flexibility to implement any API architectural style.

Advanced API Security is an add-on to Apigee that provides additional security checks and controls for
APIs. It integrates with existing Apigee environments and native security features, including OAuth 2.0,
OpenID Connect, and JSON Web Tokens (JWTs), and validates they have been configured properly in
the customer's environment. It also detects undocumented and unmanaged APIs linked to Google Cloud
L7 Load Balancers. With Apigee Advanced API Security, you can regularly assess the risk of your APIs;
surface API proxies that do not meet your security standards; and get recommended actions for how to
mitigate detected issues. Advanced API Security’s abuse detection uses machine learning models to
detect patterns that are a sign of malicious activity, including API scraping and anomalies, and cluster
events together based on similar patterns.

About Mandiant, now part of Google Cloud

Mandiant (now part of Google Cloud) delivers dynamic cyber defense solutions by combining consulting
services, threat intelligence, attack surface management, and validation powered by industry-leading
expertise, intelligence, and innovative technology. Part of Mandiant’s consulting services include Incident
Response Services to help Google Cloud customers investigate and remediate incidents faster.

About OWASP’s Top 10 API Security Risks

The Open Worldwide Application Security Project, or OWASP, is a nonprofit organization that works to
improve software security through its community-led open source software projects. OWASP publishes
multiple "Top 10" lists outlining security risks, in categories spanning web applications, mobile
applications, databases, and more. Each list summarizes a broad consensus about the most critical
security risks in the respective domain. The OWASP "Top 10" list for API security, initially published in
2019 and revised multiple times since then, describes the exploitability, prevalence, and impact for acute
API risks, and guidance for developers to avoid these problems. This list, like all the OWASP Top 10 lists, is
intended to be a way to promote awareness and education among developers, to allow improvements in
security.

Disclaimer

The information provided in this document is for general informational purposes only and should not be
considered as legal, financial, or security advice. Organizations should conduct their own risk
assessments and consult with qualified professionals to determine the appropriate security measures for
their specific needs.

Note: The product “Apigee” referenced in this whitepaper refers to Apigee X and Apigee hybrid, and
does not extend to Apigee Edge or Apigee Edge for Private Cloud (OPDK).

For more information visit cloud.google.com 2

https://cloud.google.com/apigee/docs/api-security
https://cloud.google.com/blog/products/api-management/track-down-shadow-apis-with-apigee
https://cloud.google.com/security/consulting/mandiant-incident-response-services?hl=en
https://cloud.google.com/security/consulting/mandiant-incident-response-services?hl=en
https://owasp.org/www-project-api-security/

Table of Contents: OWASP Top 10 API Security Risks
1 - Broken Object Level Authorization (BOLA) 4

Background 4
Apigee: Native security features for mitigation 5
Advanced API Security: Additional features to mitigate BOLA vulnerabilities 7
Examples of supported Apigee mitigations to prevent BOLA vulnerabilities 7

2 - Broken Authentication 8
Background 8
Apigee: Native security features for mitigation 9
Advanced API Security: Additional features for mitigation 10

3 - Broken Object Property Level Authorization (BOPLA) 11
Background 11
Apigee: Native security features for mitigation 11
Advanced API Security: Additional features for mitigation 12

4 - Unrestricted Resource Consumption 13
Background 13
Apigee: Native security features for mitigation 14
Advanced API Security: Additional features for mitigation 14

5 - Broken Function Level Authorization (BFLA) 15
Background 15
Apigee: Native security features for mitigation 16
Advanced API Security: Additional features to mitigate BFLA 17

6 - Unrestricted Access to Sensitive Business Flows 19
Background 19
Apigee: Native security features for mitigation 19
Advanced API Security: Additional features for mitigation 20

7 - Server-Side Request Forgery (SSRF) 21
Background 21
Apigee: Native security features for mitigation 22
Additional mitigation features in Advanced API Security 23

8 - Security Misconfiguration 24
Background 24
Apigee: Native security features for mitigation 25
Advanced API Security: Additional features for mitigation 26

9 - Improper Inventory Management 27
Background 27
Apigee: Native security features for mitigation 28
Advanced API Security: Additional features for mitigation 29

10 - Unsafe Consumption of APIs 30
Background 30
Apigee: Native security features for mitigation 31
Advanced API Security: Additional features for mitigation 32

For more information visit cloud.google.com 3

Appendix 34
General Recommendations to Enhance API Security 34
Additional Resources 35

1 - Broken Object Level Authorization (BOLA)

Background

Broken Object Level Authorization (BOLA) is a critical security vulnerability that arises when an API fails
to adequately enforce access controls on individual data objects. This oversight allows malicious actors
to gain unauthorized access to, manipulate, or even delete data they should not have permission to,
leading to severe consequences such as unauthorized data exposure, modification, or deletion.

BOLA vulnerabilities can have severe consequences for organizations. Unauthorized data exposure can
lead to sensitive information being leaked to the public, which could damage an organization's reputation
and result in legal liability. Unauthorized data modification can disrupt an organization's operations and
lead to financial losses. Unauthorized data deletion can result in the permanent loss of critical
information.

BOLA vulnerabilities typically occur when an API does not properly validate the user's
authorization before performing operations on specific data objects. For example, an API might
allow a user to modify a data object without checking if the user has the necessary permissions. This
could enable an attacker to modify sensitive data, such as financial records or personal information,
without authorization.

BOLA vulnerabilities can also occur when an API allows users to access data objects through indirect
references. For example, an API might allow a user to access a data object by providing its identifier. If
the API does not properly validate the user's authorization before allowing access, an attacker could use
this indirect reference to access data objects they should not have permission to read or modify.

To mitigate BOLA vulnerabilities, organizations should implement strong access controls on individual
data objects. This can be achieved by using various techniques, such as role-based access control
(RBAC), attribute-based access control (ABAC), or mandatory access control (MAC). Additionally,
organizations should regularly review their API security configurations to ensure that access controls are
properly enforced.

Preventing the BOLA vulnerability with Apigee

For more information visit cloud.google.com 4

Figure 1: BOLA attack workflow

In Figure 1 above, Mike is trying to access John’s order:

1. The client Mike is initiating a request to access an order with ID 123
2. The Apigee proxy sends a request to the backend, asking for Mike’s orders
3. The backend responds that Mike owns order 456
4. Apigee validates with AuthZ service whether Mike can access order ID 123, given the response

from the backend
5. AuthZ service answer is a failure, which means Mike can’t access order 123
6. Apigee returns an error to the user

Apigee: Native security features for mitigation

Feature Description

Quota management Implementing quota management can prevent excessive or abusive
API consumption that could potentially exploit BOLA vulnerabilities.
Quota management involves setting limits for each API endpoint or
resource, monitoring API usage, and enforcing the defined quotas.
This helps organizations control API usage patterns, optimize
resource allocation, and prevent potential security threats arising
from uncontrolled API consumption. If your API is vulnerable to a
Broken Object Level Authorization (BOLA) attack, attackers might
figure out how it works and use stolen secrets to access it
repeatedly. To protect against this, users should set usage quotas
on their APIs. Apigee can then monitor these quotas and alert users
if their APIs are being called excessively, which could indicate an

For more information visit cloud.google.com 5

attack.

Apigee X allows administrators to define usage limits or quotas for
each API. These quotas can be configured based on various metrics
such as the number of requests per minute, hour, or day, or the total
data transfer volume. For Generative AI use cases, Apigee can even
enforce quotas based on token count in the prompt, or in the
response.

OAuth 2.0 and OpenID
Connect

Apigee X uses industry-standard protocols for secure authorization
and authentication. OAuth 2.0 enables delegated access, allowing
users to grant third-party applications access to their resources
without sharing their credentials. OpenID Connect extends OAuth
2.0 by adding an identity layer, enabling single sign-on (SSO) across
multiple applications and services. These protocols provide a
comprehensive framework for protecting user identities and
managing API access.

