
Professional Cloud 

Developer

BETA

A Google Cloud Certified Professional Cloud Developer builds and deploys scalable, 

secure, and highly available applications by using Google-recommended tools and best 

practices. This individual has experience with cloud-native applications, containerized 

applications, APIs, developer tools, orchestration tools, managed services, test 

strategies, serverless platforms, and next-generation databases. This individual also 

has proficiency with at least one general-purpose programming language and 

instruments their code to produce metrics, logs, and traces.


Section 1: Designing highly scalable, available, and reliable 

cloud-native applications


Microservices architecture

Choosing the appropriate platform based on the use case and requirements 

(e.g., IaaS [infrastructure as a service], CaaS [container as a service], PaaS 

[platform as a service], FaaS [function as a service])

Application modernization (e.g., containerization)

Understanding how Google Cloud services are geographically distributed 

(e.g., latency, regional services, zonal services)

User session management

Caching solutions

1.1	 Designing high-performing applications and APIs. Considerations include:

Certification Exam Guide



1.2 Designing secure applications. Considerations include:

Implementing data lifecycle and residency for applicable regulatory 

requirements

Security mechanisms that identify vulnerabilities and protect services and 

resources (e.g., Identity-Aware Proxy [IAP], Web Security Scanner)

Security mechanisms that secure/scan application binaries, dependencies, 

and manifests (e.g., Container Analysis)

Storing, accessing, and rotating application secrets and encryption keys (e.g., 

Secret Manager, Cloud Key Management Service)

Authenticating to Google Cloud services (e.g., application default credentials, 

JSON Web Token [JWT], OAuth 2.0)

Identity and Access Management (IAM) roles for users, groups, and service 

accounts

Certificate-based authentication (e.g., SSL, mTLS)

End-user account management and authentication by using Identity Platform

Running services with keyless and least privileged access (e.g., Workload 

Identity, Workload identity federation)

Securing service-to-service communications (e.g., service mesh, Kubernetes 

Network Policies, Kubernetes namespaces)

HTTP REST versus gRPC (Google Remote Procedure Call)

Incorporating Service Control capabilities offered by API services (e.g. Apigee)

Loosely coupled asynchronous applications (e.g., Apache Kafka, Pub/Sub, 

Eventarc)

Instrumenting code to produce metrics, logs, and traces

Cost optimization and resource optimization

Graceful handling of errors, disasters, and scaling events



1.3 Choosing storage options for application data. Considerations include:

Time-limited access to objects

Data retention requirements

Structured versus unstructured data (e.g., SQL versus NoSQL)

Strong versus eventual consistency

Data volume

Data access patterns

Online transaction processing (OLTP) versus data warehousing


Section 2: Building and testing applications

Emulating Google Cloud services for local application development

Using the Google Cloud console, Google Cloud SDK, Cloud Shell, and Cloud 

Workstations

Using developer tooling (e.g., common IDEs, Cloud Code, Skaffold)

Authenticating to Google Cloud services (e.g., Cloud SQL Auth proxy, AlloyDB 

Auth proxy)

2.1	Setting up your local development environment. Considerations include:

Source control management

Creating secure container images from code

Developing a continuous integration pipeline by using services (e.g., Cloud 

Build, Artifact Registry) that construct deployment artifacts

Code and test build optimization

2.2	Building. Considerations include:


Supply-chain Levels for Software Artifacts (SLSA)



Unit testing

Integration testing including the use of emulators

Performance testing

Load testing

Failure testing/chaos engineering

2.3	Testing. Considerations include:

Section 3: Deploying applications 


A/B testing

Feature flags

Backward compatibility

Versioning APIs (e.g., Apigee)

3.1	Adopting appropriate feature rollout strategies. Considerations include:

Deploying from source code

Deploying a containerized application to GKE

Using triggers to invoke functionsUsing triggers to invoke functions

Integrating Kubernetes role-based access control (RBAC) with IAM

Configuring event receivers (e.g., Eventarc, Pub/Sub)

Defining workload specifications (e.g., resource requirements)

Exposing and securing application APIs (e.g., Apigee)

3.2	Deploying applications to a serverless computing environment. Considerations 

include:

3.3	Deploying applications and services to Google Kubernetes Engine (GKE). 

Considerations include:



Section 4: Integrating an application with Google Cloud services


Managing connections to datastores (e.g., Cloud SQL, Firestore, Bigtable, 

Cloud Storage

Reading/writing data to or from various datastores

Writing an application that publishes or consumes data asynchronously (e.g., 

from Pub/Sub or streaming data sources)

Orchestrate application services with Workflows, Eventarc, Cloud Tasks, and 

Cloud Scheduler

4.1	Integrating an application with data and storage services. Considerations 

include:

Enabling Google Cloud services 

Making API calls by using supported options (e.g., Cloud Client Library, REST 

API or gRPC, API Explorer) taking into consideration

 Batching request

 Restricting return dat

 Paginating result

 Caching result

 Error handling (e.g., exponential backoff) 

Using service accounts to make Cloud API calls

Integrating with Google Cloud’s operations suite

4.2	Integrating an application with Google Cloud APIs. Considerations include:

Building a container image by using Cloud Build


