
Re-architecting
for nonstop
innovation	

Cloud-native
architecture

Page 04

Principles
& practices

Page 11

How to get
started

Page 21

Unlocking productivity, scalability,
and lower costs for cloud natives

Table of Contents

Chapter

Chapter

01

02

Why move to a cloud-native architecture?	 04

What is a cloud-native architecture? 	 06

Migrating to cloud native	 08

Microservices architecture principles and practices	 11

Reference architecture	 13

Containerize production services	 13

Create effective CI/CD pipelines	 15

Focus on security	 17

Cloud-native
architecture

Principles
& practices

Table of Contents

Chapter

03
Getting Started	 21

Further reading	 22

Getting
started

Cloud-native
architecture

Why move to a cloud-native architecture?

Many companies build their custom software services using monolithic architectures.
This approach has advantages: monolithic systems are relatively simple to design and
deploy - at least, at first. However it can become hard to maintain developer productivity
and deployment velocity as applications grow more complex, leading to systems that are
expensive and time-consuming to change and risky to deploy. This paper shows how to
re-architect your applications to a cloud-native paradigm that allows you to accelerate
delivery of new features even as you grow your teams, while also improving software
quality and achieving higher levels of stability and availability.

As services—and the teams responsible for them—grow, they tend to become more
complex and harder to evolve and to operate. Testing and deployment becomes more
painful, adding new features becomes harder, and maintaining reliability and availability
can be a struggle.

Research by Google’s DORA team shows that it is possible to achieve high levels of
software delivery throughput and service stability and availability across organizations of
all sizes and domains. High-performing teams are able to deploy multiple times per day,
get changes out to production in less than a day, restore service in less than an hour, and
achieve change fail rates of 0-15%1.

Furthermore, high performers are able to achieve higher levels of developer productivity,
measured in terms of deployments per developer per day, even as they increase the size
of their teams. This is shown in Figure 1.

4

Chapter

01

1 Find out how your team is performing based on these four key metrics at
https://cloud.google.com/devops/

https://cloud.google.com/devops/
https://cloud.google.com/devops/

3

2.5

2

1.5

1

0.5

0

10 100 1000

Number of Developers

Low Performers

Med Performers

High Performers

Deploy/Day/Dev

D
ep

lo
ym

en
t

Fr
eq

ue
nc

y
(lo

g1
0

(f
re

q
))

: H
ig

he
r

is
 m

or
e

fr
eq

ue
nt

:

Figure 1: The impact of a team’s software delivery performance on its ability
to scale developer productivity, from the 2015 State of DevOps Report2.

The rest of this paper shows how to migrate your applications to a modern
cloud-native paradigm to help achieve these outcomes. By implementing the
technical practices described in this paper, you can reach the following goals:

•	 Increased developer productivity, even as you increase your team sizes.

•	 Faster time-to-market: add new features and fix defects more quickly.

•	 Higher availability: increase the uptime of your software, reduce the rate
of deployment failures, and reduce time-to-restore in the event of incidents.

•	 Improved security: reduce the attack surface area of your applications,
and make it easier to detect and respond rapidly to attacks and newly
discovered vulnerabilities.

•	 Better scalability: cloud-native platforms and applications make it easy to
scale horizontally where necessary - and to scale down too.

•	 Reduce costs: a streamlined software delivery process reduces the costs
of delivering new features, and effective use of cloud platforms substantially
reduces the operating costs of your services. 2015

5

2 https://services.google.com/fh/files/misc/state-of-devops_2015.pdf

https://services.google.com/fh/files/misc/state-of-devops-2015.pdf

6

What is a cloud-native
architecture?
Monolithic applications must be built, tested, and
deployed as a single unit. Often, the operating
system, middleware, and language stack for the
application are customized or custom-configured
for each application. The build, test, and deployment
scripts and processes are typically also unique to
each application. This is simple and effective for
greenfield applications, but as they grow, it
becomes harder to change, test, deploy, and
operate such systems.