Sensitive data protection By protecting sensitive data, organizations can reduce the impact
of BOLA attacks and comply with data protection regulations
including GDPR and PCI DSS. All sensitive object access needs to
go through an API gateway with a non-passthrough URL. There
needs to be a level of indirection over the storage layer so the
authentication checks can remain independent of the raw
storage resource.

Apigee users can implement Sensitive Data classification through
the Service Callout policy. That way, the proxies can identify
sensitive data such as PII, financial information, and healthcare data.

Advanced API Security: Additional features to mitigate BOLA vulnerabilities

Feature Description

Risk assessment The Risk Assessment feature in Advanced API Security identifies API
proxies with missing or inadequate security policies, including
missing authentication verification policies that leave them exposed
to potential Broken Object Level Authorization (BOLA) attacks.

For more information visit cloud.google.com 6

https://cloud.google.com/apigee/docs/api-platform/reference/policies/quota-policy
https://cloud.google.com/apigee/docs/api-platform/security/oauth/oauth-home
https://gdpr.eu/what-is-gdpr/
https://www.pcisecuritystandards.org/standards/
https://cloud.google.com/apigee/docs/api-security/security-scores

It also provides security teams with actionable recommendations to
improve their security posture. These recommendations include
suggestions for hardening API proxies, and implementing proper
authentication and authorization mechanisms.

ML-powered abuse
detection

The Abuse Detection feature empowers security teams with
valuable insights into irregular proxy traffic by leveraging advanced
machine learning algorithms. It uses anomaly detection algorithms
to identify unusual patterns in API requests, such as sudden spikes
in traffic volume or requests from unfamiliar IP addresses; these
could indicate BOLA attacks. These detections can be effectively
consolidated, automatically clustering similar attacks into an
incident. This capability aids security teams in understanding
whether an attack is isolated or more widespread, ensuring an
appropriate and effective response to potential threats.

Security actions With Advanced API Security, users can create automated security
actions to immediately flag or block suspicious traffic identified
through Apigee’s Abuse Detection models.

Examples of supported Apigee mitigations to prevent BOLA vulnerabilities
● Detection of anomalous access patterns: Apigee Advanced API Security can be used to

detect different types of anomalous behavior, such as sudden spikes in API traffic or requests
coming from unexpected geographic locations. This can help identify potential attacks or
security breaches in progress.

● Rate limiting: Apigee X can impose limits on the number of requests that can be made from a
single IP address or account within a given time frame using a rate limiting policy. This can help
prevent attackers from overwhelming your API with requests or using automated tools to
brute-force authentication attempts.

● Data encryption: Apigee X can encrypt sensitive data in transit with Transport Layer Security
(TLS). You can then use Advanced API Security’s Risk Assessment feature to check that TLS and
mTLS are configured on your API Proxy targets.

For more information visit cloud.google.com 7

https://cloud.google.com/apigee/docs/api-security/abuse-detection
https://cloud.google.com/apigee/docs/api-security/security-actions
https://cloud.google.com/apigee/docs/api-security/security-actions
https://cloud.google.com/apigee/docs/api-platform/develop/rate-limiting
https://cloud.google.com/apigee/docs/api-platform/system-administration/options-configuring-tls

2 - Broken Authentication
Background

Broken Authentication, a serious security vulnerability, arises from flaws in authentication mechanisms,
enabling attackers to bypass security measures and impersonate legitimate API clients. This can have
devastating consequences for organizations, as attackers can gain unauthorized access to sensitive
information, disrupt operations, or steal valuable assets.

Badly implemented authentication policies, including weak credential management and flawed session
management, allow attackers to exploit implementation flaws and impersonate legitimate users or
clients. Some key authentication principles to keep in mind are:

● Always authenticate both the user agent (the app) and the requesting user or client.
● Use delegated authentication and authorization patterns, avoiding direct password transmission

within API requests.
● Validate access credential signatures and enforce defined expiry times for all credentials.
● Prevent brute force attacks with rate limiting functionality.

The Importance of Outside-In Design

An outside-in approach to API design prioritizes consumer use cases and security, especially when
exposing backend systems to public networks. Traditionally, backend systems lack the robust
authentication needed for public exposure. This is where Apigee, integrated with an identity and access
management solution, provides strong protection. Key elements to consider include:

● Security Design: Leveraging Apigee features for effective authentication patterns.
● Governance: Ensuring consistent use of designed authentication patterns across all APIs.
● Operational Security: Detecting and responding to suspicious behavior and brute force

attempts.

Security Design with Apigee

The goal of security design is to correctly implement authentication flows, often integrating with
third-party identity tools, in order to ensure consistency in the authentication, authorization, and data
protection approach across all of your APIs, and thereby reduce risk. This critical phase begins with
providing for the appropriate delegated authentication flows, which may vary depending on the type of
the consuming application. Collaboration with your identity team is crucial for defining integration
patterns with the identity solutions you use for various constituencies that access your APIs - internal,
external, partner, or public users..

Using Open Standards

OpenID Connect and OAuth RFCs offer a wide array of delegated authentication and authorization
flows. However, the complexity of these standards contributes to broken authentication being a
prevalent OWASP API threat. Apigee provides resources like example implementations to aid in
understanding and correctly implementing OAuth flows.

For more information visit cloud.google.com 8

https://community.apigee.com/articles/50846/designing-apis-from-the-outside-in.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.oauth.com/oauth2-servers/map-oauth-2-0-specs/
https://github.com/GoogleCloudPlatform/apigee-samples/tree/main/oauth-client-credentials

Apigee: Native security features for mitigation

Feature Description

Authentication Apigee offers specific capabilities to address identity and
authentication concerns. Apigee can:

● Act as a token dispensary, generating access tokens and
refresh tokens via the various OAuth2.0 grant types, and
including custom grant types. Apigee can also verify such
tokens, with very high performance.

● Verify or decode identity or access tokens in JWT format as
issued by OpenID Connect identity providers, such as Entra
ID, Okta, Ping Identity, and more.

● Act as an IETF RFC 8693-compliant Token Exchange
endpoint, allowing you to support multiple distinct
third-party identity providers in your API program.

● Generate or verify JWS, or encrypted JWT.
● Generate and validate SAML assertions.
● VerifyIAM policy, for IAM-based authentication and

authorization

OAuth 2.0 and OpenID
Connect

Apigee X uses industry-standard protocols for secure authorization
and authentication. OAuth 2.0 enables delegated access, allowing
users to grant third-party applications access to their resources
without sharing their credentials. OpenID Connect extends OAuth
2.0 by adding an identity layer, enabling single sign-on (SSO) across
multiple applications and services. These protocols provide a
comprehensive framework for protecting user identities and
managing API access.

API key verification For simple authentication, you can configure Apigee X to require
API keys for authentication, providing a layer of protection against
unauthorized access. API keys are unique identifiers that are
associated with specific users or applications. When using API keys,
Apigee ensures that only authorized entities can access the API.

You can compose API Key verification with JWT verification to
provide stronger controls for access tokens issued by third-party

For more information visit cloud.google.com 9

https://datatracker.ietf.org/doc/html/rfc8693
https://cloud.google.com/apigee/docs/api-platform/reference/policies/verify-iam-policy
https://cloud.google.com/apigee/docs/api-platform/security/oauth/oauth-home
https://cloud.google.com/apigee/docs/api-platform/reference/policies/verify-api-key-policy

identity providers.

JWT (JSON Web Token)
Support

Apigee X can validate and manage JSON Web Tokens (JWTs). JWTs
are a compact and self-contained way to securely transmit
information between parties. They are signed using a cryptographic
algorithm, ensuring that the information has not been tampered
with. Or, a JWT can be encrypted, ensuring the encapsulated
information is private. Apigee's support for JWTs allows developers
to use JWTs for authentication and authorization, or simple data
protection, simplifying integration with third-party services and
enhancing the security of API interactions.

