
Resiliency
with Cloud SQL
 Google Cloud’s fully managed relational database service

Contents

Resiliency with Cloud SQL 01

Factors Impacting Database Availability 02

Planned Downtime 03

Unplanned Downtime 07

Cloud SQL single-zone instance 08

Backup and Recovery 09

Cloud SQL High Availability 13

Cloud SQL Replication 16

Cloud SQL Disaster Recovery 18

Application considerations 20
for an HA deployment

Cloud SQL is Google Cloud’s fully managed relational database service for MySQL, PostgreSQL, and SQL
Server. It provides full compatibility with the source database engines while reducing operations costs by
automating database provisioning, storage capacity management, and other time-consuming tasks. Cloud
SQL has built-in features to ensure business continuity with reliable and secure services, backed by a 24/7
SRE team providing a 99.95% SLA for the service.

Cloud SQL acts as the database backend for critical business applications deployed by enterprises
across the globe. Many of these applications need to be available 24x7, and a key component of these
applications is the database storing and managing the data used by the application. Ensuring the
availability of these applications and the underlying database is important as downtimes result in loss of
revenue, unhappy customers, and potential damage to an organization’s reputation.

This in-depth guide discusses the availability features of Cloud SQL and how the service handles planned
maintenance events and unplanned outages, including the advantages and controls available to help you
minimize application downtime.

We will cover the availability of single-zone Cloud SQL instances, the advantages of a regional HA Cloud
SQL deployment, and present an architecture to address disaster recovery requirements.

Each architecture builds on top of the previous deployment method while improving the availability
of the Cloud SQL service. In other words, the Cloud SQL HA architecture provides the capabilities of
a single-zone Cloud SQL instance deployment, plus additional availability characteristics. We will also
briefly discuss the requirements of the applications to manage various outage events.

Note: There may be some differences in the capabilities of the individual database engines in Cloud SQL.
Please check the Cloud SQL documentation for the specific database engine for details.

Resiliency
with Cloud SQL

1

https://cloud.google.com/sql/docs

2

Factors impacting
database availability

All IT systems, including databases, can be subject
to unforeseen failures. Sometimes, they need to be
taken out of service for planned events like software
upgrades, security patches, and hardware and
firmware updates. A highly available deployment
architecture should ensure data protection that
provides zero to low RPO (Recovery Point Objective)
and low RTO (Recovery Time Objective) to ensure a
fast return to service in case of any type of outage.

Cloud SQL deployments can be architected to meet
the various availability requirements of applications.
Here are the recommended steps you should follow
to build a reliable system:

1. Define the reliability goals for the deployment
in terms of service level objectives (SLOs).

2. Design for scale and high availability, factoring
in redundancy of components, replication for
disaster recovery, multi-region architecture,
and handling load.

3. Build and leverage observability into
the infrastructure and applications.

3

There are two types of events that impact availability: planned downtime due to maintenance or other activities
and unplanned downtime due to various outage scenarios.

A planned outage or maintenance downtime is a proactive set of scheduled tasks carried out to improve
the database availability, performance, or the security of your Cloud SQL instance or its underlying operating
system. This is a scheduled event, and therefore, the impact on availability can be mitigated and controlled.

An unplanned outage, or unplanned downtime, is not scheduled and results from a component or system failure,
software bugs, or even human error. The database deployment architecture needs to be designed to handle
these outages.

Planned downtime
The planned events that can impact the availability
of a Cloud SQL instance fall into two categories:

1. Configuration updates that you initiate to change a Cloud SQL instance’s
machine type database flags, zone configuration changes etc

2. Maintenance events scheduled by Cloud SQL to patch or update software.

Configuration updates

Scaling an instance up or down in response to changing workload profiles and setting database flags for the
respective database engines are types of planned events that you control and schedule, usually during a low
period of user activity

A Cloud SQL instance has three main components that may need to be scaled: storage, CPU, and RAM.

