
Optimizing high-
speed market analysis
in the cloud with
infrastructure as code
Improving Google Cloud’s
STAC-M3TM benchmark results by up to 18x

2

Executive
summary
As the financial markets move faster and remain
volatile, quantitative analysts grapple with ever-
growing data sets and the complex infrastructure
needed to generate alpha and manage risk.
With the need to process more data and act on
opportunities faster, increasing compute speed,
performance, and scalability in the cloud is
crucial to gaining a competitive advantage.

The Securities Technology Analysis Center
(STAC®), an organization that improves
technology discovery and assessment in the
finance industry through dialog and research,
recently audited the STAC-M3™ benchmark suite
on Google Cloud (SUT ID KDB211210). These
enterprise tick-analytics benchmarks assess
the ability of a solution stack such as database
software, servers, and storage, to perform a
variety of I/O-intensive and compute-intensive
operations on historical market data.

The latest STAC-M3™ tick history analytics
benchmark results demonstrate Google Cloud’s
high-performance computing capabilities. Access
to the latest technologies in Google Cloud can
help hedge funds, investment banks, and other
key players in the asset management industry
achieve four crucial objectives:

1. Accelerate the speed of running
a growing ledger of analysis while
producing faster results.

2. Maximize high-performance compute
clusters and storage with end-to-end
automation and infrastructure as code
(IaC) techniques.

3. Increase the flexibility and capacity to
scale infrastructures to match market
opportunities.

4. Simplify operations and reduce the
cost of running calculations on massive
financial data sets.

In this white paper, we highlight our methodology
for achieving significant performance
improvements, explain the use and advantages
of IaC for infrastructure reproducibility, and
provide code samples illustrating how an IaC
deployment works.

https://www.stacresearch.com/
https://stacresearch.com/m3
https://www.STACresearch.com/KDB211210

3

Optimizing Google Cloud for high-
speed market tick history analysis
Google Compute Engine processors have
advanced since our last STAC-M3TM audit in 2018.
The first way that we improved performance in
the latest audit was by upgrading from the N1
machine type to the newer N2 machine type. Intel
Cascade Lake powered the benchmarked cluster,
increasing computational performance over the
Skylake architecture used in the previous audit.
A newer Intel Ice Lake is now available, offering
over 30% better price-performance compared
to Cascade Lake.

N2 machine types are general-purpose virtual
machines (VMs), offering an excellent balance
of performance and functionality. Compute-
optimized C2 and C2D machine types
were another option we considered, as they
are well suited for computationally-intensive
workloads, offering superior performance, higher
frequencies, and control over non-uniform

memory access (NUMA) settings. In this case,
however, more significant performance gains
came from rethinking how to handle disk input/
output (I/O). C2 and C2D machine types can
have up to 8 high-speed local NVMe SSDs per
instance, but general-purpose N2 machine types
can have up to 24. As shown below, choosing
I/O capacity over processor performance was
crucial to improving overall performance on
the benchmark.

The cluster used 12 nodes, which was the sweet
spot for performance given the way data was
distributed. Each node had 32 vCPUs, 160GiB
of memory, and 9 TiB of local NVMe solid
state disks (SSDs).

Figure 1. Sharded kdb+ 4.0

STAC-M3TM architecture on

Google Cloud.

https://cloud.google.com/compute
https://cloud.google.com/blog/products/compute/can-cloud-instances-perform-better-than-bare-metal-latest-stac-m3-benchmarks-say-yes
https://cloud.google.com/blog/topics/financial-services/optimizing-google-cloud-for-high-speed-market-tick-history-analysis
https://cloud.google.com/blog/products/compute/compute-engine-n2-vms-now-available-with-intel-ice-lake
https://cloud.google.com/compute/docs/compute-optimized-machines
https://cloud.google.com/solutions/hpc
https://cloud.google.com/solutions/hpc
https://cloud.google.com/compute/docs/disks/local-ssd

4

Changing our approach to disk I/O was made
possible by changes in how queries were issued
across the cluster. Some workloads benefit
from vertical scaling, keeping computations
on a single large node with nanosecond-
scale latency between processor cores. Other
workloads benefit from scaling out horizontally
across a greater number of smaller nodes that
communicate over a high-speed network.