Advanced API Security: Additional features for mitigation

Feature Description

Threat protection Advanced API Security offers threat protection capabilities to
safeguard APIs from a range of attacks. It employs sophisticated
algorithms to detect suspicious traffic patterns, including those
indicative of brute force attacks, OAuth Abuser, or scraping. This
comprehensive protection helps prevent unauthorized access, data
breaches, and other malicious activities.

Anomaly detection Advanced API Security utilizes advanced anomaly detection
techniques to identify unusual behavior that may indicate
unauthorized access attempts. By analyzing API traffic patterns, it
can detect deviations from established norms, and issue the proper
alerts. This enables organizations to promptly identify and respond
to potential threats before they escalate into major security
incidents.

Risk assessment Advanced API Security continuously assesses the security posture
of API proxies and traffic. It identifies misconfigurations that could
cause vulnerabilities and weaknesses in authentication
mechanisms, authorization policies, and data handling practices.
This customizable risk assessment process provides actionable
recommendations to improve the overall security posture of APIs,
helping organizations prioritize and address critical security issues.

For more information visit cloud.google.com 10

https://cloud.google.com/apigee/docs/api-platform/reference/policies/jwt-policies-overview
https://attack.mitre.org/techniques/T1110/

3 - Broken Object Property Level Authorization (BOPLA)
Background

Broken Object Property Level Authorization (BOPLA) is a critical security vulnerability that arises when an
API fails to effectively enforce access control measures on individual properties or attributes within a
data object. This vulnerability allows attackers to view, modify, or delete sensitive properties that they
should not have access to, even if they have legitimate access to the data object itself.

BOPLA attacks often occur due to insufficient validation and authorization checks on API calls. When an
API fails to properly validate the permissions of a user before allowing them to access specific properties
within a data object, attackers can exploit this vulnerability to gain unauthorized access to sensitive
information. For example, consider a social media platform that allows users to update their profile
information, including their name, email address and membership level. If the API responsible for
handling profile views only does not enforce granular access controls, an attacker could potentially
modify their membership level and access higher-tier privileges without being eligible for that access.

To address BOPLA vulnerabilities, API developers must implement access control mechanisms that
validate user permissions for each property or attribute within a data object. This can be achieved by
utilizing fine-grained authorization policies that define the specific operations that users are allowed to
perform on each property.

Additionally, APIs should employ input validation techniques to ensure that attackers cannot manipulate
request parameters to bypass authorization checks. By implementing these security measures,
organizations can mitigate the risk of BOPLA attacks and protect sensitive data from unauthorized
access and modification.

Apigee: Native security features for mitigation

Feature Description

Data masking
Users can use Data Classification services with Apigee to allow for
the masking of sensitive data in API responses. This prevents
unauthorized exposure of specific object properties. Masking can
be applied to any field or property within an API response. This
ensures that sensitive data, such as personally identifiable
information (PII) or financial information, is not inadvertently
disclosed to unauthorized users.

OpenAPI specification By defining a clear OAS, Apigee can enforce data validation and

For more information visit cloud.google.com 11

https://cloud.google.com/apigee/docs/api-platform/reference/policies/oas-validation-policy

validation prevent unauthorized modification of object properties. For
example, if an API only exposes the user's name and email address,
Apigee can block attempts to access or modify other properties,
such as the user's password or credit card number. The OAS is a
machine-readable definition of an API's structure and behavior. It
describes the API's operations, parameters, data types, and
security requirements. By validating incoming API requests against
the OAS, Apigee can ensure that the requests are properly
formatted and that the data provided is valid—and can do the same
for responses, too. This prevents unauthorized users from
modifying or manipulating object properties in a way that could
compromise the security or integrity of the API.

Advanced API Security: Additional features for mitigation

Feature Description

Proactive protection Advanced API Security automatically checks proxy definitions for
security policies that, if absent, could leave APIs susceptible to
Broken Object Property Level Authorization (BOPLA) attacks. This
helps the security team proactively address vulnerabilities and
prevent exploitation. Apigee Advanced API Security utilizes
advanced threat detection techniques to identify and act on BOPLA
risks. This proactive approach helps detect and act on data
breaches and unauthorized access to sensitive object properties,
ensuring the confidentiality and integrity of your data.

Traffic analysis and
alerting

Advanced API Security provides detailed analytics and reporting,
continuously analyzing API traffic to identify unusual activity that
might indicate a BOPLA attack, using ML-based Anomaly detection
models. By recognizing deviations from normal behavior, it can alert
security teams to quickly identify malicious API access attempts.

For more information visit cloud.google.com 12

https://cloud.google.com/apigee/docs/api-security/security-actions
https://cloud.google.com/apigee/docs/api-security/security-report-jobs

4 - Unrestricted Resource Consumption

Background

Unrestricted Resource Consumption (URC) vulnerabilities pose a significant threat to the security and
reliability of API-driven applications. These vulnerabilities allow attackers to bypass the intended
resource limits of an API, leading to excessive consumption of critical resources such as CPU, memory, or
bandwidth. This can have severe consequences for both the availability of the API and the overall
operational costs of the organization.

One of the primary risks associated with URC vulnerabilities is the potential for denial-of-service (DoS)
attacks. By flooding the API with excessive requests, attackers can overwhelm its resources and render it
unavailable to legitimate users. This can result in significant downtime and disruption of critical business
processes that rely on the API. For example, an e-commerce website that experiences a DoS attack due
to URC vulnerability may be unable to process orders or allow customers to access their accounts,
leading to lost revenue and reputational damage.

In a less acute but still important form of unrestricted use, legitimate users of the API may inadvertently
overuse an API, which can increase latency or reduce performance for other legitimate users of the API.
Less a security risk, and more of an experience pitfall, this is still an important consideration in API design.

Another consequence of URC vulnerabilities is the financial burden they can impose on organizations.
Excessive resource consumption can lead to increased cloud computing costs, as providers typically
charge based on the amount of resources utilized. This is especially relevant for API invocations that can
be relatively expensive, such as those that support generative AI models. Overuse of an API can put a
strain on the IT budget and divert resources that could otherwise be allocated to strategic initiatives.
Additionally, organizations may need to invest in additional infrastructure and security measures to
mitigate the impact of URC vulnerabilities, further increasing their expenses.

To address URC vulnerabilities, organizations should implement a combination of technical and
organizational measures. These include resource quotas and throttling mechanisms; rate limiting; usage
monitoring; security patching; and educating developers and users about URC vulnerabilities and best
practices for responsible API consumption.

By proactively addressing URC vulnerabilities, organizations can safeguard the availability, security, and
cost-effectiveness of their API-driven systems, ensuring they remain resilient in the face of potential
attacks.

Apigee: Native security features for mitigation

Feature Description

Quota management Apigee's quota management feature enables you to define rate
limits and usage quotas for your APIs. This allows you to control the
number of requests that can be made to your API within a specified
time window. By setting quotas, you can prevent excessive or

For more information visit cloud.google.com 13

https://cloud.google.com/apigee/docs/api-platform/reference/policies/quota-policy
https://cloud.google.com/apigee/docs/api-platform/develop/rate-limiting
https://cloud.google.com/apigee/docs/api-platform/develop/rate-limiting

abusive access to your API that could lead to resource exhaustion
or performance degradation.

Apigee is flexible enough to allow rate limits that vary depending on
the API consumer, or the type of application. Apigee can also
enforce dynamic quotas, which can vary depending on the current
load of the system, the reputation of the caller, the current day of
the week, and many other factors.

Spike Arrest policy The spike arrest feature in Apigee protects your APIs against
sudden spikes in traffic. When a spike in traffic is detected, Apigee
temporarily throttles requests to your API to prevent it from being
overwhelmed.

Caching Apigee provides a caching mechanism that can significantly
improve the performance of your APIs. Frequently accessed data
can be cached in memory, reducing the load on your backend
services. This can result in faster response times for your API users
and reduced infrastructure costs. You can even implement
semantic caching in APIs that front Large Language Models (LLMs).
API calls to LLMs can be significantly more expensive in terma of
computer resource and financial cost, so intelligent rate limiting in
this scenario is essential.

