
1

Google Cloud
Security
Whitepapers

Google Cloud  
Infrastructure Security  
Design Overview  
 

March 2018 
 

Encryption at Rest in 
Google Cloud  

Encryption in Transit in 
Google Cloud   

Application Layer 
Transport Security 
in Google Cloud



2

Table of Contents

Google Cloud Infrastructure  
Security Design Overview    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

Encryption at Rest  
in Google Cloud    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23

Encryption in Transit  
in Google Cloud    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43

Application Layer Transport  
Security in Google Cloud    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 75



3

 A technical whitepaper from Google Cloud



4

Table of Contents

Introduction   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7 
 
Secure Low Level Infrastructure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8
Security of Physical Premises
Hardware Design and Provenance 
Secure Boot Stack and Machine Identity 

Secure Service Deployment   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
Service Identity, Integrity, and Isolation 
Inter-Service Access Management 
Encryption of Inter-Service Communication 
Access Management of End User Data 

Secure Data Storage   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .14
Encryption at Rest 
Deletion of Data 

Secure Internet Communication   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .15
Google Front End Service 
Denial of Service (DoS) Protection 
User Authentication 

Operational Security   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .17
Safe Software Development 
Keeping Employee Devices and Credentials Safe 
Reducing Insider Risk 
Intrusion Detection 



5

Securing the Google Cloud Platform (GCP)   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .19

Conclusion    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .21

Additional Reading   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22

The content contained herein is correct as of January 2017, and represents the status quo as of the time it was written.
Google’s security policies and systems may change going forward, as we continually improve protection for our customers.



6

CIO-level summary
 

• Google has a global scale technical infrastructure designed to 
provide security through the entire information processing lifecycle 
at Google. This infrastructure provides secure deployment of 
services, secure storage of data with end user privacy safeguards, 
secure communications between services, secure and private 
communication with customers over the internet, and safe 
operation  by administrators.

• Google uses this infrastructure to build its internet services, 
including both consumer services such as Search, Gmail, and 
Photos, and enterprise services such as G Suite and Google  
Cloud Platform.

• The security of the infrastructure is designed in progressive layers 
starting from the physical security of data centers, continuing on  
to the security of the hardware and software that underlie the 
infrastructure, and finally, the technical constraints and processes 
in place to support operational security.

• Google invests heavily in securing its infrastructure with many 
hundreds of engineers dedicated to security and privacy  
distributed across all of Google, including many who are  
recognized industry authorities.
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Introduction

This document gives an overview of how security is designed into 
Google’s technical infrastructure. This global scale infrastructure is 
designed to provide security through the entire information 
processing lifecycle at Google. This infrastructure provides secure 
deployment of services, secure storage of data with end user privacy 
safeguards, secure communications between services, secure and 
private communication with customers over the internet, and safe 
operation by administrators. 

Google uses this infrastructure to build its internet services, including 
both consumer services such as Search, Gmail, and Photos, and 
enterprise services such as G Suite and Google Cloud Platform.

We will describe the security of this infrastructure in progressive 
layers starting from the physical security of our data centers, 
continuing on to how the hardware and software that underlie the 
infrastructure are secured, and finally, describing the technical 
constraints and processes in place to support operational security.

Google Infrastructure Security Layers

[Figure 1]  
Google Infrastructure   
Security Layers

The various layers of security 
starting from hardware 
infrastructure at the bottom 
layer up to operational security 
at the top layer. The contents of 
each layer are described in detail 
in the paper.
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Secure Low Level Infrastructure
In this section we describe how we secure the 
lowest layers of our infrastructure, ranging from 
the physical premises to the purpose-built  
hardware in our data centers to the low-level 
software stack running on every machine.

Security of Physical Premises

 Google designs and builds its own data centers, which incorporate 
multiple layers of physical security protections. Access to these data 
centers is limited to only a very small fraction of Google employees. 
We use multiple physical security layers to protect our data center 
floors and use technologies like biometric identification, metal  
detection, cameras, vehicle barriers, and laser-based intrusion  
detection systems. Google additionally hosts some servers in third-
party data centers, where we ensure that there are Google-controlled 
physical security measures on top of the security layers provided by 
the data center operator. For example, in such sites we may operate 
independent biometric identification systems, cameras, and  

metal detectors.

Hardware Design and Provenance

A Google data center consists of thousands of server machines 
connected to a local network. Both the server boards and the net-
working equipment are custom-designed by Google. We vet 
component vendors we work with and choose components with care, 
while working with vendors to audit and validate the security proper-
ties provided by the components. We also design custom chips, 
including a hardware security chip that is currently being deployed on 
both servers and peripherals. These chips allow us to securely iden-
tify and authenticate legitimate Google devices at the hardware level.

Secure Boot Stack and Machine Identity

Google server machines use a variety of technologies to ensure that 
they are booting the correct software stack. We use cryptographic  
 
 

A Google data 
center consists of 
thousands of server 
machines connected 
to a local network . 
Both the server 
boards and the 
networking 
equipment are 
custom designed  
by Google .
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signatures over low-level components like the BIOS, bootloader, 
kernel, and base operating system image. These signatures can be 
validated during each boot or update. The components are all Google-
controlled, built, and hardened. With each new generation of hardware 
we strive to continually improve security: for example, depending on 
the generation of server design, we root the trust of the boot chain in 
either a lockable firmware chip, a microcontroller running Google-
written security code, or the above mentioned Google-designed 
security chip.

Each server machine in the data center has its own specific identity 
that can be tied to the hardware root of trust and the software with 
which the machine booted. This identity is used to authenticate API 
calls to and from low-level management services on the machine.

Google has authored automated systems to ensure servers run up-to-
date versions of their software stacks (including security patches), to 
detect and diagnose hardware and software problems, and to remove 
machines from service if necessary. 

Secure Service Deployment 

 We will now go on to describe how we go from the base hardware and 
software to ensuring that a service is deployed securely on our infra-
structure. By ‘service’ we mean an application binary that a developer 
wrote and wants to run on our infrastructure, for example, a Gmail 
SMTP server, a BigTable storage server, a YouTube video transcoder, 
or an App Engine sandbox running a customer application. There may 
be thousands of machines running copies of the same service to 
handle the required scale of the workload. Services running on the 
infrastructure are controlled by a cluster orchestration service  
called Borg. 

As we will see in this section, the infrastructure does not assume any 
trust between services running on the infrastructure. In other words, 
the infrastructure is fundamentally designed to be multi-tenant.
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Service Identity, Integrity, and Isolation

We use cryptographic authentication and authorization at the  
application layer for inter-service communication. This provides 
strong access control at an abstraction level and granularity that 
administrators and services can  naturally understand.

We do not rely on internal network segmentation or firewalling as our 
primary security mechanisms, though we do use ingress and egress 
filtering at various points in our network to prevent IP spoofing as a 
further security layer. This approach also helps us to maximize our 
network’s performance and availability.

Each service that runs on the infrastructure has an associated  
service account identity. A service is provided cryptographic  
credentials that it can use to prove its identity when making or  
receiving remote procedure calls (RPCs) to other services. These 
identities are used by clients to ensure that they are talking to the 
correct intended server, and by servers to limit access to methods 
and data to particular clients.

Google’s source code is stored in a central repository where both 
current and past versions of the service are auditable. The infrastruc-
ture can additionally be configured to require that a service’s binaries 
be built from specific reviewed, checked in, and tested source code. 
Such code reviews require inspection and approval from at least one 
engineer other than the author, and the system enforces that code 
modifications to any system must be approved by the owners of that 
system. These requirements limit the ability of an insider or adversary 
to make malicious modifications to source code and also provide a 
forensic trail from a service back to its source.  

We have a variety of isolation and sandboxing techniques for protect-
ing a service from other services running on the same machine. 
These techniques include normal Linux user separation, language  
and kernel-based sandboxes, and hardware virtualization. In general, 
we use more layers of isolation for riskier workloads; for example, 
when running complex file format converters on user-supplied data  
or when running user supplied code for products like Google App 
Engine or Google Compute Engine. As an extra security boundary,  

We use 
cryptographic 
authentication and 
authorization at the 
application layer for 
inter-service 
communication .   
This provides strong 
access control at an 
abstraction level and 
granularity that 
administrators and 
services can 
naturally understand .



11

we enable very sensitive services, such as the cluster orchestration 
service and some key management services, to run exclusively on  
dedicated machines.

Inter-Service Access Management

The owner of a service can use access management features  
provided by the infrastructure to specify exactly which other services  
can communicate with it. For example, a service may want to offer 
some APIs solely to a specific whitelist of other services. That service 
can be configured with the whitelist of the allowed service account 
identities and this access restriction is then automatically enforced  
by the infrastructure.

Google engineers accessing services are also issued individual 
identities, so services can be similarly configured to allow or deny 
their accesses. All of these types of identities (machine, service, and 
employee) are in a global name space that the infrastructure main-
tains. As will be explained later in this document, end user identities 
are handled separately.

The infrastructure provides a rich identity management workflow 
system for these internal identities including approval chains, logging, 
and notification. For example, these identities can be assigned to 
access control groups via a system that allows two party-control 
where one engineer can propose a change to a group that another 
engineer (who is also an administrator of the group) must approve. 
This system allows secure access management processes to scale 
to the thousands of services running on the infrastructure.

In addition to the automatic API-level access control mechanism, the 
infrastructure also provides services the ability to read from central 
ACL and group databases so that they can implement their own 
custom, fine-grained access control where necessary.

Encryption of Inter-Service Communication  

Beyond the RPC authentication and authorization capabilities dis-
cussed in the previous sections, the infrastructure also provides 
cryptographic privacy and integrity for RPC data on the network.  

The owner of a 
service can use 
access management 
features provided by 
the infrastructure to 
specify exactly which 
other services can 
communicate with it .
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To provide these security benefits to other application layer protocols 
such as HTTP, we encapsulate them inside our infrastructure RPC 
mechanisms. In essence, this gives application layer isolation and 
removes any dependency on the security of the network path. 
Encrypted inter-service communication can remain secure even if the 
network is tapped or a network device is compromised.

Services can configure the level of cryptographic protection they want 
for each infrastructure RPC (e.g. only configure integrity-level protec-
tion for low value data inside data centers). To protect against 
sophisticated adversaries who may be trying to tap our private WAN 
links, the infrastructure automatically encrypts all infrastructure RPC 
traffic which goes over the WAN between data centers, without requir-
ing any explicit configuration from the service. We have started to 
deploy hardware cryptographic accelerators that will allow us to 
extend this default encryption to all infrastructure RPC traffic inside 
our data centers. 

Access Management of End User Data

A typical Google service is written to do something for an end user. 
For example, an end user may store their email on Gmail. The end 
user’s interaction with an application like Gmail spans other services 
within the infrastructure. So for example, the Gmail service may call 
an API provided by the Contacts service to access the end user’s 
address book. 

We have seen in the preceding section that the Contacts service can 
be configured such that the only RPC requests that are allowed are 
from the Gmail service (or from any other particular services that the 
Contacts service wants  to allow).

This, however, is still a very broad set of permissions. Within the 
scope of this permission the Gmail service would be able to request 
the contacts of any user at any time. 

Since the Gmail service makes an RPC request to the Contacts ser-
vice on behalf of a particular end user, the infrastructure provides a 
capability for the Gmail service to present an “end user permission 
ticket” as part of the RPC. This ticket proves that the Gmail service is 

To protect against 
sophisticated 
adversaries who may 
be trying to tap our 
private WAN links, 
the infrastructure 
automatically 
encrypts all 
infrastructure RPC 
traffic which goes 
over the WAN 
between  data 
centers .
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[Figure 2]  
Service Identity and   
Access Management

The infrastructure provides 
 service identity, automatic 
 mutual authentication, 
 encrypted inter-service 
communication and 
 enforcement of access 
�policies�defined�by�the�
 service owner.

currently servicing a request on behalf of that particular end user. 
This enables the Contacts service to implement a safeguard where it 
only returns data for the end user named in the ticket. 

The infrastructure provides a central user identity service which 
issues these “end user permission tickets”. An end user login is veri-
fied by the central identity service which then issues a user credential, 
such as a cookie or OAuth token, to the user’s client device. Every 
subsequent request from the client device into Google needs to 
present that user credential.

When a service receives an end user credential, it passes the creden-
tial to the central identity service for verification. If the end user 
credential verifies correctly, the central identity service returns a 
short-lived “end user permission ticket” that can be used for RPCs 
related to the request. In our example, that service which gets the 
“end user permission ticket” would be the Gmail service, which would 
pass it to the Contacts service. From that point on, for any cascading 
calls, the “end user permission ticket” can be handed down by the 
calling service to the callee as a part of the RPC call.



