
Google Cloud Certified - 
Professional Cloud Developer

EXAM GUIDE

A Professional Cloud Developer builds scalable and highly available applications using 

Google-recommended tools and best practices. This individual has experience with cloud-

native applications, developer tools, managed services, and next-generation databases. A 

Professional Cloud Developer also has proficiency with at least one general-purpose 

programming language and instruments their code to produce metrics, logs, and traces.



Recommended experience: 3+ years of industry experience including 1+ years designing 

and managing solutions using Google Cloud

Exam Outline 

Section 1: Designing highly scalable, available, 

and reliable cloud-native applications

Microservices 

Scaling velocity characteristics/tradeoffs of IaaS (infrastructure as a service), 

CaaS (container as a service), PaaS (platform as a service), and FaaS 

(function as a service)

Understanding how Google Cloud services are geographically distributed 

(e.g., latency, regional services, zonal services) 

User session management

1.1 Designing high-performing applications and APIs. Considerations include:



Implementing data lifecycle and residency requirements relevant for 

applicable regulations

Security mechanisms that protect services and resources

Instrumenting code to produce metrics, logs, and traces

Authenticating to Google Cloud services (e.g., application default credentials, 

JSON Web Token (JWT), OAuth 2.0)

Securing service-to-service communications (e.g., service mesh, Kubernetes 

Network Policies, and Kubernetes namespaces)

Defining database schemas for Google-managed databases (e.g., Firestore, 

Cloud Spanner, Bigtable, Cloud SQL)

Graceful shutdown of applications on platform termination

End-user account management and authentication using Identity Platform

Running services with least privileged access (e.g., Workload Identity)

Defining a data storage key structure for high-write applications

Writing fault-tolerant code

IAM roles for users, groups, and service accounts 

Certificate-based authentication (e.g., SSL, mTLS)

Designing API services with API Gateway and Cloud Endpoints

Security mechanisms that secure/scan application binaries and manifests

Loosely coupled asynchronous applications (e.g., Apache Kafka, Pub/Sub, 

Eventarc)

Storing, accessing, and rotating application secrets and keys (e.g., Secret 

Manager, Cloud Key Management Service)

1.2	Designing secure applications. Considerations include:

1.3	Managing application data. Considerations include:

Caching solutions

HTTP REST versus gRPC (Google Remote Procedure Call)



Using the Google Cloud Console, Google Cloud SDK, and Cloud Shell tools

Creating secure container images from code

Integration testing 

Using developer tooling (e.g., Cloud Code, Skaffold)

Developing a continuous integration pipeline using services (e.g., Cloud Build, 

Artifact Registry) that construct deployment artifacts

Performance testing

Source control management

Unit testing (e.g., emulators)

Code and test build optimization

Load testing

Failure testing/chaos engineering

Emulating Google Cloud services for local application development

Section 2: Building and testing applications

2.1 Setting up your local development environment. Considerations include:

2.2	Building. Considerations include:

2.3	Testing. Considerations include:

Choosing data storage options based on use case considerations, such as�

� Time-limited access to object�

� Data retention requirement�

� Structured versus unstructured dat�

� Strong versus eventual consistenc�

� Data volum�

� Data access pattern�

� Online transaction processing (OLTP) versus data warehousing



Deploying from source code

Integrating Kubernetes RBAC with Identity and Access Management (IAM)

Managing container lifecycle

Invocation via triggers

Configuring event receivers

Exposing and securing application APIs (e.g., API Gateway, Cloud Endpoints)

Configuring Kubernetes namespaces

Deploying a containerized application to GKE

Configuring application accessibility to user traffic and other services

Defining workload specifications (e.g., resource requirements)

Building a container image using Cloud Build

Managing connections to data stores (e.g., Cloud SQL, Cloud Spanner, 

Firestore, Bigtable, Cloud Storage)

Sizing and scaling serverless environments

Feature flags

Backward compatibility

Section 4: Integrating Google Cloud services

3.2	Deploying applications to a serverless computing environment. Considerations 

include:

3.3 	Deploying applications and services to Google Kubernetes Engine (GKE). 

Considerations include:

4.1	Integrating an application with data and storage services. Considerations include:

Section 3: Deploying applications 

3.1	Adopting appropriate feature rollout strategies. Considerations include:

A/B testing



Reading instance metadata to obtain application configuration

Graceful application startup and shutdown

Enabling a Cloud API

Using service accounts to make Cloud API calls

Making API calls using supported options (e.g., Cloud Client Library, REST API 

or gRPC, API Explorer) taking into consideration�

� Batching request�

� Restricting return dat�

� Paginating result�

� Caching result�

� Error handling (e.g., exponential backoff) 

4.3	Integrating Cloud APIs with applications. Considerations include:

Analyzing lifecycle events

Using external metrics and corresponding alerts

Configuring workload autoscaling 

Section 5: Managing deployed applications

5.1 	Managing cloud compute services (e.g., Google Kubernetes Engine, serverless). 

Considerations include: 

Using service discovery (e.g., Service Directory)

Reading/writing data to/from various data stores

Writing an application that publishes/consumes data asynchronously (e.g., 

from Pub/Sub)

4.2	Integrating an application with compute services. Considerations include:



5.2 	Troubleshooting applications. Considerations include:

Using Debugger

Using Cloud Logging

Using Cloud Monitoring

Using Cloud Profiler

Using Cloud Trace

Using Error Reporting

Using documentation, forums, and Google Cloud support