Workloads designed for horizontal scaling are
able to easily take advantage of the elasticity of
cloud resources. Freed from the constraints of
fixed-size, on-premises clusters, hundreds of
thousands of cores can be provisioned in hours
rather than months to accommodate demanding
workloads and vast data sets.

The STAC-M3TM benchmark workloads on kdb+ 4.0
benefit to a certain extent from faster processors,
but they are biased towards I/O performance
and gain more from improvements to throughput
and latency at the storage layer. By using more
nodes with fewer cores each, both total storage
capacity and throughput increase across the
cluster in aggregate. The same concept applies to
workloads that are limited by network throughput.

Working with KX, a Google Cloud Global
Technology Partner, we took advantage of a
new option in their STAC-M3TM implementation
to “shard” tick history data across many nodes

in a compute cluster. Sharding distributes unique
segments of the complete data set to individual
nodes, making each responsible for a range of
the full data set. The downside of sharding is
that it generally requires querying applications
to be aware of the data layout scheme. Since the
benchmark implementation’s code supported
this style of execution already, adapting our
infrastructure was simple.

Sharding the data set removes the need to have
a complete shared data set visible to all nodes
and allows us to redesign the cluster to take
advantage of low-latency, high-throughput local
NVMe SSD storage on Google Cloud. This is
exceptionally fast, ephemeral storage that is tied
to the lifecycle of the node. It’s excellent for high-
speed local computations, but when the node is
shut down, the data is lost as well. That meant
we needed a persistent store from which to
download the tick history data set, as generating
it on demand takes several hours.

Fortunately, Google Cloud Storage provides
secure, reliable, and cost-effective object storage
of vast amounts of data. Most importantly,
accessing it can be done in a highly parallel
manner. The tick history data set was divided into
hundreds of files, each individually downloadable
by the node responsible for that segment of the
sharded data set.

https://cloud.google.com/blog/products/gcp/220000-cores-and-counting-mit-math-professor-breaks-record-for-largest-ever-compute-engine-job
https://cloud.google.com/blog/products/gcp/220000-cores-and-counting-mit-math-professor-breaks-record-for-largest-ever-compute-engine-job
https://code.kx.com/q/
https://kx.com/
https://cloud.google.com/storage

5

Figure 2. STAC-M3TM sharded data set.

Not only was each node responsible for
downloading its own range of the entire data set,
each range consisted of multiple files which could
be downloaded in parallel to the local file systems
of each node. This parallelism, both across and
within nodes, was the key to optimizing the
data transfer.

A script to calculate the necessary files in the
shard ran on each node, streaming multiple files
simultaneously from Cloud Storage at the 32Gbps
limit of each node’s network interface. While it
wasn’t used for this particular setup, workloads
that require an even faster population of local
data will benefit from our faster network tiers up
to 100Gbps. Scaled out across 50 or 100 nodes,
even petabyte-level data sets can be staged in a
distributed NVMe caching layer within minutes.

Other options exist for the data storage
architecture. In situations where high-

performance workloads can’t take advantage
of sharded data storage, fast shared storage
can still be used to present a unified view
of a large data set across many nodes in a
cluster. Filestore High Scale, a fully-managed
Google Cloud product, allows the provision of
up to 100TiB of storage per Filestore instance
with 920,000/260,000 read/write IOPS
and 26,000/8,800 read/write MiB/s at the
maximum volume size.

Bringing workloads to Google Cloud is easier
if you use NetApp or Powerscale systems on-
premises; our partner solutions offer the same
features and scale available in on-premises
systems today. For workloads that demand the
most storage performance, the Lustre parallel
file system is an ideal solution. Cloud Edition for
Lustre from DDN Storage, available in the Google
Cloud Marketplace, offers integration with Google
Cloud projects and billing.