14

Secure Data Storage
Up to this point in the discussion, we have 
described how we deploy services securely . We 
now turn to discussing how we implement 
secure data storage on the infrastructure .   

Encryption at Rest

Google’s infrastructure provides a variety of storage services, such as 
BigTable and Spanner, and a central key management service. Most 
applications at Google access physical storage indirectly via these 
storage services. The storage services can be configured to use keys 
from the central key management service to encrypt data before it is 
written to physical storage. This key management service supports 
automatic key rotation, provides extensive audit logs, and integrates 
with the previously mentioned end user permission tickets to link keys 
to particular end users. 

Performing encryption at the application layer allows the infrastruc-
ture to isolate itself from potential threats at the lower levels of 
storage such as malicious disk firmware. That said, the infrastructure 
also implements additional layers of protection. We enable hardware 
encryption support in our hard drives and SSDs and meticulously 
track each drive through its lifecycle. Before a decommissioned 
encrypted storage device can physically leave our custody, it is 
cleaned using a multi-step process that includes two independent 
verifications. Devices that do not pass this wiping procedure are 
physically destroyed (e.g. shredded) on-premise.

Deletion of Data

Deletion of data at Google most often starts with marking specific 
data as “scheduled for deletion” rather than actually removing the 
data entirely. This allows us to recover from unintentional deletions, 
whether customer-initiated or due to a bug or process error internally. 
After having been marked as “scheduled for deletion,” the data is 
deleted in accordance with service-specific policies.

To protect against 
sophisticated 
adversaries who may 
be trying to tap our 
private WAN links, 
the infrastructure 
automatically 
encrypts all 
infrastructure RPC 
traffic which goes 
over the WAN 
between  data 
centers .
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When an end user deletes their entire account, the infrastructure 
notifies services handling end user data that the account has been 
deleted. The  services can then schedule data associated with the 
deleted end user account for deletion.

Secure Internet Communication
Until this point in this document, we have 
described how we secure services on our  
infrastructure . In this section we turn to  
describing how we secure communication 
between the internet and these services .

As discussed earlier, the infrastructure consists of a large set of 
physical machines which are interconnected over the LAN and WAN 
and the security of inter-service communication is not dependent on 
the security of the network. However, we do isolate our infrastructure 
from the internet into a private IP space so that we can more easily 
implement additional protections such as defenses against denial of 
service (DoS) attacks by only exposing a subset of the machines 
directly to external internet traffic.

Google Front End Service

When a service wants to make itself available on the Internet, it can 
register itself with an infrastructure service called the Google Front 
End (GFE). The GFE ensures that all TLS connections are terminated 
using correct certificates and following best practices such as  
supporting perfect forward secrecy. The GFE additionally applies 
protections against Denial of Service attacks (which we will discuss  
in more detail later). The GFE then forwards requests for the service 
using the RPC security protocol discussed previously.

In effect, any internal service which chooses to publish itself exter-
nally uses the GFE as a smart reverse-proxy front end. This front end 
provides public IP hosting of its public DNS name, Denial of Service 
(DoS) protection, and TLS termination. Note that GFEs run on the 
infrastructure like any other service and thus have the ability to scale 
to match incoming request volumes.  

The Google Front 
End ensures that all 
TLS connections are 
terminated using 
correct certificates 
and following best 
practices such as 
supporting perfect 
forward secrecy .
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Denial of Service (DoS) Protection

The sheer scale of our infrastructure enables Google to simply  
absorb many DoS attacks. That said, we have multi-tier, multi-layer 
DoS protections that further reduce the risk of any DoS impact on a 
service running behind a GFE.

After our backbone delivers an external connection to one of our data 
centers, it passes through several layers of hardware and software 
load-balancing. These load balancers report information about 
incoming traffic to a central DoS service running on the infrastructure. 
When the central DoS service detects that a DoS attack is taking 
place, it can configure the load balancers to drop or throttle traffic 
associated with the attack.

At the next layer, the GFE instances also report information about 
requests that they are receiving to the central DoS service, including 
application layer information that the load balancers don’t have. The 
central DoS service can then also configure the GFE instances to drop 
or throttle attack traffic.

User Authentication

After DoS protection, the next layer of defense comes from our cen-
tral identity service. This service usually manifests to end users as the 
Google login page. Beyond asking for a simple username and pass-
word, the service also intelligently challenges users for additional 
information based on risk factors such as whether they have logged 
in from the same device or a similar location in the past. After authen-
ticating the user, the identity service issues credentials such as 
cookies and OAuth tokens that can be used for subsequent calls. 

Users also have the option of employing second factors such as OTPs 
or phishing-resistant Security Keys when signing in. To ensure that 
the benefits go beyond Google, we have worked in the FIDO Alliance 
with multiple device vendors to develop the Universal 2nd Factor 
(U2F) open standard. These devices are now available in the market 
and other major web services also have followed us in implementing 
U2F support

The sheer scale of 
our infrastructure 
enables Google to 
simply absorb many 
DoS attacks. That 
said, we have multi-
tier, multi-layer DoS 
protections that 
further reduce the 
risk of any DoS 
impact on a service 
running behind  
a GFE .
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Operational Security 

Up to this point we have described how security is designed into our 
infrastructure and have also described some of the mechanisms for 
secure operation such as access controls on RPCs.

We now turn to describing how we actually operate the infrastructure 
securely: We create infrastructure software securely, we protect our 
employees’ machines and credentials, and we defend against threats 
to the infrastructure from both insiders and external actors.

Safe Software Development 

Beyond the central source control and two-party review features 
described earlier, we also provide libraries that prevent developers 
from introducing certain classes of security bugs. For example, we 
have libraries and frameworks that eliminate XSS vulnerabilities in 
web apps. We also have automated tools for automatically detecting 
security bugs including fuzzers, static analysis tools, and web secu-
rity scanners.

As a final check, we use manual security reviews that range from 
quick triages for less risky features to in-depth design and implemen-
tation reviews for the most risky features. These reviews are 
conducted by a team that includes experts across  web security, 
cryptography, and operating system security. The reviews can also 
result in new security library features and new fuzzers that can then 
be applied to other future products.

In addition, we run a Vulnerability Rewards Program where we pay 
anyone who is able to discover and inform us of bugs in our infra-
structure or applications. We have paid several million dollars in 
rewards in this program.

Google also invests a large amount of effort in finding 0-day exploits 
and other security issues in all the open source software we use and 
upstreaming these issues. For example, the OpenSSL Heartbleed bug 
was found at Google and  we are the largest submitter of CVEs and 
security bug fixes for the Linux  KVM hypervisor.

We run a 
Vulnerability 
Rewards Program 
where we pay 
anyone who is able 
to discover and 
inform us of bugs in 
our infrastructure  or 
applications .



18

Keeping Employee Devices and Credentials Safe

We make a heavy investment in protecting our employees’ devices 
and credentials from compromise and also in monitoring activity to 
discover potential compromises or illicit insider activity. This is a 
critical part of our investment in ensuring that our infrastructure is 
operated safely.

Sophisticated phishing has been a persistent way to target our 
employees. To guard against this threat we have replaced phishable 
OTP second factors with mandatory use of U2F-compatible Security 
Keys for our employee accounts. 

We make a large investment in monitoring the client devices that our 
employees use to operate our infrastructure. We ensure that the 
operating system images for these client devices are up-to-date with 
security patches and we control the applications that can be installed. 
We additionally have systems for scanning user-installed apps, down-
loads, browser extensions, and content browsed from the web for 
suitability on corp clients.

Being on the corporate LAN is not our primary mechanism for  
granting access privileges. We instead use application-level access 
management controls which allow us to expose internal applications 
to only specific users when they are coming from a correctly man-
aged device and from expected networks and geographic locations. 
(For more detail see our additional reading about ‘BeyondCorp’.) 

Reducing Insider Risk

We aggressively limit and actively monitor the activities of employees 
who have been granted administrative access to the infrastructure 
and continually work to eliminate the need for privileged access for 
particular tasks by providing automation that can accomplish the 
same tasks in a safe and controlled way. This includes requiring 
two-party approvals for some actions and introducing limited APIs 
that allow debugging without exposing sensitive information. 
 
Google employee access to end user information can be logged 
through low-level infrastructure hooks. Google’s security team 
actively monitors access patterns and investigates unusual events.
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Intrusion Detection

Google has sophisticated data processing pipelines which integrate 
host-based signals on individual devices, network-based signals  
from various monitoring points in the infrastructure, and signals  
from infrastructure services. Rules and machine intelligence built on 
top of these pipelines give operational security engineers warnings  
of possible incidents. Our investigation and incident response t 
eams triage, investigate, and respond to these potential incidents  
24 hours a day, 365 days a year. We conduct Red Team exercises 
 to measure and improve the effectiveness of our detection and 
response mechanisms.

Securing the Google Cloud   
Platform (GCP)
In this section, we highlight how our public cloud 
infrastructure, GCP, benefits from the security 
of the underlying infrastructure . In this section, 
we will take Google Compute Engine (GCE) as 
an example service and describe in detail the 
service-specific security improvements that we 
build on top of the infrastructure . 

GCE enables customers to run their own virtual machines on Google’s 
infrastructure. The GCE implementation consists of several logical 
components, most notably the management control plane and the 
virtual machines themselves.

The management control plane exposes the external API surface and 
orchestrates tasks like virtual machine creation and migration. It runs 
as a variety of services on the infrastructure, thus it automatically 
gets foundational integrity features such as a secure boot chain. The 
individual services run under distinct internal service accounts so that 
every service can be granted only the permissions it requires when 
making remote procedure calls (RPCs) to the rest of the control plane. 
As discussed earlier, the code for all of these services is stored in the 
central Google source code repository, and there is an audit trail  
between this code and the binaries that are eventually deployed.

Rules and machine 
intelligence built on 
top of signal 
monitoring pipelines 
give operational 
Security Engineers 
warnings of possible 
incidents .



20

The GCE control plane exposes its API via the GFE, and so it takes 
advantage of infrastructure security features like Denial of Service 
(DoS) protection and centrally managed SSL/TLS support. 
Customers can get similar protections for applications running on 
their GCE VMs by choosing to use the optional Google Cloud Load 
Balancer service which is built on top of the GFE and can mitigate 
many types of DoS attacks.

End user authentication to the GCE control plane API is done via 
Google’s centralized identity service which provides security features 
such as hijacking detection. Authorization is done using the central 
Cloud IAM service.

The network traffic for the control plane, both from the GFEs to the 
first service behind it and between other control plane services is 
automatically authenticated by the infrastructure and encrypted 
whenever it travels from one data center to another. Additionally, the 
infrastructure has been configured to encrypt some of the control 
plane traffic within the data center as well.

Each virtual machine (VM) runs with an associated virtual machine 
manager (VMM) service instance. The infrastructure provides these 
services with two identities. One identity is used by the VMM service 
instance for its own calls and one identity is used for calls that the 
VMM makes on behalf of the customer’s VM. This allows us to further 
segment the trust placed in calls coming from  the VMM. 

GCE persistent disks are encrypted at-rest using keys protected by 
the central infrastructure key management system. This allows for 
automated rotation and central auditing of access to these keys.

Customers today have the choice of whether to send traffic from their 
VMs to other VMs or the internet in the clear, or to implement any 
encryption they choose for this traffic. We have started rolling out 
automatic encryption for the WAN traversal hop of customer VM to 
VM traffic. As described earlier, all control plane WAN traffic within 
the infrastructure is already encrypted. In the future we plan to take 
advantage of the hardware-accelerated network encryption dis-
cussed earlier to also encrypt inter-VM LAN traffic within the  
data center.

The Google 
Compute Engine 
(GCE) control plane 
exposes its API via 
the Google Front-
end (GFE), and so it 
takes advantage of 
infrastructure 
security features like 
Denial of Service 
(DoS) protection and 
centrally managed 
SSL/TLS support.
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The isolation provided to the VMs is based on hardware virtualization 
using the open source KVM stack. We have further hardened our 
particular implementation of KVM by moving some of the control and 
hardware emulation stack into an unprivileged process outside the 
kernel. We have also extensively tested the core of KVM using tech-
niques like fuzzing, static analysis, and manual code review. As 
mentioned earlier, the majority of the recently publicly disclosed 
vulnerabilities which have been upstreamed into KVM came  
from Google.

Finally, our operational security controls are a key part of making  
sure that accesses to data follow our policies. As part of the Google 
Cloud Platform, GCE’s use of customer data follows the GCP use  
of customer data policy, namely that Google will not access or  
use customer data, except as necessary to provide services  
to customers.

Conclusion 

We have described how the Google infrastructure is designed to  
build, deploy and operate services securely at internet scale. This 
includes both consumer services such as Gmail and our enterprise 
services. In addition, our Google Cloud offerings are built on top of 
this same infrastructure. 