Advanced API Security: Additional features for mitigation

Feature Description

Threat protection Advanced API Security proactively detects malicious traffic patterns
that could indicate a distributed denial of service (DoS) attack or
attempts to exploit unrestricted resource consumption
vulnerabilities. It employs sophisticated algorithms and machine
learning techniques to analyze API traffic in real-time, identifying
anomalies and suspicious patterns that may indicate malicious
intent. Upon detection, Security Actions can be used to promptly
block such traffic, safeguarding your APIs and preventing disruption
to your services.

For more information visit cloud.google.com 14

https://cloud.google.com/apigee/docs/api-platform/reference/policies/spike-arrest-policy
https://cloud.google.com/apigee/docs/api-platform/reference/policies/lookup-cache-policy
https://cloud.google.com/apigee/docs/api-security/abuse-detection
https://cloud.google.com/apigee/docs/api-security/security-actions

Anomaly detection By continuously analyzing API traffic patterns and resource usage,
Advanced API Security can identify unusual activity that may signal
a potential DoS attack or resource exhaustion. It monitors key
metrics such as API call volume, response times, and many other
attributes to detect deviations from normal behavior patterns.
When anomalies are detected, Advanced API Security generates
alerts and provides detailed insights into the suspicious activity,
enabling security teams to promptly investigate and take
appropriate action.

Risk assessment Advanced API Security continuously evaluates API proxies and
traffic to identify misconfigurations that could lead to unrestricted
resource consumption—for example, detecting that no Spike Arrest
policies is defined on incoming requests. It performs
comprehensive security scans to detect potential issues and based
on its findings, Advanced API Security provides actionable
recommendations to improve your security posture, such as
tightening access controls and enforcing rate limits.

Prevention of resource
exhaustion

Advanced API Security helps prevent resource exhaustion attacks
by analyzing resource usage patterns and identifying potential
issues. For example, if an API endpoint is experiencing a high
volume of requests that could potentially exhaust available
resources, users can then take preventative measures such as
adjusting rate limits or optimizing resource allocation. By
implementing these measures, organizations can ensure that their
APIs have sufficient resources to handle normal traffic loads and
are not vulnerable to resource exhaustion attacks.

5 - Broken Function Level Authorization (BFLA)
Background

Broken Function Level Authorization (BFLA) is a severe security vulnerability that undermines the
integrity and security of web applications and services. It arises when an API fails to enforce appropriate
access control mechanisms for specific functions or operations within its system. This oversight creates
a window of opportunity for malicious actors to bypass intended authorization boundaries, enabling
them to execute functions and perform actions that they should not have the privilege to.

At its core, BFLA stems from inadequate input validation and authorization checks within the API's code.
When a request is made to the API, the API implementation should validate the credentials presented
with the call, and ensure that those credentials convey the necessary permissions to execute the

For more information visit cloud.google.com 15

https://cloud.google.com/apigee/docs/api-security/security-alerts
https://cloud.google.com/apigee/docs/api-security/security-scores
https://cloud.google.com/apigee/docs/api-platform/reference/policies/spike-arrest-policy

requested function. In cases of BFLA, this validation process is either absent or insufficient, allowing
unauthorized users to manipulate input parameters and gain access to functions that are beyond their
authorized scope.

The consequences of BFLA can be severe, ranging from unauthorized data modification to privilege
escalation attacks. By exploiting this vulnerability, attackers can gain access to sensitive information,
such as customer records, financial data, or intellectual property. They can also modify critical data, such
as product prices or inventory levels, to disrupt operations or commit fraud. Furthermore, attackers can
elevate their privileges to higher levels within the system, potentially gaining administrative access and
compromising the entire application or service.

To mitigate the risk of BFLA, organizations must implement stringent access control mechanisms within
their APIs. This includes implementing fine-grained authorization checks for each function, ensuring that
each function is only accessible to authorized users. Additionally, organizations should validate input
parameters thoroughly, rejecting any requests that contain invalid or unexpected values. Furthermore,
organizations should employ strong encryption techniques to protect sensitive data in transit and at rest,
preventing attackers from accessing or modifying this data even if they manage to exploit BFLA.

In addition to implementing technical safeguards, organizations should also establish and maintain a
comprehensive security program that includes regular security audits and penetration testing. This will
help to identify and address any potential vulnerabilities that could lead to BFLA, as well as other security
threats. By taking these steps, organizations can significantly reduce the risk of BFLA and protect their
web applications and services from unauthorized access and compromise.

However, it is important to note that addressing BFLA requires a multi-faceted approach. Organizations
should also focus on educating developers and API consumers about the importance of proper access
control and input validation. By raising awareness and fostering a culture of security, organizations can
further strengthen their defenses against BFLA and other API-related vulnerabilities.

Apigee: Native security features for mitigation

Feature Description

API products
In Apigee, you create API products to bundle your APIs and make
them available to app developers for consumption. Specifically, an
API product bundles together one or more operations. An
operation specifies an API proxy and resource paths that can be
accessed on that proxy. An operation can also limit access by HTTP
methods and by quota.

API products are the central mechanism for access control to your
APIs. By defining one or more API products in a developer app, you
can restrict access to proxies and bundles of operations with an API
key.

For more information visit cloud.google.com 16

https://cloud.google.com/apigee/docs/api-platform/publish/what-api-product

Quota management and
Spike Arrest

Apigee's quota management and spike arrest features can
indirectly help mitigate BFLA exploits by limiting the overall impact
of potential attacks. By setting API usage quotas and implementing
spike arrest mechanisms, organizations can control the volume and
rate of API requests. This can help prevent sudden spikes in traffic
and reduce the potential damage caused by unauthorized function
execution.

OpenAPI Specification
(OAS) validation

A well-defined OpenAPI Specification (OAS) can play a crucial role
in enforcing function-level authorization. The OAS document
describes the structure and behavior of an API, including the
allowed operations for each endpoint. By validating API requests
against the OAS, organizations can ensure that only authorized
functions are being executed. This helps prevent unauthorized
access to sensitive data and functionality.

API keys and OAuth Apigee supports the use of API keys and OAuth for API
authentication. Apigee can check not only that an OAuth token is
valid, but also that it is correctly scoped for the requested function.
These mechanisms are critical in helping ensure that only
authorized clients can access specific functions within APIs,
reducing the risk of unauthorized access.

Apigee can enforce limited lifetime on tokens, shrinking any window
of vulnerability, if a token should be inadvertently leaked.

Apigee can apply additional checks, enforcing that OAuth tokens
are usable only from particular IP addresses or from particular TLS
sessions, for added protection against token hijack or leakage.

Request validation
Apigee provides built-in request validation capabilities that can help
detect and block malicious requests. This can help prevent
attackers from exploiting vulnerabilities in API endpoints.

Advanced API Security: Additional features to mitigate BFLA

Feature Description

Risk assessment Apigee Advanced API Security continuously evaluates API proxies
and traffic, identifying misconfigurations that could lead to Broken

For more information visit cloud.google.com 17

https://cloud.google.com/apigee/docs/api-platform/reference/policies/quota-policy
https://cloud.google.com/apigee/docs/api-platform/reference/policies/spike-arrest-policy
https://swagger.io/specification/
https://cloud.google.com/apigee/docs/api-platform/reference/policies/oas-validation-policy
https://cloud.google.com/apigee/docs/api-platform/reference/policies/verify-api-key-policy
https://cloud.google.com/apigee/docs/api-platform/security/oauth/oauth-home
https://cloud.google.com/apigee/docs/api-platform/reference/policies/oas-validation-policy
https://cloud.google.com/apigee/docs/api-security/security-scores

Function Level Authorization (BFLA). It provides actionable
recommendations to improve your security posture and put
missing security policies in place, like access control mechanisms
and Apigee authorization policies.