Antuco and Kanaga tick
history data set Cloud Storage

https://cloud.google.com/filestore/docs/high-scale
https://cloud.google.com/netapp
https://cloud.google.com/architecture/partners/dell-powerscale
https://console.cloud.google.com/marketplace/product/ddnstorage/cloud-edition-for-lustre
https://console.cloud.google.com/marketplace/product/ddnstorage/cloud-edition-for-lustre
https://cloud.google.com/marketplace
https://cloud.google.com/marketplace

6

Managing complexity with code

We also honed our approach to performance
optimization. As we iterated through the cluster
configuration possibilities, we used infrastructure
as code (IaC) techniques to provision
reproducible clusters based on definitions
written in code.

IaC techniques use modern, cloud-oriented
tools to interact with provisioning APIs which
dynamically create, configure, and shut down
networks, VMs, storage, and other resources
or services based on code and configuration
written by administrators. Because the tools use
text-based code and configuration as inputs,
everything necessary to manage infrastructure,
operating systems, and applications can be
stored in source code management tools like
Git. This enables other activities like continuous
integration and deployment of not just application
code, but the underlying infrastructure itself. It
also provides a full history of infrastructure state
through the code repository, supporting auditing
and troubleshooting activities.

Two of the most powerful and popular tools
in this space are Terraform and Ansible. While
there are some shared capabilities between
the two tools, Terraform is primarily responsible
for creating infrastructure resources such as
networks and VMs, whereas Ansible is most
commonly used to drive the operating system
configuration for VMs and VM image templates to
a known state in a controlled manner.

They also differ in their approaches to code
structure. Terraform code is largely declarative in
nature, using dependencies between resources
to determine the preferred way to create and
shut them down. Ansible uses declarative steps
called tasks, but the playbooks that tie those
tasks together are procedural. This turns out
to be a good fit for their respective strengths.
Cloud APIs usually follow RESTful patterns that
lend themselves well to declarative management
via Terraform; however, operating systems are
a mix of code, configuration, user data, and
persistent state that are more easily managed
with a pragmatic approach of declarative steps
coordinated by procedural code with Ansible.

Google Cloud collaborates with Hashicorp to
maintain the Google Terraform provider and
with Red Hat to maintain an extensive set of
Ansible modules. There is also a large collection
of Google-authored, open-source Terraform
blueprints and modules that simplify many
common infrastructure creation tasks.

For our latest audited STAC-M3TM stack,
Terraform managed the lifecycle of the compute
cluster and its storage. Ansible configured the
operating system, deployed the kdb+ application,
synchronized data shards from Cloud Storage,
set up the benchmarking environment, and
ran the tests.

https://cloud.google.com/architecture/managing-infrastructure-as-code
https://cloud.google.com/architecture/managing-infrastructure-as-code
https://git-scm.com/
https://www.terraform.io/
https://www.ansible.com/
https://cloud.google.com/apigee/resources/ebook/web-api-design-register
https://registry.terraform.io/providers/hashicorp/google/latest/docs
https://docs.ansible.com/ansible/latest/scenario_guides/guide_gce.html
https://cloud.google.com/docs/terraform/blueprints/terraform-blueprints
https://cloud.google.com/docs/terraform/blueprints/terraform-blueprints

7

The final version of the code repository represents the configuration
of the cluster used to produce the results in the STAC report. This
concept of infrastructure reproducibility via code is powerful for a
number of reasons:

1. It dramatically simplified iteration through cluster configurations to
help optimize performance. By enforcing that every deployment use
IaC to reach a known configuration, comparing different benchmark
runs was as easy as looking at the code for each to see which
parameters changed.

2. It completely eliminated the configuration drift. Rather than manually
tuning the cluster to find the optimal configuration, the IaC tools
automatically drove the cluster to the correct state each time a
parameter change was needed.

3. It removed the possibility of human error at deployment time. Using
tools to create infrastructure based on a predefined “blueprint”
removed the possibility of accidental misconfigurations.

4. It reduced time to create a given cluster to minutes from hours or
days since none of the tasks were performed manually. Automated
tools can push a deployment forward without human interaction,
running each step immediately after the previous one without
distractions or breaks.