We invest heavily in securing our infrastructure. We have many  
hundreds of engineers dedicated to security and privacy distributed 
across all of Google, including many who are recognized  
industry authorities.

As we have seen, the security in the infrastructure is designed in 
layers starting from the physical components and data center, to 
hardware provenance, and then on to secure boot, secure inter-ser-
vice communication, secured data at rest, protected access to 
services from the internet and finally, the technologies and people 
processes we deploy for operational security.

We invest heavily in 
securing our 
infrastructure . We 
have many hundreds 
of engineers 
dedicated to security 
& privacy distributed 
across all of Google, 
including many who 
are recognized 
industry authorities .
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Additional Reading
 
Please see the following papers for more detail on specific areas:

1. Physical security of our data centers 
 https://goo.gl/WYlKGG 

2. Design of our cluster management and orchestration 
 http://research.google.com/pubs/pub43438.html

3. Storage encryption and our customer facing GCP encryption features 
 https://cloud.google.com/security/encryption-at-rest/ 

4.  BigTable storage service 
 http://research.google.com/archive/bigtable.html

5. Spanner storage service 
 http://research.google.com/archive/spanner.html 

6. Architecture of our network load balancing 
 http://research.google.com/pubs/pub44824.html

7. BeyondCorp approach to enterprise security 
 http://research.google.com/pubs/pub43231.html 

8. Combating phishing with Security Key & the Universal 2nd Factor (U2F) standard   
 http://research.google.com/pubs/pub45409.html

9. More about the Google Vulnerability Rewards Program 
 https://bughunter.withgoogle.com/ 

10. More about HTTPs and other load balancing offerings on GCP 
 https://cloud.google.com/compute/docs/load-balancing/

11. More about DoS protection best practices on GCP 
 https://cloud.google.com/files/GCPDDoSprotection-04122016.pdf

12. Google Cloud Platform use of customer data policy 
 https://cloud.google.com/terms/ 

13. More about application security & compliance in G Suite (Gmail, Drive, etc)   
 https://goo.gl/3J20R2

https://goo.gl/WYlKGG 
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This is the second of two whitepapers on how Google uses encryption to protect 
your data. We also released a G Suite encryption whitepaper. You may still find it 
useful to read both documents to learn about the use of encryption at Google. 

In this whitepaper, you will find more detail on Google’s key hierarchy and root of 
trust, as well as information on the granularity of encryption in specific GCP 
services for data at rest (this document does not cover encryption in transit).

For all Google products, we strive to keep customer data highly protected, and to 
be as transparent as possible about how we secure it.

The content contained herein is correct as of August 2016, and represents the 
status quo as of the time it was written. Google Cloud Platform’s security policies 
and systems may change going forward, as we continually improve protection for 
our customers.

http://services.google.com/fh/files/helpcenter/google_encryptionwp2016.pdf
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CIO-level summary
 

• Google uses several layers of encryption to protect customer data 
at rest in Google Cloud Platform products.

• Google Cloud Platform encrypts customer content stored at rest, 
without any action required from the customer, using one or more 
encryption mechanisms. There are some minor exceptions, noted 
further in this document.

• Data for storage is split into chunks, and each chunk is encrypted 
with a unique data encryption key. These data encryption keys are 
stored with the data, encrypted with ("wrapped" by) key encryption 
keys that are exclusively stored and used inside Google’s central 
Key Management Service. Google’s Key Management Service is  
redundant and globally distributed.

• Data stored in Google Cloud Platform is encrypted at the storage 
level using either AES256 or AES128.

•  Google uses a common cryptographic library, Keyczar, to 
implement encryption  consistently across almost all Google  
Cloud Platform products. Because this common library is widely 
accessible, only a small team of cryptographers needs to   
properly implement and maintain this tightly controlled and 
reviewed code.
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Introduction
For many individuals and companies, security  
is a deciding factor in choosing a public cloud  
vendor . At Google, security is of the utmost 
importance. We take security and privacy  
seriously, and we work tirelessly to protect your 
data — whether it is traveling over the Internet, 
moving between our data centers, or stored on 
our servers .

Central to our comprehensive security strategy is encryption in transit 
and at  rest, which ensures the data can be accessed only by the 
authorized roles and services with audited access to the encryption 
keys. This paper describes Google’s approach to encryption at rest for 
the Google Cloud Platform, and how Google uses it to keep your 
information more secure.

This document is targeted at CISOs and security operations teams 
currently  using or considering using Google Cloud Platform. With the 
exception of the introduction, this document assumes a basic under-
standing of encryption and cryptographic primitives.

What is encryption?

Encryption is a process that takes legible data as input (often called 
plaintext), and transforms it into an output (often called ciphertext) 
that reveals little or no information about the plaintext. The encryption 
algorithm used is public, such as the Advanced Encryption Standard 
(AES), but execution depends on a key, which is kept secret. To 
decrypt the ciphertext back to its original form, you need to employ 
the key. At Google, the use of encryption to keep data confidential is 
usually combined with integrity protection; someone with access to 
the ciphertext can neither understand it nor make a modification 
without knowledge of the key. For more information on cryptography, 
a good resource is an Introduction to Modern Cryptography.

Encryption is a 
process that takes 
legible data as input, 
called plaintext, and 
transforms it into an 
output, called 
ciphertext, that 
reveals little or no 
information about 
the plaintext .

http://www.cs.umd.edu/~jkatz/imc.html
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In this whitepaper, we focus on encryption at rest. By encryption at 
rest, we  mean encryption used to protect data that is stored on a disk 
(including solid-state drives) or backup media.

Why encryption helps secure customer data

Encryption is one piece of a broader security strategy. Encryption 
adds a layer of defense in depth for protecting data — encryption 
ensures that if the data accidentally falls into an attacker’s hands, 
they cannot access the data without also having access to the 
encryption keys. Even if an attacker obtains the storage devices 
containing your data, they won’t be able to understand or decrypt it.

Encryption at rest reduces the surface of attack by effectively "cutting 
out" the  lower layers of the hardware and software stack. Even if 
these lower layers are compromised (for example, through physical 
access to devices), the data on those devices is not compromised if 
adequate encryption is deployed.  Encryption also acts as a "choke-
point" — centrally managed encryption keys create a single place 
where access to data is enforced and can be audited. 

Encryption provides an important mechanism in how Google ensures 
the privacy of customer data — it allows systems to manipulate data, 
e.g., for backup, and engineers to support our infrastructure, without 
providing access to content..

What we consider customer data

As defined in the Google Cloud Platform terms of service, customer 
data refers to content provided to Google by a Google Cloud Platform 
customer (or at their direction), directly or indirectly, via Google Cloud 
Platform services used by that customer’s account. Customer data 
includes customer content and  customer metadata.

Customer content is data that Google Cloud Platform customers 
generate themselves or provide to Google, like data stored in Google 
Cloud Storage, disk snapshots used by Google Compute Engine, and 
Cloud IAM policies. The encryption at rest of customer content is the 
focus of this whitepaper.

https://cloud.google.com/terms/
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Customer metadata makes up the rest of customer data, and refers  
to all data that cannot be classified as customer content. This could 
include auto-generated project numbers, timestamps, and IP 
addresses, as well as the byte size of an object in Google Cloud 
Storage, or the machine type in Google Compute Engine. Metadata  
is protected to a degree that is reasonable for ongoing performance  
and operations.

Google’s default encryption
 
Encryption of data at rest

Layers of encryption

Google uses several layers of encryption to protect data. Using multi-
ple layers of encryption adds redundant data protection and allows us 
to select the optimal approach based on application requirements. 

Encryption at the storage system layer

To understand how specifically Google Cloud Storage encryption 
works, it’s important to understand how Google stores customer 
data. Data is broken into subfile chunks for storage; each chunk can 
be up to several GB in size. Each chunk is encrypted at the storage 
level with an individual encryption key: two chunks will not have the 
same encryption key, even if they are part of the same Google Cloud 

Customer data 
refers to content 
provided to Google 
by a Google Cloud 
Platform customer  
or at their direction, 
directly or indirectly, 
via Cloud services 
used by that 
customer’s account .

Application Google Cloud Platform services

Block storage

Storage devices: protected by 
AES256 or AES128 encryption

Database and file storage: protected 
by AES256 or AES128 encryption

Distributed file system: data chunks in 
storage systems protected by AES256 
encryption with integrity

Platform

Infrastructure

Hardware

Primary focus 
of this document

[Figure 1]

Several layers of encryption 
are used to protect data 
stored in Google Cloud 
Platform. Either distributed 
file�system�encryption�or�
database�and�file�storage�
encryption is in place for 
almost�all�files;�and�storage�
device encryption is in place 
for�almost��all�files.
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Storage object, owned by the same customer, or stored on the same 
machine1. If a chunk of data is updated, it is encrypted with a new key, 
rather than by reusing the existing key. This partition of data, each 
using a different key, means the "blast radius" of a potential data 
encryption key compromise is limited to only that data chunk.

Google encrypts data prior to it being written to disk. Encryption is 
inherent in  all of Google’s storage systems — rather than added  
on afterward.

Each data chunk has a unique identifier. Access control lists (ACLs) 
ensure that each chunk can be decrypted only by Google services 
operating under authorized roles, which are granted access at that 
point in time. This prevents access to the data without authorization, 
bolstering both data security  and privacy.

Each chunk is distributed across Google’s storage systems, and is 
replicated in encrypted form for backup and disaster recovery. A 
malicious individual who wanted to access customer data would 
need to know and be able to access (1) all storage chunks corre-
sponding to the data they want, and (2) the encryption keys 
corresponding to the chunks.

Google uses the Advanced Encryption Standard (AES) algorithm to 
encrypt data at rest. AES is widely used because (1) both AES256  
and AES128 are recommended by the National Institute of Standards 
and Technology (NIST) for long-term storage use (as of November 
2015), and (2) AES is often included as part of customer  
compliance requirements.

Each data chunk is 
encrypted at the 
storage level with an 
individual encryption 
key — two chunks 
will not have the 
same encryption key, 
even if they are part 
of the same Google 
Cloud Storage 
object, owned by the 
same customer, or 
stored on the same 
machine .

[Figure 2]

Data at Google is broken up into 
encrypted chunks for storage.

1 Data chunks in Cloud Datastore, App Engine, and Cloud Pub/Sub may contain two customers’ data. See the

 

section on granularity of data encryption by service

.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
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Data stored across Google Cloud Storage is encrypted at the storage 
level using AES, in Galois/Counter Mode (GCM) in almost all cases. 
This is implemented in the BoringSSL library that Google maintains. 
This library was forked from OpenSSL for internal use, after many 
flaws were exposed in OpenSSL. In select cases, AES is used in 
Cipher Block Chaining (CBC) mode with a hashed message authenti-
cation code (HMAC) for authentication; and for some replicated files, 
AES is used in Counter (CTR) mode with HMAC. (Further details on 
algorithms are provided later in this document.) In other Google Cloud 
Platform products, AES is used in a variety of modes.

Encryption at the storage device layer

In addition to the storage system level encryption described above, in 
most cases data is also encrypted at the storage device level, with at 
least AES128 for hard disks (HDD) and AES256 for new solid state 
drives (SSD), using a separate device-level key (which is different than 
the key used to encrypt the data at the storage level). As older devices 
are replaced, solely AES256 will be used for device-level encryption.

Encryption of backup

Google’s backup system ensures that data remains encrypted 
throughout the backup process. This approach avoids unnecessarily 
exposing plaintext data.

In addition, the backup system further encrypts each backup file 
independently with its own data encryption key (DEK), derived from  
a key stored in Google’s Key Management Service (KMS) plus a 
randomly generated per-file seed at backup time. Another DEK is 
used for all metadata in backups, which is also stored in Google’s 
KMS. (Further information on key management is in a later section.)

Are there cases where data is not encrypted  
at rest?

Google Cloud Platform encrypts customer content stored at rest, 
without any action from the customer, using one or more encryption 
mechanisms, with the following exceptions.

• Serial console logs from virtual machines in Google Compute   
 Engine; this is currently being remediated

Google Cloud 
Platform encrypts 
customer content 
stored at rest, 
without any action 
from the customer, 
using one or more 
encryption 
mechanisms, except 
for some minor 
exceptions .

https://csrc.nist.gov/projects/block-cipher-techniques/bcm
https://boringssl.googlesource.com/boringssl/
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html


32

• Core dumps written to local drives, when a process fails  
 unexpectedly; this is currently being remediated

• Debugging logs written to local disk; this is currently  
 being remediated

• Temporary files used by storage systems; this is currently  
 being remediated

• Some logs that may include customer content as well as  
 customer metadata;   this is planned for remediation

This data is still protected extensively by the rest of Google’s security 
infrastructure, and in almost all cases still protected by storage- 
level encryption. 