Furthermore, as systems grow, so does the size
and complexity of the teams that build, test, deploy,
and operate the service. A common, but flawed
approach, is to split teams out by function, leading to
hand-offs between teams that tend to drive up lead
times and batch sizes and lead to significant amounts
of rework. DORA’s research shows high-performing
teams are twice as likely to be developing and
delivering software in a single, cross-functional team.

Symptoms of this problem include:

•	 Long, frequently broken build processes

•	 Infrequent integration and test cycles

•	 Increased effort required to support the build
and test processes

•	 Loss of developer productivity

•	 Painful deployment processes that must
be performed out of hours, requiring
scheduled downtime

•	 Significant effort in managing the configuration
of test and production environments

In the cloud-native paradigm,
in contrast³:

•	 Complex systems are decomposed into services
that can be independently tested and deployed
on a containerized runtime (a microservices or
service-oriented architecture);

•	 Applications use standard platform-provided
services, such as database management
systems (DBMS), blob storage, messaging, CDN,
and SSL termination;

•	 A standardized cloud platform takes care of
many operational concerns, such as deployment,
autoscaling, configuration, secrets management,
monitoring, and alerting. These services
can be accessed on-demand by application
development teams;

•	 Standardized operating system, middleware,
and language-specific stacks are provided to
application developers, and the maintenance
and patching of these stacks are done out-
of-band by either the platform provider or a
separate team;

•	 A single cross-functional team can be
responsible for the entire software delivery
lifecycle of each service.

6

3 This is not intended to be a complete description of what “cloud native” means: for a discussion of
some of the principles of cloud-native architecture, visit https://cloud.google.com/blog/products/
application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it.

https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it

7

This paradigm provides many benefits:

•	 Faster delivery: Since services are now small
and loosely coupled, the teams associated
with those services can work autonomously.
This increases developer productivity and
development velocity.

•	 Reliable releases: Developers can rapidly
build, test, and deploy new and existing
services on production-like test environments.
Deployment to production is also a simple,
atomic activity. This substantially speeds up
the software delivery process and reduces
the risk of deployments.

•	 Lower costs: The cost and complexity of test
and production environments is substantially
reduced because shared, standardized
services are provided by the platform,
and because applications run on shared
physical infrastructure.

•	 Better security: Vendors are now responsible
for keeping shared services, such as DBMS and
messaging infrastructure up-to-date, patched,
and compliant. It’s also much easier to keep
applications patched and up-to-date because
there is a standard way to deploy and
manage applications.

•	 Higher availability: Availability and reliability
of applications is increased because of
the reduced complexity of the operational
environment, the ease of making configuration
changes, and the ability to handle autoscaling
and autohealing at the platform level.

•	 Simpler, cheaper compliance: Most
information security controls can be
implemented at the platform layer, making it
significantly cheaper and easier to implement

and demonstrate compliance. Many cloud
providers maintain compliance with risk
management frameworks such as SOC2 and
FedRAMP, meaning applications deployed
on top of them only have to demonstrate
compliance with residual controls not
implemented at the platform layer.

However, there are some trade-offs
associated with the cloud-native model:

•	 All applications are now distributed systems,
which means they make significant numbers
of remote calls as part of their operation. This
means thinking carefully about how to handle
network failures and performance issues, and
how to debug problems in production.

•	 Developers must use the standardised
operating system, middleware, and application
stacks provided by the platform. This makes
local development harder.

•	 Architects need to adopt an event-driven
approach to systems design, including
embracing eventual consistency.

Figure 2: Using the strangler fig pattern to incrementally re-architect your monolithic application

Migrating to cloud native
Many organizations have adopted a “lift-and-
shift” approach to moving services to the cloud.
In this approach, only minor changes are required
to systems, and the cloud is basically treated as
a traditional datacenter, albeit one that provides
substantially better APIs, services, and management
tooling compared with traditional datacenters.
However, lift-and-shift by itself provides none
of the benefits of the cloud-native paradigm
described above.

