
Google Cloud Certified 
Professional Machine Learning 
Engineer
*This version of the exam guide will go live on October 1, 2024

Certification Exam Guide

A Professional Machine Learning Engineer builds, evaluates, productionizes, and 

optimizes AI solutions by using Google Cloud capabilities and knowledge of 

conventional ML approaches. The ML Engineer handles large, complex datasets and 

creates repeatable, reusable code. The ML Engineer designs and operationalizes 

generative AI solutions based on foundational models. The ML Engineer considers 

responsible AI practices, and collaborates closely with other job roles to ensure the 

long-term success of AI-based applications. The ML Engineer has strong 

programming skills and experience with data platforms and distributed data 

processing tools. The ML Engineer is proficient in the areas of model architecture, 

data and ML pipeline creation, generative AI, and metrics interpretation. The ML 

Engineer is familiar with foundational concepts of MLOps, application development, 

infrastructure management, data engineering, and data governance. The ML 

Engineer enables teams across the organization to use AI solutions. By training, 

retraining, deploying, scheduling, monitoring, and improving models, the ML 

Engineer designs and creates scalable, performant solutions.

Section 1: Architecting low-code AI solutions (13% of the exam)

1.1 Developing ML models by using BigQuery ML. Considerations include:

 Building the appropriate BigQuery ML model (e.g., linear and binary 

classification, regression, time-series, matrix factorization, boosted trees, 

autoencoders) based on the business problem



 Feature engineering or selection by using BigQuery M

 Generating predictions by using BigQuery ML

1.2 Building AI solutions by using ML APIs or foundational models. Considerations 

include:

 Building applications by using ML APIs from Model Garde

 Building applications by using industry-specific APIs (e.g., Document AI API, 

Retail API

 Implementing retrieval augmented generation (RAG) applications by using 

Vertex AI Agent Builder

1.3 Training models by using AutoML. Considerations include:

 Preparing data for AutoML (e.g., feature selection, data labeling, Tabular 

Workflows on AutoML

 Using available data (e.g., tabular, text, speech, images, videos) to train 

custom model

 Using AutoML for tabular dat

 Creating forecasting models by using AutoM

 Configuring and debugging trained models

Section 2: Collaborating within and across teams to manage data and 

models (14% of the exam)

2.1 Exploring and preprocessing organization-wide data (e.g., Cloud Storage, 

BigQuery, Spanner, Cloud SQL, Apache Spark, Apache Hadoop). Considerations 

include:

 Organizing different types of data (e.g., tabular, text, speech, images, videos) 

for efficient trainin

 Managing datasets in Vertex A

 Data preprocessing (e.g., Dataflow, TensorFlow Extended [TFX], BigQuery

 Creating and consolidating features in Vertex AI Feature Store



 Privacy implications of data usage and/or collection (e.g., handling sensitive 

data such as personally identifiable information [PII] and protected health 

information [PHI]

 Ingesting different data sources (e.g., text documents) into Vertex AI for 

inference

2.2 Model prototyping by using Jupyter notebooks. Considerations include:

 Choosing the appropriate Jupyter backend on Google Cloud (e.g., Vertex AI 

Workbench, Colab Enterprise, notebooks on Dataproc

 Applying security best practices in Vertex AI Workbenc

 Using Spark kernel

 Integrating code source repositorie

 Developing models in Vertex AI Workbench by using common frameworks 

(e.g., TensorFlow, PyTorch, sklearn, Spark, JAX

 Leveraging a variety of foundational and open-source models in Model 

Garden

2.3 Tracking and running ML experiments. Considerations include:

 Choosing the appropriate Google Cloud environment for development and 

experimentation (e.g., Vertex AI Experiments, Kubeflow Pipelines, Vertex AI 

TensorBoard with TensorFlow and PyTorch) given the framewor

 Evaluating generative AI solutions

Section 3: Scaling prototypes into ML models (18% of the exam)

3.1 Building models. Considerations include:

 Choosing ML framework and model architectur

 Modeling techniques given interpretability requirements

3.2 Training models. Considerations include:

 Organizing training data (e.g., tabular, text, speech, images, videos) on 

Google Cloud (e.g., Cloud Storage, BigQuery)



 Ingestion of various file types (e.g., CSV, JSON, images, Hadoop, databases) 

into trainin

 Model training by using different SDKs (e.g., Vertex AI custom training, 

Kubeflow on Google Kubernetes Engine, AutoML, tabular workflows

 Using distributed training to organize reliable pipeline

 Hyperparameter tunin

 Troubleshooting ML model training failure

 Fine-tuning foundational models (e.g., Vertex AI, Model Garden)

3.3 Choosing appropriate hardware for training. Considerations include:

 Evaluation of compute and accelerator options (e.g., CPU, GPU, TPU, edge 

devices

 Distributed training with TPUs and GPUs (e.g., Reduction Server on Vertex AI, 

Horovod)

Section 4: Serving and scaling models (20% of the exam)

4.1 Serving models. Considerations include:

 Batch and online inference (e.g., Vertex AI, Dataflow, BigQuery ML, Dataproc

 Using different frameworks (e.g., PyTorch, XGBoost) to serve model

 Organizing models in Model Registr

 A/B testing different versions of a model

4.2 Scaling online model serving. Considerations include:

 Managing and serving features by using Vertex AI Feature Stor

 Deploying models to public and private endpoint

 Choosing appropriate hardware (e.g., CPU, GPU, TPU, edge

 Scaling the serving backend based on the throughput (e.g., Vertex AI 

Prediction, containerized serving)



 Tuning ML models for training and serving in production (e.g., simplification 

techniques, optimizing the ML solution for increased performance, latency, 

memory, throughput)

Section 5: Automating and orchestrating ML pipelines (22% of the 

exam)

5.1 Developing end-to-end ML pipelines. Considerations include:

 Validating data and model

 Ensuring consistent data pre-processing between training and servin

 Hosting third-party pipelines on Google Cloud (e.g., MLflow

 Identifying components, parameters, triggers, and compute needs (e.g., 

Cloud Build, Cloud Run

 Orchestration frameworks (e.g., Kubeflow Pipelines, Vertex AI Pipelines, 

Cloud Composer

 Hybrid or multicloud strategie

 Designing systems with TFX components or Kubeflow DSL (e.g., Dataflow)

5.2 Automating model retraining. Considerations include:

 Determining an appropriate retraining polic

 Deploying models in continuous integration and continuous delivery (CI/CD) 

pipelines (e.g., Cloud Build, Jenkins)

5.3 Tracking and auditing metadata. Considerations include:

 Tracking and comparing model artifacts and versions (e.g., Vertex AI 

Experiments, Vertex ML Metadata

 Hooking into model and dataset versionin

 Model and data lineage

Section 6: Monitoring AI solutions (13% of the exam) 



6.1 Identifying risks to AI solutions. Considerations include:

 Building secure AI systems by protecting against unintentional exploitation of 

data or models (e.g., hacking

 Aligning with Google’s Responsible AI practices (e.g., monitoring for bias

 Assessing AI solution readiness (e.g., fairness, bias

 Model explainability on Vertex AI (e.g., Vertex AI Prediction)

6.2 Monitoring, testing, and troubleshooting AI solutions. Considerations include:

 Establishing continuous evaluation metrics (e.g., Vertex AI Model Monitoring, 

Explainable AI

 Monitoring for training-serving ske

 Monitoring for feature attribution dri

 Monitoring model performance against baselines, simpler models, and across 

the time dimensio

 Monitoring for common training and serving errors