Key Management

Data encryption keys, key encryption keys, and 
Google’s Key Management Service

The key used to encrypt the data in a chunk is called a data encryption 
key (DEK). Because of the high volume of keys at Google, and the 
need for low latency and high availability, these keys are stored near 
the data that they encrypt. The DEKs are encrypted with (or “wrapped” 
by) a key encryption key (KEK). One or more KEKs exist for each 
Google Cloud Platform service. These KEKs are stored centrally in 
Google’s Key Management Service (KMS), a repository built specifi-
cally for storing keys. Having a smaller number of KEKs than DEKs 
and using a central key management service makes storing and 
encrypting data at Google scale manageable, and allows us to track 
and control data access from a central point.

For each Google Cloud Platform customer, any non-shared  
resources2 are split  into data chunks and encrypted with keys  
separate from keys used for other customers3. These DEKs are  
even separate from those that protect other pieces of the same  
data owned by that same customer.

2 An example of a shared resource (where this segregation does not apply) would be a shared base image in Google Compute Engine — naturally, multiple customers refer to a single  
  copy, which is encrypted by a single DEK.
3 With the exception of data stored in Cloud Datastore, App Engine, and Cloud Pub/Sub, where two customers’ data may be encrypted with the same DEK. See the section on granularity of  
  data encryption by service.

The key used to 
encrypt the data in  
a chunk is called a 
data encryption key 
(DEK) . The DEKs are 
encrypted with a key 
encryption key (KEK) . 
KEKs are stored 
centrally in Google’s 
Key Management 
Service (KMS), a 
repository  built 
specifically for  this 
purpose .
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DEKs are generated by the storage system using Google’s common 
 cryptographic library. They are then sent to KMS to wrap with that 
storage system’s KEK, and the wrapped DEKs are passed back to the 
storage system to be kept with the data chunks. When a storage 
system needs to retrieve encrypted data, it retrieves the wrapped DEK 
and passes it to KMS. KMS then verifies that this service is authorized 
to use the KEK, and if so, unwraps and returns the plaintext DEK to the 
service. The service then uses the DEK to decrypt the data chunk into 
plaintext and verify its integrity.

Most KEKs for encrypting data chunks are generated within KMS, and 
the rest  are generated inside the storage services. For consistency, all 
KEKs are generated using Google’s common cryptographic library, 
using a random number generator (RNG) built by Google. This RNG is 
based on NIST 800-90A and generates an AES256 KEK4. This RNG is 
seeded from the Linux kernel’s RNG, which in turn is seeded from 
multiple independent entropy sources. This includes entropic events 
from the data center environment, such as fine-grained measure-
ments of disk seeks and inter-packet arrival times, and Intel’s 
RDRAND instruction where it is available (on Ivy Bridge and  
newer CPUs).

Data stored in Google Cloud Platform is encrypted with DEKs using 
AES256 or AES128, as described above; and any new data encrypted 
in persistent disks in Google Compute Engine is encrypted using 
AES256. DEKs are wrapped with  KEKs using AES256 or AES128, 
depending on the Google Cloud Platform service. We are currently 
working on upgrading all KEKs for Cloud services to AES256.

Google’s KMS manages KEKs, and was built solely for this purpose.  
It was designed with security in mind. KEKs are not exportable from 
Google’s KMS by design; all encryption and decryption with these  
 
keys must be done within KMS. This helps prevent leaks and misuse,  
and enables KMS to emit an audit trail when keys are used.

KMS can automatically rotate KEKs at regular time intervals, using 
Google’s  common cryptographic library to generate new keys. 
Though we often refer to just a single key, we really mean that data is 
protected using a key set: one key active for encryption and a set of 

4 Note that in the past, this was AES128, and some of these keys remain active for decrypting data.

KEKs are not 
exportable from 
Google’s KMS by 
design — all 
encryption and 
decryption with 
these keys must be 
done within KMS . 
This helps prevent 
leaks  and misuse .

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
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historical keys for decryption, the number of which is determined by 
the key rotation schedule. The actual rotation schedule for a KEK 
varies by service, but the standard rotation period is 90 days. Google 
Cloud Storage specifically rotates its KEKs every 90 days, and can 
store up to 20 versions, requiring re-encryption of data at least once 
every 5 years (though in practice, data re-encryption is much more 
frequent). KMS-held keys are backed up for disaster recovery pur-
poses, and they are indefinitely recoverable.

The use of KEKs is managed by access control lists (ACLs) in KMS for 
each key, with a per-key policy. Only authorized Google services and 
users are allowed access to a key. The use of each key is tracked at 
the level of the individual operation that requires that key — so every 
time an individual uses a key, it is authenticated and logged. All 
human data accesses are auditable as part of Google’s overall secu-
rity and privacy policies.

[Figure 3]

To decrypt a data chunk, 
the storage service calls 
Google’s Key 
Management Service 
(KMS) to retrieve the 
unwrapped data 
encryption key (DEK)  
for that data chunk.

When a Google Cloud Platform service accesses an encrypted chunk 
of data,  here’s what happens:

 1. The service makes a call to the storage system for the data  
  it needs.

 2. The storage system identifies the chunks in which that data is  
  stored (the  chunk IDs) and where they are stored.

 3. For each chunk, the storage system pulls the wrapped DEK 
  stored with that  chunk (in some cases, this is done by the  
  service), and sends it to KMS for unwrapping.
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 4. The storage system verifies that the identified job is allowed to  
  access that  data chunk based on a job identifier, and using the  
  chunk ID; and KMS verifies that the storage system is authorized  
  both to use the KEK associated with the service, and to unwrap  
  that specific DEK.

 5. KMS does one of the following:  
   • Passes the unwrapped DEK back to the storage system,  
    which decrypts the data chunk and passes it to the service.  
    Or, in some rare cases,

   • Passes the unwrapped DEK to the service; the storage  
    system passes the encrypted data chunk to the service,  
    which decrypts the data chunk and uses it.

This process is different in dedicated storage devices, such as local 
SSDs, where the device manages and protects the device-level DEK.

Encryption key hierarchy and root of trust

Google’s KMS is protected by a root key called the KMS master key, 
which wraps all the KEKs in KMS. This KMS master key is AES2565, 
and is itself stored in another key management service, called the 
Root KMS. Root KMS stores a much smaller number of keys—approxi-
mately a dozen. For additional security, Root KMS is not run on 
general production machines, but instead is run only on dedicated 
machines in each Google data center.

Root KMS in turn has its own root key, called the root KMS master key, 
which is also AES2566 and is stored in a peer-to-peer infrastructure, 
the root KMS master key distributor, which replicates these keys 
globally. The root KMS master key distributor only holds the keys in 
RAM on the same dedicated machines as Root KMS, and uses log-
ging to verify proper use. One instance of the root KMS master key 
distributor runs for every instance of Root KMS. (The root KMS mas-
ter key distributor is still being phased in, to replace a system that 
operated in a similar manner but was not peer to peer.)

5 Note that in the past, this was AES128, and some of these keys remain active for decrypting data.
6 Note that in the past, this was AES128, and some of these keys remain active for decrypting data.

Google’s root of 
trust, the root KMS 
master key, is kept  
in RAM and is also 
secured in physical 
safes in limited 
Google locations 
in case of a  
global restart.
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When a new instance of the root KMS master key distributor is 
started, it is configured with a list of host names already running 
distributor instances. Distributor instances can then obtain the root 
KMS master key from other running instances. Other than the  
disaster-recovery mechanisms described below, the root KMS  
master key exists only in RAM on a limited number of specially 
secured machines.

To address the scenario where all instances of the root KMS master 
key distributor restart simultaneously, the root KMS master key is also 
backed up on secure hardware devices stored in physical safes in 
highly secured areas in two physically separated, global Google 
locations. This backup would be needed only if all distributor 
instances were to go down at once; for example, in a global restart. 
Fewer than 20 Google employees are able to access these safes. 

[Figure 4]

The encryption key 
hierarchy protects a 
chunk of data with a DEK, 
wrapped with a KEK in 
KMS, which is in turn 
protected by Root KMS 
and  the root KMS master 
key distributor.
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To summarize: 
 • Data is chunked and encrypted with DEKs 
 • DEKs are encrypted with KEKs 
 • KEKs are stored in KMS 
 • KMS is run on multiple machines in data centers globally 
   • KMS keys are wrapped with the KMS master key, which is  
    stored in Root KMS 
 • Root KMS is much smaller than KMS and runs only on dedicated  
  machines in each data center 
   • Root KMS keys are wrapped with the root KMS master key,  
    which is stored in the root KMS master key distributor 
 • The root KMS master key distributor is a peer-to-peer  
  infrastructure running concurrently in RAM globally on  
  dedicated machines; each gets its key material from other  
  running instances 
   • If all instances of the distributor were to go down  (total  
    shutdown), a master key is stored in (different) secure  
    hardware in (physical) safes in limited Google locations. 
 • The root KMS master key distributor is currently being phased in,  
  to replace a system that operated in a similar manner but was not  
  peer to peer.

Global availability and replication

High availability and low latency, global access to keys, are critical at 
every level; these characteristics are needed for key management 
services to be used across Google.

For this reason, KMS is highly scalable, and it is replicated thousands 
of times in Google’s data centers globally. It is run on regular 
machines in Google’s production fleet, and instances of KMS run 
globally to support Google Cloud Platform operations. As a result, the 
latency of any single key operation is  very low.

Root KMS is run on several machines dedicated to security opera-
tions, in each data center. The root KMS master key distributor is run 
on these same machines, one-to-one with Root KMS. The root KMS 
master key distributor provides a distribution mechanism via a  
gossiping protocol — at a fixed time interval, each instance of the 

http://dl.acm.org/citation.cfm?doid=41840.41841


38

distributor picks a random other instance to compare its keys with, 
and reconciles any differences in key versions. With this model,  
there is no central node that all of Google’s infrastructure depends  
on; this allows Google to maintain and protect key material with  
high availability.

Google’s common cryptographic library

Google’s common cryptographic library is Keyczar7, which imple-
ments cryptographic algorithms using BoringSSL8. Keyczar is 
available to all Google developers. Because this common library is 
widely accessible, only a small team of cryptographers needs to 
properly implement this tightly controlled and reviewed code — it's not 
necessary for every team at Google to "roll their own" cryptography.  
A special Google security team is responsible for maintaining this 
common cryptographic library for all products.

The Keyczar encryption library supports a wide variety of encryption 
key types and modes, and these are reviewed regularly to ensure they 
are current with the latest attacks.

At the time of this document’s publication, Google uses the following 
encryption algorithms for encryption at rest for DEKs and KEKs. 
These are subject to change as we continue to improve our capabili-
ties and security.

7 An older version of Keyczar has been open-sourced, but the open-source version has not been updated recently and does not reflect internal developments.
8 OpenSSL is also in use, in some places in Google Cloud Storage.
9 Other cryptographic protocols exist in the library and were historically supported, but this list covers the primary uses in Google Cloud Platform.

Google uses a widely 
accessible common 
cryptographic library 
that is tightly 
managed, controlled 
and reviewed by a 
small team of 
cryptographers —  
so that it is not 
necessary for every 
team at Google to 
"roll their own" 
cryptography .

https://boringssl.googlesource.com/boringssl/
https://github.com/google/keyczar
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Granularity of encryption in each Google Cloud 
 Platform product

Each Google Cloud Platform service splits data at a different level of 
granularity for encryption.

10 Refers to granularity of encryption for customer content. This does not include customer metadata, such as resource names. In some services, all metadata is encrypted with    
    a single DEK.
11 Not unique to a single customer.
12 Includes application code and application settings. Data used in App Engine is stored in Cloud Datastore, Cloud SQL or Cloud Storage depending on customer configurations.
13 Not unique to a single customer.
14 Cloud Pub/Sub rotates the DEK used to encrypt messages every hour, or sooner if 1,000,000 messages are encrypted. Not unique to a single customer.
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Additional encryption options for 
Cloud customers 

In addition to providing encryption by default in Google Cloud 
Platform, we are working to offer customers additional encryption 
and key management options for greater control.

We want to enable Google Cloud Platform customers to:

 • Remain the ultimate custodian of their data, and be able to  
   control access to  and use of that data at the finest level of  
   granularity, to ensure both data security and privacy

 • Manage encryption for their cloud-hosted data in the same  
   way they currently do on-premises — or, ideally, better

 • Have a provable and auditable root of trust over their  
   resources

 • Be able to further separate and segregate their data, beyond 
   the use of ACLs

Customers can use existing encryption keys that they manage with 
the Google Cloud Platform, using the Customer supplied encryption 
keys feature. This feature is available for Google Cloud Storage and 
for Google Compute Engine. 