Many organizations stall at lift-and-shift because
of the expense and complexity of moving their
applications to a cloud-native architecture, which
requires rethinking everything from application
architecture to production operations and indeed
the entire software delivery lifecycle. This fear
is rational: many large organizations have

been burned by failed multi-year, “big bang”
replatforming efforts.

The solution is to take an incremental, iterative,
and evolutionary approach to re-architecting your
systems to cloud native, enabling teams to learn
how to work effectively in this new paradigm while
continuing to deliver new functionality: an approach
that we call “move-and-improve”.

A key pattern in evolutionary architecture is known
as the strangler fig application4. Rather than
completely rewriting systems from scratch, write
new features in a modern, cloud-native style, but
have them talk to the original monolithic application
for existing functionality. Gradually shift existing
functionality over time as necessary for the
conceptual integrity of the new services, as shown
in Figure 2.

Existing
monolithic
application

Customers Customers

Dispatcher Dispatcher

Customers

Original
monolithic
application

Original
monolithic
application

New
module

New
module

New
module

New
module

88

4 Described in https://martinfowler.com/bliki/StranglerFigApplication.html

https://martinfowler.com/bliki/StranglerFigApplication.html

9

Internet

Managed service
(DB, storage, identity, https

termination etc.) service
provider / 3rd party

Managed service
(DB, storage, identity, https

termination etc.) service
provider / 3rd party

Managed service
(DB, storage, identity, https

termination etc.) service
provider / 3rd party

Managed service broker
service provider

responsibility

API service
service provider

responsibility deployments, app
& svc mgmt, routing, auth

Application
customer responsibility

Application
customer responsibility

Application
customer responsibility

Application Stack

Container heat layer

service provider or customer
Application Stack

service provider or customer

Heat base image
service provider responsibility hardened, includes intrustion detection, threat and vunerability detection

Infrastructure layer
service provider responsibility IaaS managed using infrastructure-as-code paradigm

Application Stack
service provider or customer

Container scheduler
service provider

responsibility

Dynamic routing
service provider

responsibility

Figure 3: High-level anatomy of a cloud platform

Here are three important guidelines for
successfully re-architecting:

First, start by delivering new functionality fast
rather than reproducing existing functionality. The
key metric is how quickly you can start delivering
new functionality using new services, so that you can
quickly learn and communicate good practice gained
from actually working within this paradigm. Cut scope
aggressively with the goal of delivering something to
real users in weeks, not months.

Second, design for cloud native. This means
using the cloud platform’s native services for
DBMS, messaging, CDN, networking, blob storage

and so forth, and using standardized platform-
provided application stacks wherever possible.
Services should be containerized, making use of
the serverless paradigm wherever possible, and
the build, test, and deploy process should be fully
automated. Have all applications use platform-
provided shared services for logging, monitoring,
and alerting. (It is worth noting that this kind of
platform architecture can be usefully deployed for
any multi-tenant application platform, including a
bare-metal on-premises environment.) A high-level
picture of a cloud-native platform is shown in
Figure 3, below.

10

Our research shows
that the extent to which
teams agreed with these
statements strongly
predicted high software
performance: the ability
to deliver reliable, highly
available services multiple
times per day. This, in
turn, is what enables
high-performing teams
to increase developer
productivity (measured
in terms of number of
deployments per developer
per day) even as the
number of teams increases.

Finally, design for autonomous, loosely-coupled teams who can
test and deploy their own services. Our research shows that
the most important architectural outcomes are whether software
delivery teams can answer “yes” to these six questions:

•	 We can make large-scale changes to the design of our system
without the permission of somebody outside the team;

•	 We can make large-scale changes to the design of our system
without depending on other teams to make changes in their
systems or creating significant work for other teams;

•	 We can complete our work without communicating and
coordinating with people outside the team;

•	 We can deploy and release our product or service on demand,
regardless of other services it depends upon;

•	 We can do most of our testing on demand, without requiring an
integrated test environment;

•	 We can perform deployments during normal business hours
with negligible downtime.

Check on a regular basis whether teams are working towards
these goals, and prioritize achieving them. This usually involves re-
thinking both organizational and enterprise architecture.

