Google Cloud

Professional Cloud Developer

Certification exam guide

A Professional Cloud Developer builds and deploys scalable, secure, and highly available
applications by using Google-recommended tools and best practices. This individual has
experience with cloud-native applications, Google Cloud APls, developer and Al tools,
managed services, orchestration tools, serverless platforms, containerized applications, test
and deployment strategies, problem determination and resolution, and datastores. This
individual also has proficiency with at least one general-purpose programming language and
can instrument their code to produce metrics, logs, and traces.

Section 1: Designing highly scalable, available, and reliable cloud-native
applications (~36% of the exam)

1.1 Designing high-performing applications and APls. Considerations include:

s Choosing the appropriate platform based on the use case and requirements
(e.g., Compute Engine, GKE, Cloud Run)

+ Building, refactoring, and deploying application containers to Cloud Run and
GKE

e Understanding how Google Cloud services are geographically distributed (e.qg..
latency, regional services, zonal services)

s Configuring load balancers and applications for session affinity and performant
content delivery
Implementing caching solutions (e.g., Memorystore)
Creating and deploying APls (e.g., HTTP REST, gRPC [Google Remote Procedure
Call])

s Using application rate limiting, authentication, and observability (e.g., Apigee,
Cloud APl Gateway)

+ [ntegrating applications using asynchronous or event-driven approaches (e.g.,
Eventarc, Pub/Sub)
Optimizing for cost and resource usage
Understanding data replication to support zonal and regional failover models
Using traffic splitting strategies (e.g.. gradual rollouts, rollbacks, A/B testing) on a
new service on Cloud Run or GKE

s Orchestrating application services with Workflows, Eventarc, Cloud Tasks, and
Cloud Scheduler

Google Cloud

1.2 Designing secure applications. Considerations include:

Implementing data retention and organization policies (e.g., Cloud Storage
Object Lifecycle Management, Cloud Storage use and lock retention policies)
Using security mechanisms that identify vulnerabilities and protect services and
resources (e.g., [dentity-Aware Proxy [IAP], Web Security Scanner)

Responding to and resolving vulnerabilities, including those identified by Artifact
Analysis and Security Command Center

Storing, accessing, and rotating application secrets, credentials, and encryption
keys (e.g., Secret Manager, Cloud Key Management Service, Workload Identity
Federation)

Authenticating to Google Cloud services (e.g., Application Default Credentials,
JSON Web Token [JWT], OAuth 2.0, Cloud SGL Auth Proxy, AlloyDB Auth Proxy)
Managing and authenticating end-user accounts (e.g., |dentity Platform)
Securing cloud resources using ldentity and Access Management (I1AM) roles for
service accounts

Securing service-to-service communications (e.g., Cloud Service Mesh,
Kubernetes Network Policies)

Running services with least privileged access

Securing application artifacts using Binary Autherization

1.3 Storing and accessing data. Considerations include:

Selecting the appropriate storage system based on the volume of data and
performance requirements

Designing appropriate schemas for structured databases (e.g., AlloyDB,
Spanner) and unstructured databases (e.g., Bigtable, Datastore)

Understanding the implications of eventual and strongly consistent replication of
AlloyDB, Bigtable, Cloud SQL, Spanner, and Cloud Storage

Creating signed URLs to grant access to Cloud Storage objects

Writing data to BigQuery for analytics and AI/ML workloads

Section 2: Building and testing applications (~23% of the exam)

2.1 Setting up your development environment. Considerations include:

Emulating Google Cloud services using the Google Cloud CLI for local
application development and local unit testing

Using the Google Cloud console, Cloud SDK, Cloud Code, Gemini Cloud Assist,
Gemini Code Assist, Cloud Shell, and Cloud Workstations

Google Cloud

2.2 Building. Considerations include:
s Using Cloud Build and Artifact Registry to build and store containers from source
code
s Configuring provenance in Cloud Build (e.g., Binary Authorization)

23 Testing. Considerations include:
+ Writing unit tests with the help of Gemini Code Assist
s Executing automated integration tests in Cloud Build

Section 3: Deploying applications (~20% of the exam)

3.1 Deploying applications to Cloud Run. Considerations include:

Deploying applications from source code

Invoking Cloud Run services using triggers (e.g., Eventarc, Pub/Sub)
Configuring event receivers (e.g., Eventarc, Pub/Sub)

Exposing and securing APls in applications (e.g., Apigee)

Deploying a new APl version in Cloud Endpoints considering backward
compatibility

3.2 Deploying containers to GKE. Considerations include:
s Deploying containerized applications
s Defining resource requirements for container workloads
s Implementing Kubernetes health checks to increase application availability
s« Configuring the Horizontal Pod Autoscaler for cost optimization

Section 4: Integrating applications with Google Cloud services (~21% of the exam)

4.1 Integrating applications with data and storage services. Considerations include:
e Managing connections to various Google Cloud datastores (e.g., Cloud SQL,
Firestore, Cloud Storage)
s Reading and writing data to and from various Google Cloud datastores
s Writing applications that publish and consume data using Pub/Sub

42 Consuming Google Cloud APIs. Considerations include:
s Enabling Google Cloud services
o Making API calls by using supported options (e.g., Cloud Client Libraries, REST
API, gRPC, API Explorer) taking into consideration:
o Batching requests

Google Cloud

o Restricting return data

o Paginating results

o Caching results

Handling errors (e.g., exponential backoff)
s Using service accounts to make Cloud API calls

o]

43 Troubleshooting and observability. Considerations include:
s [nstrumenting code to facilitate troubleshooting using metrics, logs, and traces
in Google Cloud Observability
Identifying and resolving issues using Google Cloud Observability
Managing application issues using Error Reporting
Using trace IDs to correlate trace spans across services
Using Gemini Cloud Assist