We are currently working to introduce new encryption options. Details 
will be provided as they become available.

Research and innovation in 
cryptography

To keep pace with the evolution of encryption, Google has a team of 
world-class security engineers tasked with following, developing, and 
improving encryption technology. Our engineers take part in standard-
ization processes and in maintaining widely used encryption 

We are working to 
offer Google Cloud 
Platform customers 
additional encryption 
and key management 
options .

https://cloud.google.com/storage/docs/encryption#customer-supplied
https://cloud.google.com/compute/docs/disks/customer-supplied-encryption
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software. We regularly publish our research in the field of encryption 
so that everyone in the industry — including the general public — can 
benefit from our knowledge. For example, in 2014 we revealed a 
significant vulnerability in SSL 3.0 encryption (known as POODLE), 
and in 2015 we identified a high-risk vulnerability in OpenSSL.

Google plans to remain the industry leader in encryption for cloud 
services. In terms of developing, implementing, and researching 
newer cryptographic techniques, we have teams working on:

 • Partially homomorphic cryptography, which allows some  
   operations to be performed on data while it is encrypted, so  
   the cloud never sees the data in plaintext, even in memory.  
   One place this technology is being used is as part of our  
   experimental encrypted BigQuery client, which is  
   openly available.

 • Format- and order- preserving cryptography, which allows  
   some comparison and ranking operations to be performed  
   on data while it is encrypted.

 • Post-quantum cryptography, which allows us to replace  
   existing crypto primitives that are vulnerable to efficient  
   quantum attacks with post-quantum candidates that are  
   believed to be more robust against such attacks. The  
   primary focus here is in researching and prototyping  
   lattice-based public-key cryptography, including NIST 
   recommendations on post-quantum algorithms.  
   Lattice-based crypto is currently thought to be one of  
  the most likely encryption techniques to be used in a  
   post-quantum world, although we are still in early days in  
   terms of best algorithms, concrete parameters, and  
   cryptanalysis for applying lattice-based crypto. Although  
   symmetric key encryption and MACs are weakened by  
   known quantum algorithms, they can still be upgraded to  
   similar bits of security in a post-quantum world by doubling 
   key sizes.

Google has a team 
of world-class 
security engineers 
tasked with 
following, 
developing,  
and improving 
encryption 
technology .

https://www.google.com/about/appsecurity/research/
https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html
https://www.openssl.org/news/secadv/20150709.txt
https://github.com/google/encrypted-bigquery-client
https://pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
https://pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
https://pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
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Further references

Google Cloud Platform security

For general information on Google Cloud Platform security, see the 
Security section of the Google Cloud Platform website.

Google Cloud Platform compliance

For information on Google Cloud Platform compliance and compli-
ance certifications, see the Compliance section of the Google Cloud 
Platform website, which includes Google’s public SOC3 audit report.

G Suite security

For information on G Suite encryption and key management, see the 
G Suite encryption whitepaper. That whitepaper covers much of the 
same content included here, but focuses solely on G Suite. For all 
Google Cloud solutions, we strive to keep customer data protected, 
and to be as transparent as possible about how we secure it.

Further information on general G Suite security is available in the 
Google Cloud Security and Compliance whitepaper.

We are working  
to offer Google  
Cloud Platform 
customers additional 
encryption and 
key management 
options .

https://cloud.google.com/security/
https://cloud.google.com/security/compliance
https://cloud.google.com/security/compliance
https://www.google.com/cloud/security/compliance/soc-3/
http://G Suite encryption
http://services.google.com/fh/files/helpcenter/google_encryptionwp2016.pdf
https://static.googleusercontent.com/media/apps.google.com/en//files/google-apps-security-and-compliance-whitepaper.pdf
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An encryption whitepaper from Google Cloud
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This is the third whitepaper on how Google uses encryption to protect your data. 
We also released Encryption at Rest in Google Cloud Platform, and G Suite 
encryption. You might find it useful to read these other documents to learn about 
the use of encryption at Google. In this whitepaper, you will find more detail on 
encryption in transit for Google Cloud, including Google Cloud Platform  
and G Suite.

For all Google products, we strive to keep customer data highly protected and to 
be as transparent as possible about how we secure it.

The content contained herein is correct as of November 2017. This whitepaper 
represents the status quo as of the time it was written. Google Cloud’s security 
policies and systems might change going forward, as we continually improve 
protection for our customers.

https://cloud.google.com/security/encryption-at-rest/default-encryption/
https://storage.googleapis.com/gfw-touched-accounts-pdfs/google-encryption-whitepaper-gsuite.pdf
https://storage.googleapis.com/gfw-touched-accounts-pdfs/google-encryption-whitepaper-gsuite.pdf
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CIO-level summary
 

• Google employs several security measures to help ensure the 
authenticity, integrity, and privacy of data in transit.

• Google encrypts and authenticates all data in transit at one or more 
network layers when data moves outside physical boundaries not 
controlled by Google or on behalf of Google. Data in transit inside a 
physical boundary controlled by or on behalf of Google is generally 
authenticated but not necessarily encrypted.

• Depending on the connection that is being made, Google applies 
default protections to data in transit. For example, we secure 
communications between the user and the Google Front End (GFE) 
using TLS.

• Google Cloud customers with additional requirements for 
encryption of data over WAN can choose to implement further 
protections for data as it moves from a user to an application, or 
virtual machine to virtual machine. These protections include IPsec 
tunnels, Gmail S/MIME, managed SSL certificates, and Istio.

• Google works actively with the industry to help bring encryption in 
transit to everyone, everywhere. We have several open-source 
projects that encourage the use of encryption in transit and data 
security on the Internet at large including Certificate Transparency, 
Chrome APIs, and secure SMTP.

• Google plans to remain the industry leader in encryption in transit. 
To this end, we dedicate resources toward the development and 
improvement of encryption technology. Our work in this area 
includes innovations in the areas of Key Transparency and post-
quantum cryptography.
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1 . Introduction
 
Security is often a deciding factor when choosing a public cloud 
provider. At Google, security is of the utmost importance. We work 
tirelessly to protect your data—whether it is traveling over the Internet, 
moving within Google’s infrastructure, or stored on our servers.

Central to Google’s security strategy are authentication, integrity, and 
encryption, for both data at rest and in transit. This paper describes 
our approach to encryption in transit for Google Cloud.

For data at rest, see Encryption at Rest in Google Cloud Platform. For 
an overview across all of Google Security, see Google Infrastructure 
Security Design Overview.

Audience: this document is aimed at CISOs and security operations 
teams using or considering Google Cloud. 

Prerequisites: in addition to this introduction, we assume a basic 
understanding of encryption and cryptographic primitives.

1.1 Authentication, Integrity, and Encryption 
 
Google employs several security measures to help ensure the 
authenticity, integrity, and privacy of data in transit.   

 • Authentication: we verify the data source, either a human or a 
   process, and destination. 
 
 • Integrity: we make sure data you send arrives at its destination  
   unaltered.  
 
 • Encryption: we make your data unintelligible while in transit to  
   keep it private.

In this paper, we focus on encryption in Google Cloud, and how we 
use it to protect your data. Encryption is the process through which 
legible data (plaintext) is made illegible (ciphertext) with the goal of 
ensuring the plaintext is only accessible by parties authorized by the 

Encryption in transit 
protects your data 
if communications 
are intercepted  
while data moves 
between your site 
and the cloud 
provider or between 
two services .

https://cloud.google.com/security/encryption-at-rest/default-encryption/
https://cloud.google.com/security/security-design/
https://cloud.google.com/security/security-design/
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Cryptographic_primitive
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owner of the data. The algorithms used in the encryption process are 
public, but the key required for decrypting the ciphertext is private. 
Encryption in transit often uses asymmetric key exchange, such as 
elliptic-curve-based Diffie-Hellman, to establish a shared symmetric 
key that is used for data encryption. For more information on encryp-
tion, see Introduction to Modern Cryptography.

Encryption can be used to protect data in three states: 
 
 •  Encryption at rest protects your data from a system compromise  
  or data exfiltration by encrypting data while stored. The Advanced  
  Encryption Standard (AES) is often used to encrypt data at rest. 
 
 • Encryption in transit protects your data if communications are  
  intercepted while data moves between your site and the cloud  
  provider or between two services. This protection is achieved by 
  encrypting the data before transmission; authenticating the  
  endpoints; and decrypting and verifying the data on arrival. For  
  example, Transport Layer Security (TLS) is often used to encrypt  
  data in transit for transport security, and Secure/Multipurpose  
  Internet Mail Extensions (S/MIME) is used often for email  
  message security. 
 
 • Encryption in use protects your data when it is being used by  
  servers to run computations, e.g. homomorphic encryption.

Encryption is one component of a broader security strategy. 
Encryption in transit defends your data, after a connection is  
established and authenticated, against potential attackers by:

 • Removing the need to trust the lower layers of the network which  
  are commonly provided by third parties

 • Reducing the potential attack surface

 • Preventing attackers from accessing data if communications  
  are  intercepted 
 

http://www.cs.umd.edu/~jkatz/imc.html
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With adequate authentication, integrity, and encryption, data that 
travels between users, devices, or processes can be protected in a 
hostile environment. The remainder of this paper explains Google’s 
approach to the encryption of data in transit and where it is applied.

2 . Google’s Network Infrastructure 
 
2.1 Physical boundaries of Google’s network

Google applies different protections to data in transit when it is  
transmitted outside a physical boundary controlled by or on behalf  
of Google. A physical boundary is the barrier to a physical space that 
is controlled by or on behalf of Google, where we can ensure that  
rigorous security measures are in place. Physical access to these 
locations is restricted and heavily monitored. Only a small percentage 
of Google employees have access to hardware. Data in transit within 
these physical boundaries is generally authenticated, but may not be 
encrypted by default - you can choose which additional security 
measures to apply based on your threat model.

Due to the scale of the global Internet, we cannot put these same 
physical security controls in place for the fiber links in our WAN, or 
anywhere outside of physical boundaries controlled by or on behalf  
of Google. For this reason, we automatically enforce additional pro-
tections outside of our physical trust boundary. These protections 
include encryption of data in transit.

2.2 How traffic gets routed

The previous section discussed the physical boundary of Google’s 
network and how we apply different protections to data sent outside 
this boundary. To fully understand how encryption in transit works at 
Google, it is also necessary to explain how traffic gets routed through 
the Internet. This section describes how requests get from an end 
user to the appropriate Google Cloud service or customer application, 
and how traffic is routed between services.

A Google Cloud service is a modular cloud service that we offer to 
our customers. These services include computing, data storage, data 
analytics and machine learning. For example, Google Cloud Storage 

Google applies 
different protections 
to data in transit 
when it is 
transmitted outside  
a physical boundary 
controlled by or on 
behalf of Google .  
A physical boundary 
is the barrier to a 
physical space that  
is controlled by or on 
behalf of Google, 
where we can  
ensure that rigorous 
security measures  
are in place .
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and Gmail are both Google Cloud services. A customer application is 
an application hosted on Google Cloud that you, as a Google cus-
tomer, can build and deploy using Google Cloud services. Customer 
applications or partner solutions that are hosted on Google Cloud are 
not considered Google Cloud services1. For example, an application 
you build using Google App Engine, Google Container Engine, or a VM 
in Google Compute Engine is a customer application.

The five kinds of routing requests discussed below are shown in 
Figure 1. This figure shows the interactions between the various 
network components and the security in place for each connection.

End user (Internet) to a Google Cloud Service

Google Cloud services accept requests from around the world using a 
globally distributed system called the Google Front End (GFE). GFE 
terminates traffic for incoming HTTP(S), TCP and TLS proxy traffic, 
provides DDoS attack countermeasures, and routes and load bal-
ances traffic to the Google Cloud services themselves. There are GFE 
points of presence around the globe with routes advertised via uni-
cast or Anycast. 

GFEs proxy traffic to Google Cloud services. GFEs route the user’s 
request over our network backbone to a Google Cloud service. This 
connection is authenticated and encrypted from GFE to the front-end 
of the Google Cloud service or customer application, when those 
communications leave a physical boundary controlled by Google  
or on behalf of Google. Figure 1 shows this interaction (labelled 
connection A).

End user (Internet) to a customer application hosted on 
Google Cloud

There are several ways traffic from the Internet can be routed to a 
customer application you host on Google Cloud. The way your traffic 
is routed depends on your configuration, as explained below. Figure 1 
shows this interaction (labelled connection B).