5. It can free up administrators’ time so they can manage more
resources. Once the code definition of the infrastructure is created,
it can be applied to multiple production and non-production
environments, scaling out to clusters of thousands of nodes that
would be infeasible to manage by hand.

6. It can dramatically increase the auditability of an environment. In
its purest form, IaC can remove the need for any routine human
interaction with a cluster or Google Cloud project, delegating all
resource management and configuration changes to automated
processes. Deployment of infrastructure can be driven by code
commits; since all the code changes are stored in the history
of the code repository, a full audit trail of the current and past
desired state is always available for review and analysis. Taking this
further, automated code scanning tools can search repositories for
insecure patterns and alert administrators or halt deployments until
corrective actions are taken.

8

These benefits don’t just apply to an ephemeral
benchmarking environment. One can use the
same techniques to iterate on the infrastructure,
control configuration drift, reduce human error,
speed up deployments, scale operations, and
secure and audit all cloud assets.

Consider a research platform for quantitative
analysts. In the on-premises model, high-
performance computing resource managers and
job schedulers are used to share scarce physical
resources in a data center, boosting utilization
and return on investment. The physical resources
are fixed in the timeframe of days or weeks
during which substantial changes to scale are
infeasible. It can take months to meaningfully
scale them, during which time competition for
those scarce resources can slow down research
teams and limit opportunities to react to market
opportunities while researchers wait through
long job queues.

On Google Cloud, teams can perform their
research independently on dedicated clusters,
each provisioned on demand using IaC tools
when a hypothesis needs to be tested against
market data. Those dedicated clusters experience
no contention for fixed hardware, can be
precisely sized for each workload to strike the
right balance between cost and duration, and can
be shut down or scaled down immediately upon
job completion.

IaC can drive this process end to end, sizing
infrastructure to workloads, matching jobs to
dedicated clusters, and trimming the time that
cloud resources are in use. This results in cost
savings compared to huge on-premises hardware
investments, and provides greater agility to react
to market conditions and opportunities.

9

IaC for STAC-M3TM on Google Cloud

resource google_compute_instance node {

 count = var.instance_count

 name = “${var.name}${format(“%02s”, count.index + 1)}”

 machine_type = var.machine_type

 zone = var.zone

 allow_stopping_for_update = true

 min_cpu_platform = var.cpu_platform

(...)

The following code samples illustrate how an IaC deployment works.
Download the code bundle from the STAC report page for complete
details. STAC subscribers can even replicate our results using the
bundle, a kdb+ 4.0 license, and a pregenerated STAC-M3TM data set.

Starting from scratch with an empty project, a small cluster of Compute
Engine instances are created with a Terraform resource definition in
automation/terraform/main.tf:

The beginning of this block builds a uniform compute cluster of variable
size with node names based on the size of the cluster and using a
number of other user inputs for settings like the location and type of
hardware. All of the usual options for Compute Engine instances are
available here, but written as text rather than accessible interactively
through the Google Cloud console, such as:

http://www.STACresearch.com/KDB211210
https://console.cloud.google.com/

10

(...)

 boot_disk {

 initialize_params {

 image = var.boot_disk_image

 size = var.boot_disk_size

 type = var.boot_disk_type

 }

 }

(...)

terraform init

terraform apply

The above block, for example, initializes the boot disk to a user-
specified size, type, and image. To create a cluster with this definition
in your Google Cloud project, change to the automation/terraform
directory and run:

Changing any of the values in automation/terraform/vars.tf
and running terraform apply will drive the cluster towards the new
desired state. The cluster might need to be shut down and recreated
depending on the type of change, so always review Terraform’s plan
carefully before accepting it.

This declarative resource management – stating your intent and using
automation to drive resources towards it – is a powerful concept behind
modern, cloud-native tools like Terraform. Even in cases like this one
where the cluster itself is relatively simple, treating the infrastructure as
committed code from the beginning enables all the benefits discussed
earlier, such as rapid iteration and control over configuration drift.

