
Professional Machine Learning 
Engineer

Certification Exam Guide

BETA

A Professional Machine Learning Engineer builds, evaluates, productionizes, and 

optimizes ML models by using Google Cloud technologies and knowledge of proven 

models and techniques. The ML Engineer handles large, complex datasets and creates 

repeatable, reusable code. The ML Engineer considers responsible AI and fairness 

throughout the ML model development process, and collaborates closely with other job 

roles to ensure long-term success of ML-based applications. The ML Engineer has 

strong programming skills and experience with data platforms and distributed data 

processing tools. The ML Engineer is proficient in the areas of model architecture, data 

and ML pipeline creation, and metrics interpretation. The ML Engineer is familiar with 

foundational concepts of MLOps, application development, infrastructure management, 

data engineering, and data governance. The ML Engineer makes ML accessible and 

enables teams across the organization. By training, retraining, deploying, scheduling, 

monitoring, and improving models, the ML Engineer designs and creates scalable, 

performant solutions.


*Note: The exam does not directly assess coding skill. If you have a minimum 

proficiency in Python and Cloud SQL, you should be able to interpret any questions with 

code snippets.


Section 1: Architecting low-code ML solutions

1.1	Developing ML models by using BigQuery ML. Considerations include:



Generating predictions by using BigQuery ML

Feature engineering or selection by using BigQuery ML

Building applications by using ML APIs (e.g., Cloud Vision API, Natural 

Language API, Cloud Speech API, Translation)

Building applications by using industry-specific APIs (e.g., Document AI API, 

Retail API)

1.2	Building AI solutions by using ML APIs. Considerations include:1.2	Building AI solutions by using ML APIs. Considerations include:

1.3 Training models by using AutoML. Considerations include:

Preparing data for AutoML (e.g., feature selection, data labeling, Tabular 

Workflows on AutoML)

Using available data (e.g., tabular, text, speech, images, videos) to train 

custom models

Using AutoML for tabular dataUsing AutoML for tabular data

Creating forecasting models using AutoML

Configuring and debugging trained models

2.1 Exploring and preprocessing organization-wide data (e.g., Cloud Storage, 

BigQuery, Cloud Spanner, Cloud SQL, Apache Spark, Apache Hadoop). 

Considerations include:

Organizing different types of data (e.g., tabular, text, speech, images, videos) 

for efficient training

Managing datasets in Vertex AI

Section 2: Collaborating within and across teams to manage 
data and models

Building the appropriate BigQuery ML model (e.g., linear and binary 

classification, regression, time-series, matrix factorization, boosted trees, 

autoencoders) based on the business problem



Data preprocessing (e.g., Dataflow, TensorFlow Extended [TFX], BigQuery)

Creating and consolidating features in Vertex AI Feature Store

Privacy implications of data usage and/or collection (e.g., handling sensitive 

data such as personally identifiable information [PII] and protected health 

information [PHI])

2.2 Model prototyping using Jupyter notebooks. Considerations include:

Choosing the appropriate Jupyter backend on Google Cloud (e.g., Vertex AI 

Workbench, notebooks on Dataproc)

Applying security best practices in Vertex AI Workbench

Using Spark kernels

Integration with code source repositories

Developing models in Vertex AI Workbench by using common frameworks 

(e.g., TensorFlow, PyTorch, sklearn, Spark, JAX)

2.3 Tracking and running ML experiments. Considerations include:

Choosing the appropriate Google Cloud environment for development and 

experimentation (e.g., Vertex AI Experiments, Kubeflow Pipelines, Vertex AI 

TensorBoard with TensorFlow and PyTorch) given the framework

3.1 Building models. Considerations include:

Choosing ML framework and model architecture

Modeling techniques given interpretability requirements

3.2 Training models. Considerations include:

Organizing training data (e.g., tabular, text, speech, images, videos) on Google 

Cloud (e.g., Cloud Storage, BigQuery)

Ingestion of various file types (e.g., CSV, JSON, images, Hadoop, databases) 

into training

Section 3: Scaling prototypes into ML models



Training using different SDKs (e.g., Vertex AI custom training, Kubeflow on 

Google Kubernetes Engine, AutoML, tabular workflows)

Using distributed training to organize reliable pipelines

Hyperparameter tuning

Troubleshooting ML model training failures

3.3 Choosing appropriate hardware for training. Considerations include:

Evaluation of compute and accelerator options (e.g., CPU, GPU, TPU, edge 

devices)

Distributed training with TPUs and GPUs (e.g., Reduction Server on Vertex AI, 

Horovod)

4.1 Serving models. Considerations include:

Batch and online inference (e.g., Vertex AI, Dataflow, BigQuery ML, Dataproc)

Using different frameworks (e.g., PyTorch, XGBoost) to serve models

Organizing a model registry

A/B testing different versions of a model

4.2 Scaling online model serving. Considerations include:

Vertex AI Feature Store

Vertex AI public and private endpoints

Choosing appropriate hardware (e.g., CPU, GPU, TPU, edge)

Scaling the serving backend based on the throughput (e.g., Vertex AI 

Prediction, containerized serving)

Tuning ML models for training and serving in production (e.g., simplification 

techniques, optimizing the ML solution for increased performance, latency, 

memory, throughput)

Section 4: Serving and scaling models



5.2 Automating model retraining. Considerations include:

Determining an appropriate retraining policy

Continuous integration and continuous delivery (CI/CD) model deployment 

(e.g., Cloud Build, Jenkins)

5.3 Tracking and auditing metadata. Considerations include:

Tracking and comparing model artifacts and versions (e.g., Vertex AI 

Experiments, Vertex ML Metadata)

Hooking into model and dataset versioning

Model and data lineage

Data and model validation

Ensuring consistent data pre-processing between training and serving

Hosting third-party pipelines on Google Cloud (e.g., MLFlow)

Identifying components, parameters, triggers, and compute needs (e.g., Cloud 

Build, Cloud Run)

Orchestration framework (e.g., Kubeflow Pipelines, Vertex AI Pipelines, Cloud 

Composer)

Hybrid or multicloud strategies

System design with TFX components or Kubeflow DSL (e.g., Dataflow)

6.1 Identifying risks to ML solutions. Considerations include:

Section 6: Monitoring ML solutions

Building secure ML systems (e.g., protecting against unintentional 

exploitation of data or models, hacking)

Aligning with Google’s Responsible AI practices (e.g., biases)

Section 5: Automating and orchestrating ML pipelines

5.1 Developing end-to-end ML pipelines. Considerations include:



6.2 Monitoring, testing, and troubleshooting ML solutions. Considerations include:

Assessing ML solution readiness (e.g., data bias, fairness)

Model explainability on Vertex AI (e.g., Vertex AI Prediction)

Establishing continuous evaluation metrics (e.g., Vertex AI Model Monitoring, 

Explainable AI)

Monitoring for training-serving skew

Monitoring for feature attribution drift

Monitoring model performance against baselines, simpler models, and 

across the time dimension

Common training and serving errors