This risk assessment capability is critical because BFLA attacks
often target misconfigurations or vulnerabilities in API proxies,
which can allow attackers to bypass security controls and access
unauthorized functions. Advanced API Security's risk assessment
helps organizations identify and address these weaknesses before
they can be exploited.

Advanced API Security allows you to create security profiles that
define the expected configuration of your APIs. These profiles
include information such as the expected encryption level and the
allowed authentication schemes.

Threat protection and
anomaly detection

Advanced API Security can detect suspicious traffic patterns that
may signal an unauthorized function execution. This threat
protection capability is essential for preventing BFLA attacks, as it
can identify and block malicious traffic before it can reach your
APIs.

By setting up anomaly detection algorithms and monitoring
function usage patterns, Advanced API Security can detect
suspicious behavior and trigger alerts for further investigation.

6 - Unrestricted Access to Sensitive Business Flows

Background

Unrestricted Access to Sensitive Business Flows is a critical API vulnerability. It occurs when APIs expose
sensitive business processes or workflows without adequate protection. This allows unauthorized
individuals to manipulate these processes, potentially leading to severe consequences for the
organization. This can happen due to improper API design, lack of proper security measures, or
vulnerabilities in the underlying infrastructure.

The impact of this vulnerability can be significant. Attackers can exploit exposed business flows to
manipulate critical operations, such as using an inventory API to artificially inflate or deplete stock,
disrupting operations and impacting revenue. Attackers might also exploit vulnerabilities to perform

For more information visit cloud.google.com 18

https://cloud.google.com/apigee/docs/api-security/security-scores
https://cloud.google.com/apigee/docs/api-security/security-scores#manage-custom-profiles-in-the-apigee-ui
https://cloud.google.com/apigee/docs/api-security/abuse-detection
https://cloud.google.com/apigee/docs/api-security/security-alerts

unauthorized actions, like bypassing payment verification in an e-commerce application to obtain goods
or services without paying. Furthermore, attackers can exploit vulnerabilities in APIs to extract sensitive
data, such as customer records and financial information, leading to identity theft and fraud. They can
also manipulate business workflows through exposed APIs to perform unauthorized transactions, such
as transferring funds or making purchases, resulting in financial losses and reputational damage to the
organization. Additionally, attackers can disrupt business operations by manipulating or sabotaging
critical business processes exposed through APIs. This can lead to downtime, lost productivity, and
customer dissatisfaction.

To mitigate this risk, organizations should conduct thorough risk assessments to identify and assess the
sensitivity of all business processes exposed through APIs. They should also implement comprehensive
access controls to ensure only authorized users and systems can access sensitive API endpoints.
Employing rate limiting and throttling can prevent abuse by limiting the number of requests to sensitive
functions. Additionally, organizations should monitor API activity to track usage patterns and identify
anomalies that could indicate malicious activity. Regular API security testing should be conducted to
identify and fix vulnerabilities before attackers can exploit them. Finally, organizations must prioritize
security in API design, considering potential misuse scenarios throughout the development lifecycle.

By understanding the risks of Unrestricted Access to Sensitive Business Flows and taking proactive
measures to mitigate them, organizations can strengthen their API security and protect their critical
business operations.

Apigee: Native security features for mitigation

Feature Description

Role-based access
control (RBAC)

Apigee implements a comprehensive RBAC system that enables
organizations to define granular access controls for their APIs.
Administrators can assign roles to users and groups, which specify
the operations that each entity is authorized to perform. For
example, an "editor" role might be granted permission to create and
modify APIs, while a "viewer" role might only be granted permission
to view API documentation.

By implementing RBAC, organizations can ensure that only
authorized individuals have access to sensitive business flows.

API key verification
Apigee requires API keys for authentication, which adds an
additional layer of security to protect against unauthorized access.
API keys can be generated and managed within the Apigee
platform, and they can be associated with specific roles and
permissions.

When a client application makes a request to an API, it must include
the API key in the request header. Apigee then validates the API key

For more information visit cloud.google.com 19

https://github.com/GoogleCloudPlatform/apigee-samples/tree/main/data-deidentification
https://github.com/GoogleCloudPlatform/apigee-samples/tree/main/data-deidentification
https://cloud.google.com/apigee/docs/api-platform/reference/policies/oauthv2-policy
https://cloud.google.com/apigee/docs/api-platform/develop/rate-limiting
https://cloud.google.com/apigee/docs/api-security/abuse-detection
https://cloud.google.com/apigee/docs/api-security/abuse-detection
https://cloud.google.com/apigee/docs/api-platform/reference/policies/oas-validation-policy
https://cloud.google.com/apigee/docs/api-platform/reference/policies/oas-validation-policy
https://cloud.google.com/apigee/docs/apihub/iam-roles
https://cloud.google.com/apigee/docs/api-platform/reference/policies/verify-api-key-policy

against the stored list of valid keys and grants or denies access
accordingly. When using API keys, Apigee helps organizations
protect their APIs from unauthorized access and abuse.

Threat protection
Rate limiting: Apigee can limit the number of requests that a client
application can make to an API within a specified time period. This
can help prevent denial-of-service (DoS) attacks.

Payload inspection: Apigee can inspect the payloads of requests
and responses for suspicious content, such as Structured Query
Language (SQL) injection attacks or cross-site scripting (XSS)
attacks.

Advanced API Security: Additional features for mitigation

Feature Description

Risk assessment
Apigee Advanced API Security continuously evaluates API proxies
and traffic, identifying misconfigurations that could expose
sensitive business flows. It provides actionable recommendations
to improve your security posture.

While Apigee provides policies to enforce correct access to
business logic, Advanced API Security (via the Risk Assessment
feature) can identify when these policies are not in place, or if they
change while deployed.

Traffic analysis and
alerting Advanced API Security can detect and flag unusual activity within

business flows, such as sudden spikes in API traffic or changes in
the types of API calls being made. This information can be used to
identify potential attacks or security breaches.

Once detected, users can choose how to react to these traffic
patterns and block requests from specific IP addresses that are
known to be malicious.

For more information visit cloud.google.com 20

https://cloud.google.com/apigee/docs/api-platform/develop/rate-limiting
https://cloud.google.com/apigee/docs/api-platform/reference/policies/regular-expression-protection
https://cloud.google.com/apigee/docs/api-platform/reference/policies/regular-expression-protection
https://cloud.google.com/apigee/docs/api-security/security-scores
https://cloud.google.com/apigee/docs/api-security/abuse-detection
https://cloud.google.com/apigee/docs/api-security/security-actions

7 - Server-Side Request Forgery (SSRF)

Background

Server-Side Request Forgery (SSRF) is a critical security vulnerability that arises when an attacker can
manipulate a server-side application to make HTTP requests to arbitrary locations. This typically occurs
when an application fetches a resource from a user-supplied URL without proper validation or
sanitization. Essentially, the attacker tricks the server into acting as a proxy, allowing them to access
resources that should be inaccessible.

An attacker can exploit SSRF to gain access to internal resources that should not be exposed to the
public internet, such as sensitive data like customer information, financial records, or intellectual
property. They can also use SSRF to exfiltrate data from internal systems to an external location under
their control, potentially stealing sensitive information or launching further attacks. Moreover, SSRF can
enable attackers to perform unauthorized actions on behalf of the server application, including creating
or deleting files, modifying data, or even executing arbitrary code. SSRF attacks can be launched from
both inside and outside of an organization's network, targeting vulnerabilities in public-facing web
applications, internal applications, and even cloud-based services.

To protect against SSRF attacks, organizations should implement input validation on all requests to
external resources, including validating the URL, query parameters, and request body. Using a web
application firewall (WAF) can help block malicious requests. Restricting access to internal resources to
only the necessary users and applications is also crucial. Finally, organizations should monitor for
suspicious activity, such as requests to unusual URLs or requests that are made from unexpected
locations.