In particular, organizing teams so that all the various roles needed
to build, test, and deploy software, including product managers, are
working together and using modern product management practices
to build and evolve the services they are working on is crucial.
This need not involve changes to organizational structure. Simply
having those people work together as a team on a day-to-day
basis (sharing a physical space where possible) rather than having
developers, testers, and release teams operating independently can
make a big difference to productivity.

Microservices architecture principles and practices
When adopting a microservices or service-oriented architecture, there are some
important principles and practices you must ensure you follow. It’s best to be very
strict about following these from the beginning, as it is more expensive to retrofit
them later on.

•	 Every service should have its own database schema. Whether you’re using a
relational database or a nosql solution, each service should have its own schema
that no other service accesses. When multiple services talk to the same schema,
over time the services become tightly coupled together at the database layer.
These dependencies prevent services from being independently tested and
deployed, making them harder to change and more risky to deploy.

•	 Services should only communicate through their public APIs over the
network. All services should expose their behavior through public APIs, and
services should only talk to each other through these APIs. There should be no
“back door” access, or services talking directly to other services’ databases.
This avoids services becoming tightly coupled, and ensures inter-service
communication uses well-documented and supported APIs.

•	 Services are responsible for backwards compatibility for their clients. The
team building and operating a service is responsible for making sure that updates
to the service don’t break its consumers. This means planning for API versioning
and testing for backwards compatibility, so that when you release new versions,
you don’t break existing customers. Teams can validate this using canary
releasing. It also means making sure deployments do not introduce downtime,
using techniques such as blue/green deployments or staged roll-outs.

11

Principles &
practices

Chapter

02

•	 Create a standard way to run services on development workstations.
Developers need to be able to stand up any subset of production services on
development workstations on demand using a single command. It should also
be possible to run stub versions of services on demand—make sure you use
emulated versions of cloud services that many cloud providers supply to help
you. The goal is to make it easy for developers to test and debug services locally.

•	 Invest in production monitoring and observability. Many problems in
production, including performance problems, are emergent and caused by
interactions between multiple services. Our research shows it’s important to have
a solution in place that reports on the overall health of systems (for example, are
my systems functioning? do my systems have sufficient resources available?)
and that teams have access to tools and data that helps them trace, understand,
and diagnose infrastructure problems in production environments, including
interactions between services.

•	 Set service-level objectives (SLOs) for your services and perform disaster
recovery tests regularly. Setting SLOs for your services sets expectations on
how it will perform and helps you plan how your system should behave if a service
goes down (a key consideration when building resilient distributed systems.)
Test how your production system behaves in real life using techniques such as
controlled failure injection as part of your disaster recovery testing plan—DORA’s
research shows that organizations that conduct disaster recovery tests using
methods like this are more likely to have higher levels of service availability. The
earlier you get started with this the better, so you can normalize this kind of
vital activity.

This is a lot to think about, which is why it’s important to pilot this kind of work with
a team that has the capacity and capability to experiment with implementing these
ideas. There will be successes and failures—it’s important to take lessons from these
teams and leverage them as you spread the new architectural paradigm out through
your organization.

Our research shows that companies that succeed use proofs-of-concept and provide
opportunities for teams to share learnings, for example by creating communities
of practice. Provide time, space, and resources for people from multiple teams to
meet regularly and exchange ideas. Everybody will also need to learn new skills and
technologies. Invest in the growth of your people by giving them budget for buying
books, taking training courses, and attending conferences. Provide infrastructure
and time for people to spread institutional knowledge and good practice through
company mailing lists, knowledge bases, and in-person meetups.

12

13

Reference architecture
In this section, we’ll describe a reference
architecture based on the following guidelines:

•	 Use containers for production services and
a container scheduler such as Cloud Run or
Kubernetes for orchestration

•	 Create effective CI/CD pipelines

•	 Focus on security

Containerize production services
The foundation of a containerized cloud application
is a container management and orchestration
service. While many different services have been
created, one is clearly dominant today: Kubernetes.
According to Gartner, “Kubernetes has emerged as
the de facto standard for container orchestration,

13

Figure 4: A Kubernetes cluster runs workloads, with each pod comprising one or more containers.