Cloud SQL storage can be set to increase dynamically, which means there is no downtime when storage is
added to the instance. If the available storage falls below a threshold size, Cloud SQL automatically adds
additional storage capacity of up to 64 TB to your instance. Having a database that grows as needed minimizes
application downtime by reducing the risk of running out of database space. You can take the guesswork out of
capacity sizing without incurring any downtime or performing database maintenance.

While storage size can be increased automatically without downtime, it cannot be decreased. The storage
increases are permanent for the life of the instance. There are methods to reduce the size of the database
(thereby reducing storage), which could incur some downtime. An example might include migrating to a new
instance using our Database Migration Service (DMS) with less storage allocated to the target instance.

https://cloud.google.com/database-migration

4

The other components that make up the Cloud SQL
instance are CPU cores and RAM. Scaling vertically, or
changing the machine type to increase CPU and RAM,
requires the instance to be restarted, which entails a
downtime of less than a minute.

One way to scale performance without incurring
downtime is to offload reads to the replicas by adding
read replicas to your primary instance. This method
enables you to free up write capacity on the primary
server. Adding a replica instance does not incur any
downtime on your primary instance.

Modifying the database flags of your Cloud SQL
instance to change the behavior of the database
engine is another common configuration update.
Some database flags require you to restart your Cloud
SQL instance, leading to a downtime of less than a
minute. A list of flags that are allowed to be set or
changed by customers can be found in the Cloud SQL
documentation for the respective database engine.

https://cloud.google.com/sql/docs/postgres/flags
https://cloud.google.com/sql/docs/postgres/flags

5

Maintenance events
The second essential category of planned maintenance is software
maintenance. Given Cloud SQL is a managed service, it automatically
updates instances from time to time to ensure that the underlying
hardware, operating system, and database engine are reliable,
performant, secure, and up to date. We perform many of these
updates while the Cloud SQL instance is up and running.

However, certain system updates like operating system and
database engine patches and upgrades require a brief service
interruption. These updates are called maintenance events in
Cloud SQL. Service interruptions are less than 60 seconds on
average, with less than 30 seconds of average downtime needed
for PostgreSQL.

Maintenance events are scheduled every few months, and Cloud
SQL provides settings to allow you to control when they occur
to minimize the impact on your business. You can choose a
1-hour window on a day of the week when you can best tolerate
maintenance downtime. Cloud SQL will also notify you before a
scheduled maintenance event, so you can reschedule an event
if you cannot afford the instance to be unavailable during the
planned maintenance schedule.

While these updates are critical to ensuring optimal security
and the best functionality, some customers cannot afford any
downtime during certain times of the year (e.g., during a retail
sale event or a school registration or intake period).

To help, Cloud SQL has a unique feature that enables you to set
a deny maintenance period during these times. Setting up deny
maintenance periods, which come in blocks of up to 90 days,
prevents Cloud SQL from performing automatic maintenance
during a deny period. When you configure a deny maintenance
period on your primary instance, maintenance for all replicas
associated with the primary instance is also denied.

Note: In very rare cases, Cloud SQL might need to
schedule maintenance outside of the maintenance
settings to patch severe stability issues or time-
sensitive vulnerabilities. These updates roll out
rapidly, and Cloud SQL counts them as downtime
against the SLA.

https://cloud.google.com/sql/docs/mysql/maintenance

Above is a screenshot of what the maintenance settings could look like for a customer environment.

It’s also important to consider the application’s behavior during maintenance windows. Although the downtime
during maintenance is very low, applications should be built to handle temporary errors. You should leverage
techniques like proxies or connection pooling to minimize the application impact of dropped connections to the
database. Also, applications should have error handling and retry logic with exponential backoff built in to handle
any query failures or connection drops during maintenance.

For more details, we recommend reading this article about how Cloud SQL maintenance works.

https://cloud.google.com/blog/products/databases/how-does-cloud-sql-maintenance-work

7

Unplanned downtime
While downtime related to maintenance events can be
controlled, unplanned outages can occur due to a variety of
reasons ranging from hardware failures and software bugs
to human error. More severe types of outages could be
the loss of an entire region or data center due to a natural
disaster. It’s vital to minimize the downtime associated with
these outages and recover with zero or minimal data loss.