By understanding SSRF risks and taking proactive measures to mitigate them, organizations can
strengthen their API security and protect their systems from potential attacks.

Apigee: Native security features for mitigation

Feature Description

Input validation
Apigee policies offer a wide range input validation capabilities,
safeguarding APIs from malicious input injection attempts. They
prevent attackers from exploiting vulnerabilities by validating and
sanitizing user input. This is especially crucial for APIs that accept
user-provided input, like search queries or registration forms.
Apigee policies can perform various input validation checks,
including:

By implementing input validation, Apigee effectively thwarts
attackers' attempts to exploit API weaknesses, contributing to a
more secure API environment.

For more information visit cloud.google.com 21

https://cloud.google.com/apigee/docs/api-platform/reference/policies/reference-overview-policy

Additional mitigation features in Advanced API Security

Feature Description

Risk assessment
Apigee Advanced API Security continuously evaluates API proxies
and traffic, identifying potential SSRF vulnerabilities that might raise
due to policies not configured as part of the API proxies, such as
various Input Validation policies .

You can also define security policies for your APIs that specify the
allowed operations, resources, and users. Apigee will enforce these
policies and block any requests that violate them. Advanced API
Security will continuously monitor these policies to validate they are
configured correctly at runtime.

The risk assessment process is automated and runs continuously,
so you can be confident that your API proxies are always being
monitored for vulnerabilities.

Actionable recommendations are provided to address identified
vulnerabilities, such as updating API proxy configurations or
implementing additional security measures.

Threat protection
Advanced API Security uses anomaly detection to identify unusual
requests that may indicate SSRF attacks. It analyzes API traffic
patterns and identifies requests that deviate from the normal
pattern. For example, it can look for requests coming from
unexpected sources, requests that access multiple resources in a
short period of time. These requests can then be investigated
further to determine if they are malicious.

Upon users setting Actions, Advanced API Security can block SSRF
attacks in real-time, so you can be confident that your API proxies
are protected from these attacks.

SIEM and WAF
integrations Advanced API Security can integrate with other security tools, such

as security information and event management (SIEM) systems, to
provide additional visibility into SSRF attacks. It also integrates with
Cloud Armor, Google Cloud’s Web Application Firewall (WAF), to

For more information visit cloud.google.com 22

https://cloud.google.com/apigee/docs/api-security/security-scores
https://cloud.google.com/apigee/docs/api-platform/reference/policies/reference-overview-policy#extensible-policy-categories
https://cloud.google.com/apigee/docs/api-security/abuse-detection
https://cloud.google.com/apigee/docs/api-security/security-actions
https://cloud.google.com/apigee/docs/api-platform/security/siem-integration

help block malicious requests, including blocking traffic from
certain IPs, geos, and custom parameters.

8 - Security Misconfiguration

Background

Security Misconfiguration is a broad category encompassing vulnerabilities that stem from improper
security setups or configurations within an API ecosystem. This can include issues like insecure default
configurations, where APIs are shipped with settings that may not prioritize security, such as allowing
access from any IP address. Incomplete configurations are another common problem, where
administrators may unintentionally overlook crucial security settings. For example, an API might have
HTTPS enabled but lack Secure Sockets Layer (SSL) certificate validation, leaving it susceptible to
man-in-the-middle attacks. APIs may also include unnecessary features, like debug modes, that are not
essential for most users and can serve as potential attack vectors if not properly disabled. Misconfigured
HTTP headers can also lead to vulnerabilities, potentially enabling cross-site scripting (XSS) or
clickjacking attacks. Similarly, overly permissive Cross-Origin Resource Sharing (CORS) configurations
can facilitate cross-origin attacks, allowing unauthorized access to API resources. Finally, verbose error
messages can inadvertently expose sensitive details about the API or its infrastructure, potentially aiding
attackers in identifying and exploiting vulnerabilities.

To mitigate the risks associated with security misconfiguration, organizations should establish
comprehensive security configuration practices, including thorough reviews of default settings, rigorous
testing of configurations, and disabling or removing any unnecessary features. Regular security audits
and vulnerability scans can help identify and address misconfigurations proactively. Additionally,
organizations should prioritize secure coding practices and implement comprehensive security training
programs to raise awareness among developers and administrators about the importance of proper
security configuration.

Through the integration of Apigee's core security measures and the advanced functionalities offered by
Advanced API Security, organizations can drastically minimize the likelihood of security
misconfigurations and safeguard their APIs from potential attacks. This can help organizations to
improve their overall security posture and reduce the risk of data breaches.

Apigee: Native security features for mitigation

Feature Description

Security policies
Apigee offers a comprehensive set of policies that can be
leveraged to enforce security best practices across APIs. These

For more information visit cloud.google.com 23

https://cloud.google.com/apigee/docs/api-platform/reference/policies/reference-overview-policy

policies allow organizations to define and apply security measures.

Rate limiting policies help mitigate the risk of denial-of-service
attacks by limiting the number of requests that can be made to an
API within a specified timeframe.

Implementing strict CORS policies is another important step. CORS
(Cross-Origin Resource Sharing) is a security mechanism that
allows browsers to restrict access to resources from different
origins. By implementing strict CORS policies, organizations can
prevent unauthorized access to their APIs.

Having these policies in place does not mean that they can’t be
misconfigured, however. See below for how Advanced API Security
can help with this.

Access control Apigee enforces strong authentication to verify user identities and
prevent unauthorized API access. This protects sensitive data by
ensuring that only legitimate users can interact with APIs.
Furthermore, Apigee implements granular authorization policies,
including API key verification, to control what actions authenticated
users are permitted to perform. This restricts users to only the
specific API functions necessary for their role, further enhancing
security.

Monitoring and logging Comprehensive monitoring and logging capabilities are essential
for identifying potential security misconfigurations. Apigee provides
detailed monitoring and logging features that allow organizations to
track API activity and identify any suspicious or anomalous
behavior, including real-time monitoring dashboards, historical logs,
and alerting mechanisms. These capabilities enable security teams
to detect and respond to security incidents promptly, minimizing
the impact of potential breaches.

Advanced API Security: Additional features for mitigation

Feature Description

For more information visit cloud.google.com 24

https://cloud.google.com/apigee/docs/api-platform/develop/rate-limiting
https://cloud.google.com/apigee/docs/api-platform/reference/policies/cors-policy
https://docs.google.com/document/d/1ZLOaMqVS8YQ2ESQLLAevzTpzdZ9FQG-BTlI1AFgKdrU/edit?resourcekey=0-uyd6J_EM1FWkiWRJlpDQ5g&tab=t.0#bookmark=id.14di2vh135e8
https://cloud.google.com/apigee/docs/api-platform/reference/policies/oauthv2-policy
https://cloud.google.com/apigee/docs/api-platform/reference/policies/verify-api-key-policy
https://cloud.google.com/apigee/docs/api-monitoring
https://cloud.google.com/apigee/docs/api-platform/reference/policies/message-logging-policy
https://cloud.google.com/apigee/docs/api-monitoring
https://cloud.google.com/apigee/docs/api-platform/reference/policies/message-logging-policy
https://cloud.google.com/apigee/docs/api-security/security-alerts

Security
misconfiguration
evaluation

Advanced API Security can help identify security misconfigurations
in your API proxies and traffic by continuously evaluating them
against industry best practices and security standards. Some
specific examples of misconfigurations that AAS can detect
include:

● Incorrect or missing authentication and authorization
settings: Advanced API Security can identify API proxies
that are not properly configured for authentication and
authorization, such as those that allow public access to
sensitive data.

● Insecure API endpoints: Advanced API Security can
identify API endpoints that are exposed to the internet
without proper protection, such as those that do not use
SSL/Transport Layer Security (TLS) encryption.

● Insufficient logging and monitoring: Advanced API
Security can identify API proxies that do not have adequate
logging and monitoring in place to detect and respond to
security incidents.