Replicas

Kubernetes
Cluster

Container 1 Container 2
Container 3

Container 4

Pod A Pod B Pod C

with a vibrant community and support from most
of the leading commercial vendors.” Figure 4
summarizes the logical structure of a
Kubernetes cluster.

Kubernetes defines an abstraction called a pod.
Each pod often includes just one container, like pods
A and B in Figure 4, although a pod can contain more
than one, as in pod C. Each Kubernetes service runs
a cluster containing some number of nodes, each
of which is typically a virtual machine (VM). Figure 4
shows only four VMs, but a real cluster might easily
contain a hundred or more. When a pod is deployed
on a Kubernetes cluster, the service determines
which VMs that pod’s containers should run in.
Because containers specify the resources they
need, Kubernetes can make intelligent choices about
which pods are assigned to each VM.

https://cloud.google.com/kubernetes

1414

Part of a pod’s deployment information is an
indication of how many instances—replicas—of
the pod should run. The Kubernetes service then
creates that many instances of the pod’s containers
and assigns them to VMs. In Figure 4, for example,
pod A’s deployment requested three replicas, as did
pod C’s deployment. Pod B’s deployment, however,
requested four replicas, and so this example cluster
contains four running instances of container 2.
And as the figure suggests, a pod with more than
one container, such as pod C, will always have its
containers assigned to the same node.

Kubernetes also provides other services, including:

•	 Monitoring running pods, so if a container fails,
the service will start a new instance. This makes
sure that all the replicas requested in a pod’s
deployment remain available.

•	 Load balancing traffic, spreading requests
made to each pod intelligently across a
container’s replicas.

•	 Automated zero-downtime rollout of new
containers, with new instances gradually
replacing existing instances until a new version is
fully deployed.

•	 Automated scaling, with a cluster autonomously
adding or deleting VMs based on demand.

Commit and
push changes

Cloud Code

Detect new commit
and trigger a build

GitHub

Run tests and
push image

Cloud Build

Cloud Build

Detect scanned
image

Container
Registry

Deploy to GKE

Google Kubernetes
Engine

Figure 5: A CI/CD pipeline has several steps, from
writing code to deploying a new container.

Figure 6: Local and remote development loops

Create effective CI/CD pipelines
Some of the benefits of refactoring a monolithic
application, such as lower costs, flow directly
from running on Kubernetes. But, one of the most
important benefits—the ability to update your
application more frequently—is only possible if you
change how you build and release software. Getting
this benefit requires you to create effective CI/CD
pipelines in your organization.

Continuous integration relies on automated build
and test workflows that provide fast feedback to
developers. It requires every member of a team
working on the same code (for example, the code
for a single service) to regularly integrate their work
into a shared mainline or trunk. This integration
should happen at least daily per developer, with
each integration verified by a build process that
includes automated tests. Continuous delivery aims
at making deployment of this integrated code quick
and low risk, largely by automating the build, test,
and deployment process so that activities such as
performance, security, and exploratory testing can
be performed continuously. Put simply, CI helps
developers detect integration issues quickly, while
CD makes deployment reliable and routine.

To make this clearer, it’s useful to look at a concrete
example. Figure 5 shows how a CI/CD pipeline might
look using Google tools for containers running on
Google Kubernetes Engine.

It’s useful to think of the process in two chunks, as
shown in Figure 6:

Local Development: The goal here is to speed up
an inner development loop and provide developers
with tooling to get fast feedback on the impact of
local code changes. This includes support for linting,
auto-complete for YAML, and faster local builds.

Remote Development: When a pull request (PR)
is submitted, the remote development loop kicks
off. The goal here is to drastically reduce the time it
takes to validate and test the PR via CI and perform
other activities like vulnerability scanning and
binary signing, while driving release approvals in an
automated fashion.