In the following sections, we will describe how the features
of Cloud SQL help to address various types of unplanned
outages and reduce the associated downtime.

The table below lists the high availability Cloud SQL solution
for various outage types for unplanned downtime, which we
will describe in more detail later.

Architecture Outage Cloud SQL
Solution

Recovery Point
(RPO)

Recovery Window
(RTO)

Single Instance Transient Instance
Failure

Reboot Zero Minutes

Rows deleted/
table dropped etc

Backup & recovery
+ PITR

Seconds/Mins
based on last
available backup
+ PITR

Minutes to hours

High Availability Instance Failure HA Deployment
acress Zones

Zero Minute

Zone Failure HA Deployment
across Zones

Zero Minutes

Disaster Recovery Region Failure Cloud SQL cross
region replicas

Seconds Minutes

*PITR = Point-in-time recovery

Cloud SQL
single-zone instance
The following sections discuss the availability characteristics
of a single-zone Cloud SQL instance and the features that
help to address recovery. Later, we’ll show you how to build
on top of that, with additional features, to provide a better
availability profile.

A single-zone Cloud SQL instance is likely used for development
or testing purposes or for running applications that do not have
strong RTO and RPO requirements. Live migration provides
enhanced availability and database backups with PITR provide
data protection. Please note that Live Migration is not triggerable
by the customer and is a GCP-level availability enhancement.

Live Migration
(managed by Google Cloud Operations)

In a typical data center environment, any updates to the underlying physical infrastructure like swapping out a
defective machine, replacing an old or failing disk, performing BIOS updates, or similar have the potential to bring
down the instance undergoing hardware maintenance.

However, Google Cloud performs hardware updates without interruption to a user’s application. For example, when
updating a database server, Google Cloud uses live migration—an advanced technology that reliably migrates
a virtual machine (VM) from the original host to a new one while the VM stays running. There may be a short
brownout period during the live migration, and the application should be coded to handle errors and retry.

Live Migration is done on a best-effort basis. If hardware fails completely, or otherwise prevents live migration, the
VM automatically crashes and restarts.

If an instance has issues or potentially
faces data loss due to corruption or human
error, backups help to restore lost data to
your Cloud SQL instance. The backup and
recovery concepts described below apply to
both a single-zone Cloud SQL instance and
the HA configuration.

Cloud SQL backups are incremental in
nature. The first backup is a full backup with
subsequent backups containing only the
changes since the last backup. The destination
for the backups is Google Cloud Storage, with
the option to choose either a multi-region
location (backup copies stored in two separate
regions) or a custom region location. If you
select a custom location, it’s helpful to adhere
to data residency regulations.

Backup
and recovery

In the event of human error or data corruption,
Cloud SQL backups protect your data
from loss or damage. While backups are
a foundational element of an availability
strategy, it is important to test recovery using
the backups that have been taken.

9

Cloud SQL offers
two types of backups:

1. Automated backups

2. On-demand backups

Automated backups are either configured when
an instance is created or at a later point in time by
editing an instance’s instance properties. You can
configure backups to initiate during a 4-hour window,
which runs automatically every day. The default
retention period for backups is seven days and
configurable for retention up to 365 days.

On the other hand, on-demand backups run in an
ad-hoc manner. They are particularly useful before
any risky operation on a database or if you need
a backup before the automated backup schedule
kicks in. On-demand backups do not have a retention
window and persist until you delete them or the
instance is deleted.