Security insights
Advanced API Security provides detailed insights into API security
posture, helping identify potential areas of weakness. For example,
AAS can provide insights into the number of APIs that are missing
authentication or authorization checks, or the number of APIs that
are using outdated security libraries.

Real-time protection
Advanced API Security provides real-time protection against
attacks, helping to prevent exploits of security misconfigurations.
For example, it can alert on attacks that attempt to exploit APIs and
security response teams can use Security Actions to block bad
clients.

For more information visit cloud.google.com 25

https://cloud.google.com/apigee/docs/api-security/security-scores
https://cloud.google.com/apigee/docs/api-security/security-scores
https://cloud.google.com/apigee/docs/api-security/security-scores
https://cloud.google.com/apigee/docs/api-security/security-alerts
https://cloud.google.com/apigee/docs/api-security/security-actions

9 - Improper Inventory Management
Background

Improper inventory management of APIs has become a critical issue affecting many organizations today.
This lack of visibility and control over APIs within an organization's environment can lead to several
challenges and potential risks.

One significant aspect of improper inventory management is the presence of undocumented or
"shadow" APIs. These APIs exist within an organization but are not officially documented or sanctioned.
They are often created by developers without following proper protocols or standards. Shadow APIs
pose significant security risks as they are not subject to the same level of scrutiny and oversight as
documented APIs. Attackers can exploit these undocumented APIs to gain unauthorized access to
sensitive data or launch malicious attacks.

Outdated versions of APIs are another concern resulting from improper inventory management. When
APIs are not updated regularly, they become vulnerable to security exploits and stability issues. These
outdated APIs may also be incompatible with newer versions of software or libraries, leading to
operational problems and potential disruptions.

APIs with unknown dependencies also contribute to the challenges of improper inventory management.
When APIs have dependencies on other components that are not known or documented, it becomes
difficult to troubleshoot issues and manage the API effectively. These unknown dependencies can
introduce security vulnerabilities if the dependent components are themselves vulnerable to attack.

The consequences of improper inventory management can be severe and far-reaching. Undocumented
and outdated APIs can provide attackers with entry points into an organization's systems, leading to
security breaches, data theft, and denial-of-service attacks. Organizations subject to regulatory
compliance requirements, such as General Data Protection Regulation (GDPR) or Health Insurance
Portability and Accountability Act of 1996 (HIPAA), may be at risk of violating these regulations if they do
not have proper inventory management of their APIs.

Moreover, improper inventory management can result in operational inefficiencies and bottlenecks.
Managing and troubleshooting APIs that are not properly documented or understood can be
time-consuming and resource-intensive. This can hinder an organization's ability to innovate and
respond quickly to changing business needs.

To address the challenges of improper inventory management, organizations must implement effective
API governance and management practices. This includes establishing a centralized inventory of all APIs,
including both documented and shadow APIs. Regular audits should be conducted to identify outdated
versions, unknown dependencies, and other potential issues. Additionally, organizations should ensure
that all APIs are properly documented and adhere to standard protocols and best practices.

For more information visit cloud.google.com 26

https://gdpr.eu/what-is-gdpr/
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996

Apigee: Native security features for mitigation

Feature Description

Versioning and lifecycle
management

Apigee supports revisions of API proxies as a way to manage
updates to an API proxy configuration as you iterate. With proxy
revisions, you can deploy an API proxy into a production
environment, while continuing to create new revisions of that API
proxy in a test environment and promoting it to prod when you’re
ready.

Apigee also offers lifecycle management capabilities, enabling
organizations to define and enforce policies for each stage of the
API lifecycle, such as development, testing, and production. By
managing API versions and lifecycles effectively, organizations can
maintain API stability and minimize the risk of API downtime.

Centralized inventory
and management Apigee offers a centralized platform called API Hub for managing

the entire API lifecycle, from design and development to
deployment and retirement.

API Hub provides a single point of control for managing all APIs,
helping organizations maintain an accurate inventory of their APIs. It
streamlines the API development process, enabling teams to
collaborate and track the progress of APIs throughout their
lifecycle. API Hub also facilitates reusability, making it easier for
developers to reuse existing APIs.

Advanced API Security: Additional features for mitigation

Feature Description

Shadow API discovery
Advanced API Security's shadow API discovery capability is crucial
for organizations seeking a comprehensive view of their API
landscape.

By analyzing API traffic flowing through Google Cloud load
balancers, Advanced API Security can identify undocumented,

For more information visit cloud.google.com 27

https://cloud.google.com/apigee/docs/api-platform/develop/ui-edit-proxy
https://cloud.google.com/apigee/docs/api-platform/fundamentals/api-development-lifecycle
https://cloud.google.com/apigee/docs/apihub/what-is-api-hub
https://cloud.google.com/apigee/docs/api-observation/shadow-api-discovery

unauthorized, or forgotten APIs that might be vulnerable to
exploitation. It continuously compares the current API landscape
with previous snapshots to identify any discrepancies, ensuring that
organizations are always aware of the latest changes to their API
ecosystem.

This visibility is critical for ensuring a secure API environment and
proper management and protection of all APIs.

Risk assessment
Advanced API Security's risk assessment capabilities assist
organizations in identifying potential vulnerabilities of their APIs.
Through continuous evaluation of API proxies, Advanced API
Security can detect issues such as APIs with known security
vulnerabilities. This information is essential for organizations aiming
to enhance their security posture and mitigate the risk of API-based
attacks.

Alerting and incident
response Advanced API Security provides alerting to promptly notify

organizations of potential API security threats. When suspicious
activity or known attack patterns are detected, Advanced API
Security triggers real-time alerts, allowing organizations to respond
swiftly and effectively. This proactive approach helps minimize the
impact of API-based attacks and ensures rapid containment of
security incidents.

Continuous monitoring
Advanced API Security's continuous monitoring capabilities are
essential for maintaining an up-to-date inventory of an
organization's APIs. By monitoring API traffic and configurations,
Advanced API Security can detect changes in the API landscape,
such as the introduction of new APIs or modifications to existing
ones. This real-time visibility allows organizations to proactively
address potential security risks and ensure that their APIs are
constantly protected.

For more information visit cloud.google.com 28

https://cloud.google.com/apigee/docs/api-security/security-scores
https://cloud.google.com/apigee/docs/api-security/security-alerts

10 - Unsafe Consumption of APIs

Background

Unsafe Consumption of APIs highlights the risks associated with integrating and interacting with external
or third-party APIs without sufficient security measures. This vulnerability arises when your API
consumes data or services from another API that might be compromised, poorly designed, or even
malicious. This can lead to various attacks, including data breaches where attackers exploit vulnerabilities
in the third-party API to access sensitive data within your system, such as customer information, financial
data, or intellectual property. This data can be used for identity theft, fraud, or other malicious purposes.
Injection attacks are another risk, where malicious data injected through the third-party API can
compromise your API and backend systems, potentially allowing attackers to execute arbitrary code,
gain unauthorized access to sensitive data, or disrupt your API's functionality.

Additionally, if the third-party API becomes unavailable or overloaded, it can lead to Denial of Service
(DoS), preventing legitimate users from accessing your API and potentially resulting in lost revenue,
reputational damage, and customer dissatisfaction. In severe cases, exploitation of vulnerabilities in the
third-party API can even lead to a system takeover, giving attackers unauthorized access and control of
your systems, enabling them to steal data, disrupt operations, or launch further attacks on your
infrastructure.

To mitigate these risks, organizations should conduct a thorough security review of the third-party API
before integrating it, assessing its security features, development practices, and track record. Validating
all input data received from the third-party API is crucial to prevent injection attacks, including checks for
malicious code, SQL injection, and other types of attacks. Implementing rate limiting mechanisms can
prevent the third-party API from overloading your system with requests, mitigating the impact of
potential DoS attacks. Encrypting all data transmitted between your API and the third-party API helps
prevent eavesdropping and man-in-the-middle attacks. Organizations should also implement
comprehensive monitoring and logging mechanisms to detect and investigate any suspicious activity
related to the third-party API, enabling prompt identification and response to breaches or attacks. Finally,
regularly updating your API and the third-party API ensures that you are using the latest security patches
and fixes.