 • Using a Google Cloud HTTP(S) or TCP/SSL proxy Load Balancer 
  external load balancer: A customer application  hosted on Google 
  Compute Engine VMs can use a Google Cloud Load Balancer  

Google Cloud 
services accept 
requests from 
around the world 
using a globally 
distributed system 
called the Google 
Front End (GFE) . GFE 
terminates traffic for 
incoming HTTP(S), 
TCP and TLS proxy 
traffic, provides 
DDoS attack 
countermeasures, 
and routes and load 
balances traffic to 
the Google Cloud 
services themselves .

1 Partner solutions include both solutions offered in Cloud Launcher, as well as products built in collaboration with partners, such as Cloud Dataprep.

https://docs.google.com/document/d/1sEAnL_xF5sYyDVAgrgmBS5kTedPAuInj-eJyhtQrMtI/edit?ts=59f29ec9#heading=h.cz0mhpohaq4
https://tools.ietf.org/html/rfc1546
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[Figure 1]

Protection by default and 
options overlaid on 
Google’s network

  (GCLB) service to terminate HTTP(S), TLS, or TCP connections  
  and to proxy, route, and distribute this traffic to their VMs. These  
  load balancer services are implemented by the GFEs, much as  
  GFEs terminate and route traffic for Google Cloud services. When 
  GCLB routes traffic between GFEs, the connections are  
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  authenticated, and encrypted when the traffic leaves a physical  
  boundary controlled by or on behalf of Google.  When GCLB  
  routes traffic between a GFE and a physical machine that hosts a  
  customer’s VM, this traffic is authenticated and encrypted, when 
  it leaves a physical boundary controlled by or on behalf of Google.

 • Using a Google Cloud HTTP(S) or TCP/SSL proxy Load Balancer  
  external load balancer: A customer application hosted on Google 
  Compute Engine VMs can use a Google Cloud Load Balancer  
  (GCLB) service to terminate HTTP(S), TLS, or TCP connections  
  and to proxy, route, and distribute this traffic to their VMs. These  
  load balancer services are implemented by the GFEs, much as  
  GFEs terminate and route traffic for Google Cloud services. When 
  GCLB routes traffic between GFEs, the connections are  
  authenticated, and encrypted when the traffic leaves a physical  
  boundary controlled by or on behalf of Google.  When GCLB  
  routes traffic between a GFE and a physical machine that hosts  
  a customer’s VM, this traffic is authenticated and encrypted,  
  when it leaves a physical boundary controlled by or on behalf  
  of Google.

  For HTTPS load balancers, connections between end users and  
  the GFE are encrypted and authenticated with TLS or QUIC, using 
  certificates that customers provide for the load balancer.  For  
  HTTP load balancers, connections between end users and GFE  
  are not encrypted or authenticated.

  For SSL load balancers, connections between end users and the  
  GFE are encrypted with TLS, similarly using customer-provided  
  certificates.  For TCP load balancers, there is no encryption  
  between the end user and the GFE. The customer’s application 
  may, however, use its own encryption between the end user and 
  the VMs.

 • Using a connection directly to a VM using an external IP or  
  network load balancer IP: If you are connecting via the the VM’s  
  external IP, or via a network-load-balanced IP, the connection  
  does not go through the GFE. This connection is not encrypted by 
  default and its security is provided at the user’s discretion.

 • Using Cloud VPN: If you are connecting from a host on your  
  premises to a Google Cloud VM via a VPN, the connection goes  
  from/to your on-premises host, to the on-premises VPN, to the  
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  Google VPN, to the Google Cloud VM; the connection does not  
  go through the GFE. The connection is protected from the  
  on-premises VPN to the Google VPN with IPsec. The connection  
  from the Google VPN to the Google Cloud VM is authenticated  
  and encrypted, when those communications leave a physical  
  boundary controlled by or on behalf of Google.

 • Using Cloud Dedicated Interconnect: If you are connecting via  
  Dedicated Interconnect, the connection goes from/to your  
  on-premises host directly and the connection does not go  
  through the GFE. This connection is not encrypted by default and 
  its security is provided at the user’s discretion.

Virtual Machine to Virtual Machine

VM to VM routing that takes place on our network backbone, using 
RFC1918 private IP addresses, may require routing traffic outside of 
the physical boundaries controlled by or on behalf of Google. 
Examples of VM to VM routing include:

 • Compute Engine VMs sending requests to each other

 • A customer VM connecting to a Google-managed VM like  
  Cloud SQL  
 
VM to VM connections are encrypted if they leave a physical bound-
ary, and are authenticated within the physical boundary. VM to VM 
traffic, using public IP addresses, is not encrypted by default and its 
security is provided at the user’s discretion.  Figure 1 shows this 
interaction (labelled connection C).

Virtual Machine to Google Cloud service

If a VM routes a request to a Google Cloud service, the request is 
routed to a GFE (except in cases where the Google Cloud service is 
running on a Google-managed VM, as discussed above). The GFE 
receives the request, then routes the request in the same way it does 
for requests coming from the Internet: for traffic from a VM to a 
Google Cloud service, this is routed through private Google paths to 
the same public IPs for the GFEs. Private Google access allows VMs 
without public IPs to access some Google Cloud services and cus-
tomer applications hosted on Google App Engine. (Note that if a VM 
is connecting to a customer application hosted on Google Compute 

https://tools.ietf.org/html/rfc1918
https://cloud.google.com/vpc/docs/private-google-access
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Engine or Google Container Engine, that traffic is routed the same way 
requests coming from the Internet are routed, over external paths.) 
Figure 1 shows this interaction (labelled connection D). An example of 
this kind of routing request is between a Compute Engine VM to 
Google Cloud Storage, or to a Machine Learning API. Google Cloud 
services support protecting these connections with TLS by default2. 
This protection is in place from the VM to the GFE. The connection is 
authenticated from the GFE to the service and encrypted if the con-
nection leaves a physical boundary. 

Google Cloud service to Google Cloud service

Routing from one production service to another takes place on our 
network backbone and may require routing traffic outside of physical 
boundaries controlled by or on behalf of Google. Figure 1 shows this 
interaction (labelled connection E). An example of this kind of traffic 
is a Google Cloud Storage event triggering Google Cloud Functions. 
Connections between production services are encrypted if they leave 
a physical boundary, and authenticated within the physical boundary.

3 . Encryption in Transit by Default 

Google uses various methods of encryption, both default and user 
configurable, for data in transit. The type of encryption used depends 
on the OSI layer, the type of service, and the physical component of 
the infrastructure. Figures 2 and 3 below illustrate the optional and 
default protections Google Cloud has in place for layers 3, 4, and 7.

The remainder of this section describes the default protections that 
Google uses to protect data in transit.

3.1 User to Google Front End encryption

Today, many systems use the HTTPS protocol to communicate over 
the Internet. HTTPS provides security by directing the protocol over a 
TLS connection, ensuring the authenticity, integrity, and privacy of 
requests and responses. To accept HTTPS requests, the receiver 
requires a public–private key pair and an X.509 certificate, for server 
authentication, from a Certificate Authority (CA). The key pair and 
certificate help protect a user’s requests at the application layer (layer 
7) by proving that the receiver owns the domain name for which 
requests are intended. The following subsections discuss the compo-
nents of user to GFE encryption, namely: TLS, BoringSSL, and 

2 You can still disable this encryption, for example for HTTP access to Google Cloud Storage buckets. 
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[Figure 2]

[Figure3]

 Protection by Default

Protection by Default and Options at 
Layer 7 across Google Cloud3

3 VM-to-Service communications not protected at Layer 7 are still protected at layers 3 and 4

Google’s Certificate Authority. Recall that not all customer paths route 
via the GFE; notably, the GFE is used for traffic from a user to a Google 
Cloud service, and from a user to a customer application hosted on 
Google Cloud that uses Google Cloud Load Balancing.
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3.1.1 Transport Layer Security (TLS)

When a user sends a request to a Google Cloud service, we secure 
the data in transit; providing authentication, integrity, and encryption, 
using the HTTPS protocol with a certificate from a web (public) certif-
icate authority. Any data the user sends to the GFE is encrypted in 
transit with Transport Layer Security (TLS) or QUIC. GFE negotiates a 
particular encryption protocol with the client depending on what the 
client is able to support. GFE negotiates more modern encryption 
protocols when possible.

GFE’s scaled TLS encryption applies not only to end-user interactions 
with Google, it also facilitates API interactions with Google over TLS, 
including Google Cloud. Additionally, our TLS encryption is used in 
Gmail to exchange email with external mail servers (more detail in 
section 4.2.2). 

Google is an industry leader in both the adoption of TLS and the 
strengthening of its implementation. To this end, we have enabled, by 
default, many of the security features of TLS. For example, since 2011 
we have been using forward secrecy in our TLS implementation. 
Forward secrecy makes sure the key that protects a connection is not 
persisted, so an attacker that intercepts and reads one message 
cannot read previous messages.

When a user sends a 
request to a Google 
Cloud service, we 
secure the data  
in transit; providing 
authentication, 
integrity, and 
encryption, using  
the HTTPS protocol 
with a certificate 
from a web (public) 
certificate authority.

https://security.googleblog.com/2011/11/protecting-data-for-long-term-with.html
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3.1.2 BoringSSL

BoringSSL is a Google-maintained, open-source implementation of 
the TLS protocol, forked from OpenSSL, that is mostly interface-com-
patible with OpenSSL. Google forked BoringSSL from OpenSSL to 
simplify OpenSSL, both for internal use and to better support the 
Chromium and Android Open Source Projects. BoringCrypto, the core 
of BoringSSL, has been validated to FIPS 140-2 level 1.

TLS in the GFE is implemented with BoringSSL. Table 1 shows the 
encryption protocols that GFE supports when communicating  
with clients.

3.1.3 Google’s Certificate Authority 

As part of TLS, a server must prove its identity to the user when it 
receives a connection request. This identity verification is achieved in 
the TLS protocol by having the server present a certificate containing 
its claimed identity. The certificate contains both the server’s DNS 
hostname and its public key. Once presented, the certificate is signed 
by an issuing Certificate Authority (CA) that is trusted by the user 
requesting the connection10. As a result, users who request connec-
tions to the server only need to trust the root CA. If the server wants 
to be accessed ubiquitously, the root CA needs to be known to the 
client devices worldwide. Today, most browsers, and other TLS client 
implementations, each have their own set of root CAs that are config-
ured as trusted in their “root store”.

Protocols

TLS 1.34

TLS 1.2
TLS 1.1
TLS 1.05

QUIC6

RSA 2048
ECDSA 
P-256

Curve25519
P-256 (NIST 
secp256r1)

AES-128-GCM
AES-256-GCM
AES-128-CBC
AES-256-CBC
ChaCha20-Poly1305
3DES7

SHA384
SHA256
SHA18

MD59

Authenticaion Key Exchange Encryption Hash Functions

[Table 1]

Encryption Implemented 
in the Google Front End 
for Google Cloud Services 
and Implemented in the 
BoringSSL Cryptographic 
Library

4   TLS 1.3 is not yet finalized. The draft version is implemented only for certain Google domains for testing, such as Gmail.
5   Google supports TLS 1.0 for browsers that still use this version of the protocol. Note that any Google site processing credit card information will no longer support    
     TLS 1.0 by July 2018 when Payment Card Industry (PCI) compliance requires its deprecation.
6   For details on QUIC, see https://www.chromium.org/quic.
7-9 For backwards compatibility with some legacy operating systems, we support 3DES, SHA1 and MD5.
10  In the case of chained certificates, the CA is transitively trusted.

https://boringssl.googlesource.com/boringssl
https://www.imperialviolet.org/2015/10/17/boringssl.html
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Historically, Google operated its own issuing CA, which we used to 
sign certificates for Google domains. We did not, however, operate 
our own root CA. Today, our CA certificates are cross-signed by 
multiple root CAs which are ubiquitously distributed, including 
Symantec (“GeoTrust”) and roots previously operated by GlobalSign 
(“GS Root R2” and “GS Root R4”). 

In June 2017, we announced a transition to using Google-owned root 
CAs. Over time, we plan to operate a ubiquitously distributed root CA 
which will issue certificates for Google domains and for our 
customers.

3.1.3.1 Root key migration and key rotation

Root CA keys are not changed often, as migrating to a new root CA 
requires all browsers and devices to embed trust of that certificate, 
which takes a long time. As a result, even though Google now oper-
ates its own root CAs, we will continue to rely on multiple third-party 
root CAs for a transitional period to account for legacy devices while 
we migrate to our own.