11

One last example from the Terraform definition illustrates how resources
relate to each other:

The DNS record set described here uses two sources of inputs: User
selections from variables, and dynamic information sourced from the
newly-created Compute Engine instances. Terraform understands the
implicit dependency between the record set and the node’s address it
points to. Therefore, it will create the node first, discover the address,
and record that in DNS without any special handling by the user
requesting the resources.

After applying the Terraform, you will have a running cluster, but each
VM is created from a vanilla operating system image without any custom
applications or data. The next step is to use Ansible to configure the operating
system, data, and applications needed to run the STAC-M3TM benchmark:

resource google_dns_record_set node {

 count = var.instance_count

 managed_zone = var.dns_zone

 name = “${var.name}${format(“%02s”, count.index + 1)}.${var.dns_domain}.”

 type = “A”

 rrdatas = [“${google_compute_instance.node[count.index].network_interface[0].access_config[0].nat_ip}”]

 ttl = 5

}

12

- hosts: all

 gather_facts: no

 any_errors_fatal: yes

 tasks:

 - wait_for_connection:

(...)

- hosts: all

 any_errors_fatal: yes

 roles:

 - stac-m3

 tags: stac-m3

(...)

- name: find mount points

 find:

 paths:

 - ‘{{ stac_m3_dir }}/data’

 file_type: directory

 register: mounts

This block from automation/ansible/install.yml waits for
connectivity to the cluster and maps Ansible roles (code modules) to
host groups. Digging into the stac-m3 role more, we find tasks like these
in automation/ansible/roles/stac-m3/tasks/setup.yml:

13

list of partitions for each worker

- name: generate par.txt

 template:

 src: par.txt.j2

 dest: ‘{{ path }}/db{{ item }}/par.txt’

 loop: ‘{{ range(stac_m3_worker_count) }}’

(...)

(...)

- name: sync data from GCS

 loop: ‘{{ stac_m3_years }}’

 script: data.py -y {{ item }} -n {{ inventory_hostname }} {{ ‘
‘.join(groups[‘stac’]) }}

(...)

The code above locates mount points and stores them for later use, then uses a
template to generate a configuration file needed for the benchmark to run. Most of
the tasks are declarative, much like Terraform definitions, and playbooks should be
written to be idempotent. In other words, running the same playbook again should
drive the operating system, data, and applications toward a desired state, much like
Terraform does with cloud infrastructure.

One final note about synchronization of sharded data as described earlier:

This task from automation/ansible/roles/nvme/main.yml runs a custom
script to pull data from the Cloud Storage bucket in which the full Antuco and
Kanaga data set is stored. With some basic knowledge of cluster size and layout,
the script can determine which data segments the local node is responsible for
and cache them to the fast local NVMe storage used when running tick history
calculations. As a flexible and pragmatic tool, Ansible allows arbitrary scripts to run
– just make sure the execution of the script is idempotent across multiple runs of
the Ansible role or playbook.

14

Empowering financial services
with on-demand scale

To learn more or explore how Google Cloud fits
into your long-term innovation roadmap, please
contact your Google Cloud account manager or
check our website.

Blog STAC Vault

Processing larger and larger data sets is becoming a major challenge - and
opportunity - for the financial services industry where managing risk and
generating returns are vital. Our latest benchmark results translate into real-
world advantages that typically would be difficult for investment firms to
achieve in complex and costly on-premise environments: Immediate answers
when markets are turbulent, more thoroughly explored research theories, and
reduced costs by releasing cloud resources more quickly.

We would like to thank author Paul Mibus and
contributors Aaron Walters and Christin Brown
for their help, support, and technical and domain
expertise in writing this paper.

© 2022 Google LLC 1600 Amphitheatre
Parkway, Mountain View, CA 94043

https://cloud.google.com/solutions/financial-services/capital-markets
https://cloud.google.com/blog/topics/financial-services/optimizing-google-cloud-for-high-speed-market-tick-history-analysis
https://www.finextra.com/newsarticle/37434/bny-mellon-taps-google-cloud-to-forecast-settlement-failures
http://www.STACresearch.com/KDB211210