1515

CI CD

Outer loop

Inner Dev
Loop

Path to
Production

Build

Cloud Code Development
Cluster

https://cloud.google.com/solutions/continuous-integration
https://cloud.google.com/solutions/continuous-delivery

Here is how Google Cloud tools
can help during this process:
Local development: Making developers productive
with local application development is essential.
This local development entails building applications
that can be deployed to local and remote clusters.
Prior to committing changes to a source control
management system like GitHub, having a fast local
development loop can ensure developers get to test
and deploy their changes to a local cluster.

Google Cloud as a result provides Cloud Code. Cloud
Code comes with extensions to IDEs, such as Visual
Studio Code and Intellij to let developers rapidly
iterate, debug, and run code on Kubernetes. Under
the covers Cloud Code uses popular tools, such as
Skaffold, Jib, and Kubectl to enable developers to
get continuous feedback on code in real time.

Continuous integration: With the new Cloud
Build GitHub App, teams can trigger builds on
different repo events - pull requests, branch, or
tag events right from within GitHub. Cloud Build
is a fully serverless platform and scales up and
down in response to load with no requirement to
pre-provision servers or pay in advance for extra
capacity. Builds triggered via the GitHub App
automatically post status back to GitHub. The
feedback is integrated directly into the GitHub
developer workflow, reducing context switching.

Artifact Management: Container Registry is
a single place for your team to manage Docker
images, perform vulnerability scanning, and decide
who can access what with fine-grained access
control. The integration of vulnerability scanning with
Cloud Build lets developers identify security threats
as soon as Cloud Build creates an image and stores
it in the Container Registry.

Continuous delivery: Cloud Build uses build steps
to let you define specific steps to be performed as
a part of build, test, and deploy. For example, once
a new container has been created and pushed to
Container Registry, a later build step can deploy that
container to Google Kubernetes Engine (GKE) or
Cloud Run - along with the related configuration and
policy. You can also deploy to other cloud providers
in case you are pursuing a multi-cloud strategy.
Finally, if you are someone looking to pursue GitOps-
style continuous delivery, Cloud Build lets you
describe your deployments declaratively using files
(for example, Kubernetes manifests) stored in
a Git repository.

Deploying code isn’t the end of the story, however.
Organizations also need to manage that code while
it executes. To do this, GCP provides operations
teams with tools, such as Cloud Monitoring,
and Cloud Logging.

Using Google’s CI/CD tools certainly isn’t required
with GKE—you’re free to use alternative toolchains if
you wish. Examples include leveraging Jenkins for CI/
CD or Artifactory for artifact management.

If you’re like most organizations with VM-based
cloud applications, you probably don’t have a
well-oiled CI/CD system today. Putting one in place
is an essential part of getting benefits from your
re-architected application, but it takes work. The
technologies needed to create your pipelines are
available, due in part to the maturity of Kubernetes.
But the human changes can be substantial. The
people on your delivery teams must become
cross-functional, including development, testing,
and operations skills. Shifting culture takes time,
so be prepared to devote effort to changing the
knowledge and behaviors of your people as they
move to a CI/CD world.

1616

https://cloud.google.com/code
https://cloud.google.com/code
https://github.com/marketplace/google-cloud-build
https://github.com/marketplace/google-cloud-build
https://cloud.google.com/cloud-build
https://cloud.google.com/container-registry
https://cloud.google.com/kubernetes-engine/docs/tutorials/gitops-cloud-build
https://cloud.google.com/kubernetes-engine/docs/tutorials/gitops-cloud-build

Focus on security
Re-architecting monolithic applications to a cloud-
native paradigm is a big change. Unsurprisingly,
doing this introduces new security challenges
that you’ll need to address. Two of the most
important are:

•	 Securing access between containers

•	 Ensuring a secure software supply chain

The first of these challenges stems from an obvious
fact: breaking your application up into containerized
services (and perhaps microservices) requires some
way for those services to communicate. And even
though they’re all potentially running on the same
Kubernetes cluster, you still need to worry about
controlling access between them. After all, you
might be sharing that Kubernetes cluster with other
applications, and you can’t leave your containers
open to these other apps.