Backups, automated or on-demand, are a snapshot
copy of the database as it was when the backup was
run. Customers can restore from backups and get
a consistent state as of the time of the backup.
There’s additional capability to fast-forward the
database closer to the current state using point-in-
time recovery (PITR). Customers can view a list of
backups and the details of a backup for an instance
from the cloud console.

gcloud sql backups list --instance -

Use the following command to restore
the instance:

gcloud sql backups restore BACK_ID \
--restore-instance=TARGET_INSTANCE_
NAME_ \ --backup-instance=SOURCE_
INSTANCE_NAME

PITR helps prevent or minimize data loss by
recovering an instance to the latest point in
time or a specific point in time. For example,
if an error like accidental data deletion causes
data loss, you can recover a database to its
state before the error occurred. The PITR
capability leverages the transaction logs of
the database engine; automated backups
need to be enabled for PITR to be possible.
You can configure transaction logs to be
retained for one to seven days.

A point-in-time recovery always creates a
new instance that inherits the settings of the
source instance. It allows both the source
instance and new instance to exist while
enabling deleted data to be extracted and
transferred to the source instance. PITR
also provides the ability to create a copy of
the instance as it exists currently, making it
easy to create instance copies for test and
development purposes.

You can restore on-demand or automated
backups to the same instance where you took
the backup, another instance in the same
region, or even a different region—as long as
the backups are accessible.

The ability to restore the backup to a different
region provides basic disaster recovery
capabilities in this single instance scenario.
If a primary region fails, you can restore the
most recent backup to a different region and
the instance will be immediately available for
running applications.

During an outage of the region, the
backup ID can be determined using the
following command:

In most cases, backup and recovery deliver an RTO, the time it
takes to restore the backup to a new instance, of minutes. The
RPO, the time when data loss occurs, depends on whether PITR
is enabled on the instance.

If PITR is not enabled, the RPO will be the difference in time
between the last backup and the data loss incident. By
comparison, the RPO with PITR enabled can be as low as 0 since
you can target recovery to the point-in-time just before the data
loss incident.

Below are some of the scenarios where you can leverage Backup
and Recovery to recover from a failure:

1. Loss of Instance: If there is a complete loss of instance
due to catastrophic hardware failure, a new instance can be
created and the data will be hydrated from the backups.

2. Data Corruption: If data corruption or manual data
manipulation leads to inconsistencies in the state of the
data and database, a new instance can be created. The data
must be hydrated from backups and transaction logs (PITR)
before the data corruption event occurred.

For more details, we recommend reading this article about Cloud
SQL backup and recovery concepts.

https://cloud.google.com/sql/docs/mysql/backup-recovery/backups

13

Cloud SQL
High Availability

The Cloud SQL High Availability configuration
provides next-level availability for Cloud SQL
instances. It builds on top of our foundational
availability features described above.

Many applications need higher availability than what
is provided by a single-zone instance. Examples
of this might include business-critical applications
where the availability of the database, with no loss
of data and very low recovery time in case of any
failures, is essential for an organization to function.

Database clustering needs to be set up for the
Cloud SQL instance in this case. We call this a
High Availability (HA) configuration, which can be
set up when you create an instance or at a later
point in time.

An HA configuration provides redundancy,
minimizing downtime when a zone or instance
becomes unavailable. HA configurations
have two instances (a primary and a standby)
located in a primary and secondary zone within
a configured region. An HA instance is called a
regional instance. Only the instance in the primary
or secondary zone is active and accepts read
and write connections at a time.

HA instances use a concept called Regional
Persistent Disk (RePD). All writes made to the
primary instance are replicated synchronously to
disks in both zones before a transaction is reported
as committed, providing data redundancy. If the
primary fails and a standby instance needs to take
over as the new primary, you will not lose any data.

If your primary instance becomes unresponsive,
Cloud SQL automatically switches to serving data
from a standby instance. During failover, the new
primary continues serving data even when the
original primary comes back online to avoid another
outage for the application. Applications with retry
logic will be able to tolerate the switching times,
ensuring business continuity as well as a few
minutes of recovery time.

However, if the primary instance needs to be in the
zone that had the outage, you can fail back once
the original zone and instance is back online by
initiating a failback operation.