By following these best practices, organizations can significantly reduce the risks associated with unsafe
consumption of APIs and protect their systems from various attacks.

Apigee: Native security features for mitigation

Feature Description

API gateway
The gateway acts as a central hub for managing and securing all
interactions with external APIs. It provides a single point of entry
and control for API traffic, streamlining API management and
reducing complexity. Apigee enforces security policies, handles
authentication and authorization, and applies rate limiting to

For more information visit cloud.google.com 29

https://cloud.google.com/apigee/docs/api-platform/reference/policies/reference-overview-policy
https://cloud.google.com/apigee/docs/api-platform/reference/policies/oauthv2-policy
https://cloud.google.com/apigee/docs/api-platform/develop/rate-limiting

prevent abuse. It ensures that only authorized users with valid
credentials can access the APIs and prevents unauthorized access,
data breaches, and other threats.

Access control policies Apigee offers a comprehensive set of policies to control access and
usage of third-party APIs. These policies include OAuth 2.0, API key
verification, and quota management. The OAuth 2.0 policy enables
secure authentication and authorization by allowing users to access
APIs using access tokens issued by an authorization server. The API
key verification policy ensures that only authorized clients with valid
API keys can access the APIs. The quota management policy helps
prevent API overuse by setting limits on the number of requests a
client can make within a specified time period. These policies work
together to ensure that APIs are consumed securely and
responsibly.

Validation
Message validation helps reduce the risk of injection attacks by
validating incoming data against predefined schemas. Apigee
supports message validation for XML and SOAP payloads as well as
validation of restful API requests against an OpenAPI Specification.

Apigee's threat protection policies can also validate data against
predefined data format rules and limits. This is supported for both
XML and JSON payloads.

Monitoring and logging
Apigee offers comprehensive monitoring and logging capabilities to
track interactions with external APIs. It provides real-time visibility
into API traffic, response times, errors, and other key metrics.
Monitoring and logging help identify suspicious activities, detect
anomalies, and ensure compliance with security standards. All API
requests and responses are logged, enabling forensic analysis and
troubleshooting in case of issues. This information is crucial for
maintaining the security and integrity of API consumption.

These components collectively create a secure API consumption
environment, protecting both internal systems and external APIs
from unauthorized access, data breaches, and other threats.
Apigee's foundation for secure API consumption empowers
organizations to confidently integrate with external APIs, drive
innovation, and unlock the full potential of API-driven architectures.

For more information visit cloud.google.com 30

https://cloud.google.com/apigee/docs/api-platform/security/oauth/oauth-home
https://cloud.google.com/apigee/docs/api-platform/reference/policies/verify-api-key-policy
https://cloud.google.com/apigee/docs/api-platform/reference/policies/verify-api-key-policy
https://cloud.google.com/apigee/docs/api-platform/reference/policies/quota-policy
https://cloud.google.com/apigee/docs/api-platform/reference/policies/message-validation-policy
https://cloud.google.com/apigee/docs/api-platform/reference/policies/oas-validation-policy
https://cloud.google.com/apigee/docs/api-platform/reference/policies/xml-threat-protection-policy
https://cloud.google.com/apigee/docs/api-platform/reference/policies/json-threat-protection-policy
https://cloud.google.com/apigee/docs/api-monitoring
https://cloud.google.com/apigee/docs/api-platform/reference/policies/message-logging-policy

Advanced API Security: Additional features for mitigation

Feature Description

Threat detection Advanced API Security employs advanced machine learning
algorithms to identify malicious traffic originating from third-party
APIs. This proactive approach ensures protection against even
unknown threats, providing a critical layer of defense.

Real-time visibility and
threat response

Advanced API Security provides visibility into API consumption and
risk. AAS integrates seamlessly with Google Cloud Monitoring,
pushing both real-time threat detection data and risk assessment
information for comprehensive insight. This means you not only see
potential abuse as it happens, but also have continuous awareness
of underlying vulnerabilities in your APIs and those you consume
from third parties.

This deep visibility, coupled with real-time alerts for suspicious
activity and known attack patterns, empowers organizations to
respond swiftly and effectively to potential API security threats. This
proactive approach helps minimize the impact of API-based
attacks, ensures rapid containment of security incidents, and
facilitates informed decision-making about API usage.

Integration with 3P
security tools Advanced API Security can integrate with other security tools, such

as security information and event management (SIEM) systems and
threat intelligence platforms, to enhance threat detection and
response capabilities. This integration allows organizations to
leverage existing security investments and gain a holistic view of
their API security posture.

For more information visit cloud.google.com 31

https://cloud.google.com/apigee/docs/api-security/abuse-detection
https://cloud.google.com/apigee/docs/api-security/abuse-detection
https://cloud.google.com/apigee/docs/api-security/security-alerts
https://cloud.google.com/apigee/docs/api-platform/security/siem-integration

Appendix

Additional Resources

Resource Description

OWASP resources

OWASP API Security Top 10 - 2023 The official OWASP page detailing the Top 10 API Security
Risks for 2023. This is a primary source for understanding
the risks in detail.

OWASP Cheat Sheet: REST Security A concise overview of how to protect REST APIs.

Apigee resources

Apigee overview General overview of Apigee's capabilities

Apigee’s security administration features Details on Apigee's built-in features for administering
security controls.

Advanced API Security (add-on for Apigee) Details on the capabilities of Advanced API Security for
Apigee.

Apigee documentation Technical documentation for Apigee X and Apigee Hybrid.

Mandiant resources

Mandiant overview Overview of Mandiant’s cybersecurity consulting
capabilities, including API incident response services.

Mandiant Academy Courses and certification programs for a range of
cybersecurity topics.

For more information visit cloud.google.com 32

https://owasp.org/API-Security/editions/2023/en/0x00-header/
https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html
https://cloud.google.com/apigee?hl=en
https://cloud.google.com/apigee/docs/api-platform/system-administration/
https://cloud.google.com/apigee/docs/api-security
https://cloud.google.com/apigee/docs/api-platform/get-started/what-apigee
https://cloud.google.com/security/consulting/mandiant-services?hl=en
https://cloud.google.com/learn/security/mandiant-academy?hl=en

	Keep your APIs secure.
	1 - Broken Object Level Authorization (BOLA)
	Background
	Apigee: Native security features for mitigation
	Advanced API Security: Additional features to mitigate BOLA vulnerabilities
	Examples of supported Apigee mitigations to prevent BOLA vulnerabilities

	2 - Broken Authentication
	Background
	Apigee: Native security features for mitigation
	Advanced API Security: Additional features for mitigation

	3 - Broken Object Property Level Authorization (BOPLA)
	Background
	Apigee: Native security features for mitigation
	Advanced API Security: Additional features for mitigation

	4 - Unrestricted Resource Consumption
	Background
	Apigee: Native security features for mitigation
	Advanced API Security: Additional features for mitigation

	5 - Broken Function Level Authorization (BFLA)
	Background
	Apigee: Native security features for mitigation
	Advanced API Security: Additional features to mitigate BFLA

	6 - Unrestricted Access to Sensitive Business Flows
	Background
	Apigee: Native security features for mitigation
	Advanced API Security: Additional features for mitigation

	7 - Server-Side Request Forgery (SSRF)
	Background
	Apigee: Native security features for mitigation
	Additional mitigation features in Advanced API Security

	8 - Security Misconfiguration
	Background
	Apigee: Native security features for mitigation
	Advanced API Security: Additional features for mitigation

	9 - Improper Inventory Management
	Background
	Apigee: Native security features for mitigation
	Advanced API Security: Additional features for mitigation

	10 - Unsafe Consumption of APIs
	Background
	Apigee: Native security features for mitigation
	Advanced API Security: Additional features for mitigation

	Appendix
	Additional Resources