Controlling access to a container requires
authenticating its callers, then determining what

17

requests these other containers are authorized to
make. It’s typical today to solve this problem (and
several others) by using a service mesh. A leading
example of this is Istio, an open source project
created by Google, IBM, and others. Figure 7 shows
where Istio fits in a Kubernetes cluster.

As the figure shows, the Istio proxy intercepts all
traffic between containers in your application. This
lets the service mesh provide several useful services
without any changes to your application code. These
services include:

•	 Security, with both service-to-service
authentication using TLS and end-user
authentication

•	 Traffic management, letting you control how
requests are routed among the containers in
your application

•	 Observability, capturing logs and metrics of
communication among your containers

Figure 7: In a Kubernetes cluster with Istio, all traffic between containers goes through this service mesh.

Service Mesh Capabilities

Traffic Mgt
Traffic split, canary rollouts, mirroring

drain, secure ingress

Observability
metrics, logs, traces

Svc Registry & Envoy Configs
svc_name > ip_endpoints

Policy
rate limiting, quota, authZ

Resiliency
circuit breaking, fault injection

Security
workload carts, mTLS, authN

Service A

Service C

Proxy

Service BProxy

Proxy configuration and observability reporting via Mesh Control Plane

Service-Service Data

Proxy

https://istio.io/

GCP lets you add Istio to a GKE cluster. And even
though using a service mesh isn’t required, don’t be
surprised if knowledgeable customers of your cloud
applications start to ask whether your security is
up to the level that Istio provides. Customers care
deeply about security, and in a container-based
world, Istio is an important part of providing it.

Along with supporting open source Istio, Google
Cloud offers Traffic Director, a fully GCP-managed
service mesh control plane that delivers global load

18

Figure 8: Traffic Director provides support for automatic cross-region failover and overflow

Maya
California

Shen
Singapore

Asia southeast1

US-central1

Traffic Director

balancing across clusters and VM instances
in multiple regions, offloads health checking
from service proxies, and provides sophisticated
traffic management and other capabilities
described above.

One of the unique capabilities of Traffic Director
is automatic cross-region failover and overflow for
microservices in the mesh (shown in Figure 8).

https://cloud.google.com/traffic-director
https://cloud.google.com/traffic-director/docs/traffic-director-concepts#global_load_balancing_with
https://cloud.google.com/traffic-director/docs/traffic-director-concepts#global_load_balancing_with

19

Figure 9: Traffic mirroring in Traffic Director

You can couple global resiliency with security
for your services in the service mesh using
this capability.

Traffic Director offers several traffic management
features that can help improve the security posture
of your service mesh. For example - the traffic
mirroring feature shown in Figure 9 can be easily
set up as a policy to allow a shadow application to
receive a copy of the real traffic being processed
by the main version of the app. Copy responses
received by the shadow service are discarded after

Traffic Director

Service A

Proxy

Mirroring

Traffic Copy of Traffic

Proxy

Debug-Cart

Proxy

Cart

processing. Traffic mirroring can be a powerful tool
to test for security anomalies and debug errors in
production traffic without impacting or touching
production traffic.

But protecting interactions among your containers
isn’t the only new security challenge that a
refactored application brings. Another concern
is ensuring that the container images you run
are trustworthy. To do this, you must make sure
that your software supply chain has security and
compliance baked in.

Doing this requires doing two main things (shown
in Figure 10):

Vulnerability scanning: Container Registry
Vulnerability Scanning lets you get quick feedback
on potential threats and identify issues as soon as
your containers are built by Cloud Build and stored
in Container Registry. Package vulnerabilities for
Ubuntu, Debian, and Alpine are identified right
during the application development process, with
support for CentOS and RHEL on the way. This helps
avoid costly inefficiencies and reduces the time
required to remediate known vulnerabilities.

Binary Authorization: By integrating Binary
Authorization and Container Registry vulnerability
scanning, you can gate deployments based on
vulnerability scanning findings as part of the overall
deploy policy. Binary Authorization is a deploy-time
security control that ensures only trusted
container images are deployed on GKE without
any manual intervention.