The Cloud SQL HA configuration ensures there is
no data loss if an instance or zone fails, providing
zero RPO and roughly a minute of failover to the
standby instance, thus minimizing the RTO.

Below is the HA configuration schematic:

Region 1

Zone A

Zone B

Servers Disks

Client
application

Servers Disks

IP address

Primary
instance

Cloud
SQL

Persistent
disk 01

Standby
instance

Cloud
SQL

Persistent
disk 02

Regional Persistent
disk

15

Here’s how to create a
Cloud SQL HA configuration:

Cloud SQL Replication
Replication is the ability to create copies of a Cloud SQL instance or an
on-premises database and offload work to the copies. A read replica is a
copy of the primary instance that reflects changes to the primary in almost
real time. While the main use case for replicas is to offload read workloads
from the primary instance, they also improve availability.

The primary instance becomes less loaded when you offload read
workloads to a replica, keeping the primary instance more stable. You
can also promote a replica to become the primary instance if the original
is corrupted. However, this can lead to some data loss depending on the
replication lag between the primary instance and the replica.

There can be multiple replicas for a primary instance in
various combinations:

• A replica in the same zone as the primary instance.

• A replica in a separate zone from the primary instance.

• A replica in a separate zone and a separate region.

It’s possible to create a replica in one, two, or all three of these locations
if needed. We recommend putting your replicas in a different zone. This
ensures that replicas will continue to operate even if there is an outage in
the zone that contains the primary instance.

Cloud SQL replicates data to replicas asynchronously. As a result, a replica
could be behind the primary by seconds or minutes, depending on certain
load characteristics and any transmission lag due to the replica’s location.
If a replica gets promoted as the primary, the RPO can be non-zero.

2. Better RPO and RTO of the database:
Many single instance databases suffer
from longer RPO due to the time it takes
to restore and recover from backups,
which may not be acceptable from a
business perspective. Read replicas
help keep RPO down to a few seconds
to improve availability and continuity for
single-instance configurations. Similarly,
promoting a read replica to a primary
takes a few seconds, which also helps
improve RTO. While the HA configuration
is a better solution from a RPO and RTO
perspective, replication gives users the
ability to use replicas for reads which may
be more suitable for certain use cases.

Here are some scenarios
where Cloud SQL read
replicas help:

1. Workload segregation between reads
and writes (offloading): Instead of all
transactions being processed by the primary
instance, reads can be served by replicas.
This ensures the primary instance only
processes critical writes or reads as part of
transactions, improving the performance of
the database and the application.

18

Cloud SQL
disaster recovery
The Cloud SQL HA configuration provides
protection against zonal failures. However, a
failure that affects an entire region, typically due
to a natural disaster or multiple catastrophic
failures, could render both the primary and standby
instances unavailable.

To recover from this type of failure, you can set up
cross-region read replicas in a different region from
where a primary is located.

Below is an example of a Cloud SQL DR schematic:

Region A

Zone A

Cloud SQL
proxy

Asynchronous replication

Primary Primary
Cloud SQL

Zone B

Standby Standby
Cloud SQL

Region B

Zone C

Cross-region read replica Cloud SQL

Cross-region read replica

19

RTO and RPO for cross-region read replicas are
minutes rather than hours. The application tier is
also multi-regional, which means an application can
continue processing even when the primary region
has a failure.

There are a several critical considerations to take
into account when using this configuration:

1. Failover to a read replica in the standby region
is not automatic when your primary region fails,
although it can be automated using a script..

2. Your operations team should determine if the
replica needs to be promoted to the new primary
and initiate the promotion of the replica.

3. Once the new primary instance is active, you will
need to reconfigure the clients to connect to the
new primary.

4. You will need to convert to an HA configuration
and create a new cross-region replica in a third
Google Cloud region to protect a newly promoted
primary. We are working on reducing the number
of steps to make this stage easier.

5. You can create a new cross-region replica and
initiate a failover process to fail back to the
original primary region once the outage in the
primary region resolves. As the failover to the
original primary region is manually triggered and
not based on an outage, you can choose a day
and time for this maintenance activity to reduce
the impact on your customers.