Creating a new root CA requires a key ceremony. At Google, the cere-
mony mandates that a minimum 3 of the 6 possible authorized 
individuals physically gather to use hardware keys that are stored in a 
safe. These individuals meet in a dedicated room, shielded from 
electromagnetic interference, with an air-gapped Hardware Security 
Module (HSM), to generate a set of keys and certificates. The dedi-
cated room is in a secure location in Google data centers. Additional 
controls, such as physical security measures, cameras, and other 
human observers, ensure that the process goes as planned. If the 
ceremony is successful the generated certificate is identical to a 
sample certificate, except for the issuer name, public key and signa-
ture. The resulting root CA certificate is then submitted to browser 
and device root programs for inclusion. This process is designed to 
ensure that the privacy and security of the associated private keys are 
well understood so the keys can be relied upon for a decade or more.

As described earlier, CAs use their private keys to sign certificates, 
and these certificates verify identities when initiating a TLS hand-
shake as part of a user session. Server certificates are signed with 
intermediate CAs, the creation of which is similar to the creation of a 
root CA. The intermediate CA’s certificates are distributed as part of 

https://cloudplatform.googleblog.com/2017/06/Google-Cloud-services-are-switching-Certificate-Authority.html
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the TLS session so it’s easier to migrate to a new intermediate CA. 
This method of distribution also enables the CA operator to keep the 
root CA key material in a offline state.

The security of a TLS session is dependent on how well the server’s 
key is protected. To further mitigate the risk of key compromise, 
Google’s TLS certificate lifetimes are limited to approximately three 
months and the certificates are rotated approximately every  
two weeks.

A client that has previously connected to a server can use a private 
ticket key11 to resume a prior session with an abbreviated TLS hand-
shake, making these tickets very valuable to an attacker. Google 
rotates ticket keys at least once a day and expires the keys across all 
properties every 3 days. To learn more about session key ticket rota-
tion, see Measuring the Security Harm of TLS Crypto Shortcuts.

3.2 Google Front End to Application Front Ends

In some cases, as discussed in section 2.2, the user connects to a 
GFE inside of a different physical boundary than the desired service 
and the associated Application Front End. When this occurs, the 
user’s request and any other layer 7 protocol, such as HTTP, is either 
protected by TLS, or encapsulated in an RPC which is protected using 
Application Layer Transport Security (ALTS), discussed in section 3.4. 
These RPCs are authenticated and encrypted. 

3.3 Google Cloud’s virtual network encryption 
and authentication

Google Cloud’s virtual network infrastructure enables encryption 
when traffic goes outside our physical boundaries. Encryption is 
performed at the network layer and applies to private IP traffic within 
the same Virtual Private Cloud (VPC) or across peered VPC networks. 
 
We assume that any network crossing a physical boundary not con-
trolled by or on behalf of Google can be compromised by an active 
adversary, who can snoop, inject, or alter traffic on the wire. We 
ensure the integrity and privacy of communications using encryption 
when data moves outside physical boundaries we don’t control.

11 This could be either a session ticket (RFC 5077) or a session ID (RFC 5246).

Google Cloud’s 
virtual network 
infrastructure 
enables encryption 
when traffic goes 
outside our physical 
boundaries . 
Encryption is 
performed at the 
network layer .

https://jhalderm.com/pub/papers/forward-secrecy-imc16.pdf
https://tools.ietf.org/html/rfc5077
https://tools.ietf.org/html/rfc5246
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For Google Cloud services, RPCs are protected using ALTS by default. 
For customer applications hosted on Google Cloud, if traffic is routed 
via the Google Front End, for example if they are using the Google 
Cloud Load Balancer, traffic to the VM is protected using Google 
Cloud’s virtual network encryption, described in the next section.

We use the Advanced Encryption Standard (AES) in Galois/Counter 
Mode (GCM) with a 128 bit key (AES-128-GCM) to implement encryp-
tion at the network layer. Each pair of communicating hosts 
establishes a session key via a control channel protected by ALTS for 
authenticated and encrypted communications. The session key is 
used to encrypt all VM-to-VM communication between those hosts, 
and session keys are rotated periodically.

At the network layer (layer 3), Google Cloud’s virtual network authenti-
cates all traffic between VMs. This authentication, achieved via 
security tokens, protects a compromised host from spoofing packets 
on the network.

[Figure 4]

Security Tokens
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During authentication, security tokens are encapsulated in a tunnel 
header which contains authentication information about the sender 
and receiver. The control plane12 on the sending side sets the token, 
and the receiving host validates the token. Security tokens are 
pre-generated for every flow, and consist of a token key (containing 
the sender’s information) and the host secret. One secret exists for 
every source-receiver pair of physical boundaries controlled by or on 
behalf of Google. Figure 4 shows how token keys, host secrets, and 
security tokens are created.

The physical boundary secret is a 128-bit pseudorandom number, 
from which host secrets are derived by taking an HMAC-SHA1. The 
physical boundary secret is negotiated by a handshake between the 
network control planes of a pair of physical boundaries and renegoti-
ated every few hours. The security tokens used for individual 
VM-to-VM authentication, derived from these and other inputs, are 
HMACs, negotiated for a given sender and receiver pair.

3.4 Service-to-service authentication, integrity, 
and encryption

1Within Google’s infrastructure, at the application layer (layer 7), we 
use our Application Layer Transport Security (ALTS) for the authenti-
cation, integrity, and encryption of Google RPC calls from the GFE to a 
service, and from service to service.

ALTS uses service accounts for authentication. Each service that  
runs in Google’s infrastructure runs as a service account identity  
with associated cryptographic credentials. When making or  
receiving RPCs from other services, a service uses its credentials  
to authenticate. ALTS verifies these credentials using an internal 
certificate authority.

Within a physical boundary controlled by or on behalf of Google, ALTS 
provides both authentication and integrity for RPCs in “authentication 
and integrity” mode. For traffic over the WAN outside of physical 
boundaries controlled by or on behalf of Google, ALTS enforces 
encryption for infrastructure RPC traffic automatically in “authentica-
tion, integrity, and privacy” mode. Currently, all traffic to Google 
services, including Google Cloud services, benefits from these  
same protections.

Within Google’s 
infrastructure, at the 
application layer, we 
use our Application 
Layer Transport 
Security (ALTS) for 
the authentication, 
integrity, and 
encryption of 
Google RPC calls 
from the GFE to a 
service, and from 
service to service .

12 The control plane is the part of the network that carries signalling traffic and is responsible for routing.

https://grpc.io/
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ALTS is also used to encapsulate other layer 7 protocols, such as 
HTTP, in infrastructure RPC mechanisms for traffic moving from the 
Google Front End to the Application Front End. This protection iso-
lates the application layer and removes any dependency on the 
network path’s security.

Services can be configured to accept and send ALTS communica-
tions only in “authentication, integrity and privacy” mode, even within 
physical boundaries controlled by or on behalf of Google. One exam-
ple is Google’s internal key management service, which stores and 
manages the encryption keys used to protect data stored at rest in 
Google’s infrastructure.

3.4.1 ALTS Protocol

ALTS has a secure handshake protocol similar to mutual TLS.  
Two services wishing to communicate using ALTS employ this hand-
shake protocol to authenticate and negotiate communication 
parameters before sending any sensitive information. The protocol  
is a two-step process:

Step 1: Handshake 
The client initiates an elliptic curve-Diffie Hellman (ECDH) handshake 
with the server using Curve25519. The client and server each have 
certified ECDH public parameters as part of their certificate, which is 
used during a Diffie Hellman key exchange. The handshake results in 
a common traffic key that is available on the client and the server. The 
peer identities from the certificates are surfaced to the application 
layer to use in authorization decisions.

Step 2: Record encryption 
Using the common traffic key from Step 1, data is transmitted  
from the client to the server securely. Encryption in ALTS is imple-
mented using BoringSSL and other encryption libraries. Encryption 
 is most commonly AES-128-GCM while integrity is provided by  
AES-GCM’s GMAC.  

https://cloud.google.com/security/encryption-at-rest/default-encryption/#key_management
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[Figure 5]

ALTS  
Handshake

Figure 5 below shows the ALTS handshake in detail. In newer imple-
mentations, a process helper does the handshake; there are still some 
cases where this is done directly by the applications.

As described at the start of section 3.4, ALTS uses service accounts 
for authentication, with each service that runs on Google’s infrastruc-
ture running as a service identity with associated cryptographic 
credentials. During the ALTS handshake, the process helper accesses 
the private keys and corresponding certificates that each client-server 
pair uses in their communications. The private key and corresponding 
certificate (signed protocol buffer) have been provisioned for the 
service account identity of the service.

ALTS Certificates 
There are multiple kinds of ALTS certificate:

 • Machine certificates: provide an identity to core services on a  
  specific machine. These are rotated approximately every 6 hours.

https://developers.google.com/protocol-buffers/docs/overview
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[Table 2]

Encryption in ALTS

 • User certificates: provide an end user identity for a Google  
  engineer developing code. These are rotated approximately  
  every 20 hours.   
 • Borg job certificates: provide an identity to jobs running within  
  Google’s infrastructure. These are rotated approximately every  
  48 hours.

The root certification signing key is stored in Google’s internal  
certificate authority (CA), which is unrelated and independent of  
our external CA. 

3.4.2 Encryption in ALTS

Encryption in ALTS can be implemented using a variety of algorithms, 
depending on the machines that are used. For example, most ser-
vices use AES-128-GCM13. More information on ALTS encryption can 
be found in Table 2.

Most Google services use ALTS, or RPC encapsulation that uses 
ALTS. In cases where ALTS is not used, other protections are 
employed. For example:

 • Some low-level machine management and bootstrapping  
  services use SSH

 • Some low-level infrastructure logging services TLS or Datagram  
  TLS (DTLS)14

 • Some services that use non-TCP transports use other  
  cryptographic protocols or network level protections when inside 
  physical boundaries controlled by or on behalf of Google

13 Previously, other protocols were used but are now deprecated. Less than 1% of jobs use these older protocols.
14 Datagram TLS (DTLS) provides security for datagram-based applications by allowing them to communicate in a way that prevents eavesdropping and tampering.

Most common

Sandy Bridge or older

Machines

AES-128-GCM
AES-128-VCM Uses a VMAC instead of a GMAC 

and is slightly more efficient on 
these older machines.

Message encryption used

https://research.google.com/pubs/pub43438.html
https://research.google.com/pubs/pub46483.html
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Communications between VMs and Google Cloud Platform services 
use TLS to communicate with the Google Front End, not ALTS. We 
describe these communications in section 3.5.

3.5 Virtual machine to Google Front End 
encryption 

VM to GFE traffic uses external IPs to reach Google services, but you 
can configure the Private Google Access feature to use Google-only 
IP addresses for the requests.

As with requests from an external user to Google, we support TLS 
traffic by default from a VM to the GFE. The connection happens in 
the same way as any other external connection. For more information 
on TLS, see section 3.1.1.

4. User-configurable options for 
encryption in transit 

Section 3 of this document described the default protections that 
Google has in place for data in transit. This section describes the 
configurations our users can make to these default protections.

4.1 On-premises data center to Google Cloud

4.1.1 TLS using GCLB external load balancers

If your cloud service uses a Google HTTPS or SSL Proxy external load 
balancer, then GFE terminates the TLS connections from your users 
using SSL certificates that you provision and control.  More informa-
tion on customizing your certificate can be found in our SSL 
Certificates documentation.

4.1.2 IPsec tunnel using Google Cloud VPN

As a Google Cloud customer, you can use Google Cloud VPN to 
securely connect your on-premises network to your Google Cloud 
Platform Virtual Private Cloud (VPC) network through an IPsec VPN 

https://cloud.google.com/vpc/docs/private-google-access
https://cloud.google.com/load-balancing/
https://cloud.google.com/load-balancing/
https://cloud.google.com/compute/docs/load-balancing/http/ssl-certificates
https://cloud.google.com/compute/docs/load-balancing/http/ssl-certificates
https://cloud.google.com/compute/docs/load-balancing/http/ssl-certificates
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connection (layer 3). Traffic traveling between the two networks is 
encrypted by one VPN gateway and decrypted by the other VPN 
gateway. This protects your data over the Internet. In addition, you can 
set up multiple, load-balanced tunnels through multiple VPN gate-
ways. The Google Cloud VPN protects your data in the following ways:

 • Packets from your VMs to the Cloud VPN remain within Google’s  
  network. These packets are encrypted by Google Cloud’s virtual  
  network if they travel outside the physical boundaries controlled  
  by or on behalf of Google.

 • Packets from the Cloud VPN to your on-premises VPN are  
  encrypted and authenticated using an IPsec tunnel.

 • Packets from your on-premises VPN to your on-premises hosts 
  are protected by whatever controls you have in place on  
  your network.

To set up a VPN, create a Cloud VPN gateway and tunnel on the 
hosted service’s VPC network, then permit traffic between the  
networks. You also have the option of setting up a VPN between  
two VPCs.