20

Figure 10: Workflow for vulnerability scanning and binary authorization

Securing access between containers with a service
mesh and ensuring a secure software supply
chain are important aspects of creating secure
container-based applications. There are plenty
more, including verifying the security of the cloud
platform infrastructure you’re building on. What’s
most important, though, is to realize that moving
from a monolithic application to a modern cloud-
native paradigm introduces new security challenges.
To successfully make this transition, you’ll need to
understand what these are, then create a concrete
plan for addressing each one.

Code Cloud Build

Vulnerability
Found

Untrusted
images

Audit Log

Vulnerability
scanning

Binary
authorization

Trusted
images

Kubernetes
Engine

Getting started

Don’t treat moving to a cloud-native architecture
as a multi-year, big-bang project.
Instead, start now by finding a team with the capacity and expertise to get
started with a proof of concept - or find one that has already done this.
Then, take the lessons learned and start to spread them throughout the
organization. Have teams adopt the strangler fig pattern, moving services
incrementally and iteratively over to a cloud-native architecture as they
continue to deliver new functionality.

In order to succeed, it’s essential teams have the capacity, resources, and
authority to make evolving their systems architecture part of their daily work.
Set clear architectural goals for new work - following the 6 architectural
outcomes presented previously—but give teams freedom to decide how
to get there.

Most important of all—don’t wait to get started! Increasing the productivity
and agility of your teams and the security and stability of your services is
going to become ever more critical to the success of your organization. The
teams that do best are the ones that make disciplined experimentation and
improvement part of their daily work.

Chapter

03

212121

Google invented Kubernetes, based on software we have used internally for years,
which is why we have the deepest experience with cloud-native technology.

Google Cloud Platform has a strong focus on containerized applications, as
evidenced by our CI/CD and security offerings. The truth is clear: GCP is today’s
leader in support for containerized applications.

Visit cloud.google.com/devops to take our Quick Check to find out how you’re doing
and for advice on how to proceed, including implementing patterns discussed in this
white paper, such as a loosely coupled architecture.

Many GCP partners have already helped organizations like yours make this
transition. Why blaze a rearchitecting trail on your own when we can connect you
with an experienced guide?

To get started, contact us to arrange a meeting with a Google solutions architect. We
can help you understand the change, then work with you on how to make it happen.

Further reading
cloud.google.com/devops - six years of the State of DevOps Report, a set of articles with in-depth
information on the capabilities that predict software delivery performance, and a quick check to
help you find out how you’re doing and how to get better.

Site Reliability Engineering: How Google Runs Production Systems (O’Reilly 2016)

The Site Reliability Workbook: Practical Ways to Implement SRE (O’Reilly 2018)

Building Secure and Reliable Systems: Best Practices for Designing, Implementing and Maintaining
Systems (O’Reilly 2020)

222222

Ready to take your next steps?

To find out more about how Google Cloud
can help you break away from the pack,
just get in touch.

Talk to an expert

“How to break a Monolith into Microservices: What
to decouple and when” by Zhamak Dehghani https://
martinfowler.com/articles/break-monolith-into-
microservices.html

“Microservices: a definition of this new architectural term”
by Martin Fowler
https://martinfowler.com/articles/microservices.html

“Strangler Fig Application” by Martin Fowler
https://martinfowler.com/bliki/StranglerFigApplication.html

http://cloud.google.com/devops
 https://landing.google.com/sre/books/
 https://landing.google.com/sre/books/
 https://landing.google.com/sre/books/
 https://landing.google.com/sre/books/
https://inthecloud.withgoogle.com/born-digital/dl-cd.html?utm_source=google&utm_medium=et&utm_campaign=FY21-Q3-northam-NA1231-website-cs-digital_natives_contact_form&utm_content=re-architecting-whitepaper&utm_term=-
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/bliki/StranglerFigApplication.html

© 2021 Google LLC 1600 Amphitheatre Parkway, Mountain View, CA 94043.