For more details, we recommend reading this article
on Cloud SQL disaster recovery.

https://cloud.google.com/sql/docs/mysql/intro-to-cloud-sql-disaster-recovery

20

Application considerations
for an HA deployment

Databases do not operate in isolation. They provide data
services to applications and constitute a larger ecosystem of
data being moved across systems. Apart from leveraging Cloud
SQL’s high availability capabilities to create reliable deployments,
it’s also critical to monitor your database and applications using
observability tools.

You should always maximize observability in applications and
ensure they can handle load to avoid instability and failure.
Monitoring should be implemented early in the development
cycle, well before you deploy the system in production.
Observability should also go beyond monitoring to include
tracing, profiling, and debugging.

Cloud SQL provides Query Insights that helps you detect,
diagnose, and prevent query performance problems in Cloud
SQL databases. It is currently available for the PostgreSQL
database engine, and we plan to extend support to other
engines. At the time of the writing of this paper, Cloud SQL
Insights for MySQL was available in preview.

Suppose your applications have direct connections to your
database, with each application opening multiple connections
simultaneously. In this case, your database could be
overwhelmed with a flood of connections.

Connections consume memory, CPU resources, operating
system processes, and more. Allowing too many connections at
once can contribute to out of memory (OOM) events, triggering
reboots (unexpected downtime) and impacts Cloud SQL
stability. You should connect applications to your database
through a connection pooling mechanism to avoid this situation.

https://cloud.google.com/sql/docs/postgres/query-insights-overview

Cloud Functions

Clients

Applications Cloud SQLConnection Pool

All of our Cloud SQL database engines have several open source
and third-party proxy and connection pooling solutions that you
can use based on the functionality needed. In the future, we plan
to offer a managed connection pooling solution for Cloud SQL.

A sample connection pooling schematic is shown below:

22

Rather than failing, you should always design
applications to degrade gracefully under
overload by serving partial responses or allowing
limited functionality. In our experience, it’s also
important to implement exponential backoff with
randomization in the error retry logic of client
applications. This prevents applications from
sending continuous requests to the database,
which can make the outage worse.

For more details, we recommend following this
framework to help you build and deploy reliable
systems.

The High Availability and Disaster Recovery
architecture discussed throughout this guide is
summarized in the following diagram.

Region: us-central1

Zone: us-central1-a

Read
Replica

Read Only
DB

Primary instance

Active database

Zone: us-central1-b

???

???

 Standby instance

Passive

Zone: us-west1-a

 Cross-region replica

Read-Only database

Region: us-west1

Static IP Address

Application

Regional Persistent Disk

Active

Standby

Synchronous
replication

Asynchronous
replication

GCS for automated and
on-demand backups

Read
Replica

Read Only
DB

Read
Replica

Read Only
DB

https://cloud.google.com/architecture/framework/reliability
https://cloud.google.com/architecture/framework/reliability

23

You should always test the deployment of your
regional database HA configuration and the cross-
region replica for disaster recovery. This ensures
that the HA solution functions as designed, enforces
a standard database HA failover procedure, and
establishes data consistency.

After the initial HA testing of your database, we highly
recommend testing the availability characteristics of
the entire system, including failover of the application
and the database together.

Periodic business continuity drills with defined
standard operating procedures are also necessary
to ensure that the high availability solution works
seamlessly in the event of a disaster.

Resources

Cloud SQL maintenance blog

Cloud SQL backup and recovery concepts

Cloud SQL Disaster Recovery

Google Cloud Architecture framework - Reliability

https://cloud.google.com/blog/products/databases/how-does-cloud-sql-maintenance-work
https://cloud.google.com/sql/docs/mysql/backup-recovery/backups
https://cloud.google.com/sql/docs/mysql/intro-to-cloud-sql-disaster-recovery
https://cloud.google.com/architecture/framework/reliability