You can further customize your network by specifying the Internet Key 
Exchange (IKE)15 version for your VPN tunnel. There are two versions 
of IKE to choose from, IKEv1 and IKEv2, each of which supports 
different ciphers. If you specify IKEv1, Google encrypts the packets 
using AES-128-CBC and provides integrity through SHA-1 HMAC16.  
For IKEv2, a variety of ciphers are available and supported. In all 
cases, Google Cloud VPN will negotiate the most secure common 
protocol the peer devices support. Full instructions on setting up a 
VPN can be found in our documentation Creating a VPN.

An alternative to an IPsec tunnel is Google Cloud Dedicated 
Interconnect. Dedicated Interconnect provides direct physical con-
nections and RFC1918 communication between your on-premises 
network and Google’s network. The data traveling over this connec-
tion is NOT encrypted by default and so, should be secured at the 
application layer, using TLS for example. Google Cloud VPN and 
Google Cloud Interconnect use the same attachment point so you 

15 Internet Key Exchange (IKE) is the protocol used to set up a security association in the IPsec protocol suite. 
16 HMAC-SHA-1 is not broken by a SHA-1 collision, such as the SHAttered collision Google researchers found.

As a Google Cloud 
customer, you can 
use Google Cloud 
VPN to securely 
connect your 
on-premises 
network to your 
Google Cloud 
Platform Virtual 
Private Cloud (VPC) 
network through an 
IPsec VPN 
connection .

https://cloud.google.com/vpn/docs/concepts/advanced#supported_ike_ciphers
https://cloud.google.com/vpn/docs/how-to/creating-vpns
https://cloud.google.com/interconnect/docs/
https://cloud.google.com/interconnect/docs/
https://shattered.io/
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can use IPsec VPN encryption with Dedicated Interconnect however, 
to achieve this, you will need to use a third party solution. MACsec 
(layer 2 protection) is not currently supported.

4.2 User to Google Front End 
 
4.2.1 Managed SSL certificates: Free and 
automated certificates

When building an application on Google Cloud, you can leverage 
GFE’s support of TLS by configuring the SSL certificate you use. For 
example, you can have the TLS session terminate in your application. 
This termination is different to the TLS termination described in 
section 4.1.1.

Google also provides free and automated SSL certificates in both the 
Firebase Hosting and Google App Engine custom domains. These 
certificates are only available for Google-hosted properties. With 
Google App Engine custom domains, you can also provide your own 
SSL certificates and use an HTTPS Strict Transport Protocol  
(HSTS) header.

Once your domain is pointed at Google’s infrastructure, we request 
and obtain a certificate for that domain to allow secure communica-
tions. We manage the TLS server private keys, which are either 
2048-bit RSA or secp256r1 ECC, and renew certificates on behalf  
of our customers.

4.2.2 Require TLS in Gmail

As discussed in section 3.1.1, Gmail uses TLS by default. Gmail 
records and displays whether the last hop an email made was over a 
TLS session17. When a Gmail user exchanges an email with another 
Gmail user, the emails are protected by TLS, or in some cases, sent 
directly within the application. In these cases, the RPCs used by the 
Gmail application are protected with ALTS as described in section 3.4. 
For incoming messages from other email providers, Gmail does not 
enforce TLS. Gmail administrators can configure Gmail to require a 
secure TLS connection for all incoming and outgoing emails.

17 For G Suite enterprise, this isn’t shown in the UI. Domain administrators can examine data for their domain using Email Log Search.

When building an 
application on 
Google Cloud, you 
can leverage GFE’s 
support of TLS by 
configuring the SSL 
certificate you use.

https://firebase.google.com/docs/hosting/custom-domain
https://cloud.google.com/appengine/docs/standard/python/securing-custom-domains-with-ssl
https://cloud.google.com/appengine/docs/standard/python/securing-custom-domains-with-ssl#using_your_own_ssl_certificates
https://cloud.google.com/appengine/docs/standard/python/securing-custom-domains-with-ssl#using_your_own_ssl_certificates
https://support.google.com/a/answer/6374496?hl=en
https://support.google.com/a/answer/2604578
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4.2.3 Gmail S/MIME

Secure/Multipurpose Internet Mail Extensions (S/MIME) is an email 
security standard that provides authentication, integrity, and encryp-
tion. The implementation of the S/MIME standard mandates that 
certificates associated with users sending emails are hosted in a 
public CA.

As an administrator, you can configure Gmail to enable S/MIME for 
outgoing emails, set up policies for content and attachment compli-
ance, and create routing rules for incoming and outgoing emails. 
Once configured, you must upload users’ public certificates to Gmail 
using the Gmail API. For users external to Gmail, an initial S/MIME-
signed message must be exchanged to set S/MIME as the default.

4.3 Service-to-service and VM-to-VM 
encryption

Istio is an open-source service mesh developed by Google, IBM,  
Lyft, and others, to simplify service discovery and connectivity. Istio 
authentication provides automatic encryption of data in transit 
between services, and management of associated keys and certifi-
cates. Istio can be used in Google Container Engine and Google 
Compute Engine.

If you want to implement mutual authentication and encryption for 
workloads, you can use istio auth. Specifically, for a workload in 
Kubernetes, Istio auth allows a cluster-level CA to generate and  
distribute certificates, which are then used for pod-to-pod mutual 
Transport Layer Security (mTLS).

5 . How Google helps the Internet 
encrypt data in transit 

Sections three and four explained the default and customizable 
protections Google Cloud has in place for customer data in transit. In 
addition, Google has several open-source projects and other efforts 
that encourage the use of encryption in transit and data security on 
the Internet at large.

Istio is an open-
source service mesh 
designed to simplify 
service discovery 
and connectivity . 
Istio authentication 
provides automatic 
encryption of data in 
transit between 
services, and 
management of 
associated keys and 
certificates.

https://support.google.com/a/answer/6374496?hl=en
https://support.google.com/a/answer/7280976?hl=en
https://developers.google.com/gmail/api/guides/smime_certs
https://istio.io/
https://istio.io/blog/2017/0.1-auth.html
https://kubernetes.io/
https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
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5.1 Certificate Transparency 
 
As discussed in section 3.1, to offer HTTPS, a site must apply first for 
a certificate from a trusted web (public) Certificate Authority (CA). 
The Certificate Authority is responsible for verifying that the applicant 
is authorized by the domain holder, as well as ensuring that any other 
information included in the certificate is accurate.This certificate is 
then presented to the browser to authenticate the site the user is 
trying to access. In order to ensure HTTPS is properly authenticated, 
it’s important to ensure that CAs only issue certificates that the 
domain holder has authorized.

Certificate Transparency (CT) is an effort that Google launched in 
March 2013 to provide a way for site operators and domain holders to 
detect if a CA has issued any unauthorized or incorrect certificates. It 
works by providing a mechanism for domain holders, CAs, and the 
public to log the trusted certificates they see or, in the case of CAs, 
the certificates they issue, to publicly verifiable, append-only, tam-
per-proof logs. The certificates in these logs can be examined by 
anyone to ensure the information is correct, accurate, and authorized.

The first version of Certificate Transparency was specified in an IETF 
experimental RFC, RFC 6962. During the development of Certificate 
Transparency, Google open-sourced a number of tools, including an 
open-source log server that can record certificates, as well as tools  
to create Certificate Transparency logs. In addition, Google Chrome 
requires that some certificates must be publicly disclosed, such  
as for Extended Validation (EV) certificates or certificates issued 
from CAs that have improperly issued certificates in the past. From 
2018, Chrome will require that all new publicly trusted certificates  
be disclosed.

As a site operator, you can use Certificate Transparency to detect if 
unauthorized certificates have been issued for your website. A num-
ber of free tools exist to make this easy to do, such as Google’s 
Certificate Transparency Report, Certificate Search, or tools from 
Facebook. Even if you don’t use Certificate Transparency, a number of 
browsers now examine Certificate Transparency regularly to ensure 
that the CAs your users trust to access your website are adhering to 
industry requirements and best practices, reducing the risk of fraudu-
lent certificates being issued.

https://www.certificate-transparency.org/
https://tools.ietf.org/html/rfc6962
https://www.certificate-transparency.org/known-logs
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/sz_3W_xKBNY
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/sz_3W_xKBNY
https://transparencyreport.google.com/https/certificates
https://crt.sh/
https://www.facebook.com/notes/protect-the-graph/introducing-our-certificate-transparency-monitoring-tool/1811919779048165/
https://www.facebook.com/notes/protect-the-graph/introducing-our-certificate-transparency-monitoring-tool/1811919779048165/
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5.2 Increasing the use of HTTPS

As described in section 3.1, we work hard to make sure that our sites 
and services provide modern HTTPS by default. Our goal is to achieve 
100% encryption across our products and services. To this end, we 
publish an annual HTTPS Transparency Report that tracks our prog-
ress towards our goal for all properties, including Google Cloud. We 
continue to work through the technical barriers that make it difficult to 
support encryption in some of our products, such as solutions for 
browsers or other clients that do not support HTTPS Strict Transport 
Protocol (HSTS)18. We use HSTS for some of our sites, including the 
google.com homepage, to allow users to connect to a server only  
over HTTPS.

We know that the rest of the Internet is working on moving to HTTPS. 
We try to facilitate this move in the following ways:

 • We provide developers with advice on why HTTPS matters, how 
   to enable HTTPS, and best practices when implementing HTTPS

 • We have created tools in Chrome like the Security panel in 
  DevTools to help developers assess the HTTPs status of  
  their site(s)

 • We financially support the Let’s Encrypt initiative that allows  
  anyone to obtain a free certificate for their website. Google  
  representatives sit on the technical advisory board of the Let’s  
  Encrypt’s parent organization, Internet Security Research Group.

In 2016, we began publishing metrics on “HTTPS usage on the 
Internet” for the Top 100 non-Google sites on the Internet. With these 
metrics, we aim to increase awareness and help make the Internet a 
safer place for all users. In October 2017, Chrome formally renewed 
its financial support of Let’s Encrypt as a Platinum sponsor.

18 HTTPS Strict Transport Protocol is a mechanism enabling web sites to declare themselves accessible only via secure connections and/or for users to be able to direct  
   their user agent(s) to interact with given sites only over secure connections.

Our goal is to 
achieve 100% 
encryption across 
our products and 
services . To this end, 
we publish an annual 
HTTPS Transparency 
Report that tracks 
our progress 
towards this our goal 
for all properties.

https://transparencyreport.google.com/https/overview
https://security.googleblog.com/2016/07/bringing-hsts-to-wwwgooglecom.html
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/enable-https
https://support.google.com/webmasters/answer/6073543?hl=en
https://developers.google.com/web/updates/2015/12/security-panel
https://developers.google.com/web/updates/2015/12/security-panel
https://letsencrypt.org/
https://letsencrypt.org/isrg/
https://transparencyreport.google.com/https/top-sites?hl=en
https://blog.google/topics/safety-security/say-yes-https-chrome-secures-web-one-site-time/
https://blog.google/topics/safety-security/say-yes-https-chrome-secures-web-one-site-time/


72

5.3 Increasing the use of secure SMTP:  
Gmail indicators

Most email is exchanged using the Simple Mail Transfer Protocol 
(SMTP) which, by default, sends email without using encryption. To 
encrypt an email, the mail provider must implement security controls 
like TLS.

As discussed in section 3.1, Gmail uses TLS by default. In addition, 
section 4.2.2 describes how Gmail administrators can enforce the use 
of TLS protection for incoming and outgoing emails. Like Google’s 
efforts with HTTPS transparency, Gmail provides data on TLS use for 
incoming emails to Gmail. This data is presented in our Safer Email 
Transparency Report.

Google, in partnership with the IETF and other industry key players, is 
leading the development of SMTP STS. SMTP STS is like HSTS for 
HTTPS, forcing the use of SMTP over only encrypted channels.

5.4 Chrome APIs

In February 2015, Chrome announced that powerful new features will 
be available only to secure origins19. Such features include the han-
dling of private information and access to sensors on a user’s device. 
Starting with geolocation in Chrome 50, we began deprecating these 
features for insecure origins.

6 . Ongoing Innovation in Encryption  
in Transit 

6.1 Chrome Security User Experience

Google Chrome is an industry leader in leveraging its UI to display 
security information in ways that allow users to quickly understand 
the safety of their connection to a site. With this information, users 
can make informed decisions about when and how they share their 
data. Chrome conducts extensive user research, the results of which 
are shared in peer-reviewed papers.

19 Secure origins are connections that match certain scheme, host, or port patterns.

Google Chrome is an 
industry leader in 
leveraging its UI to 
display security 
information in ways 
that allow users to 
quickly understand 
the safety of their 
connection to a site .

https://transparencyreport.google.com/safer-email/overview
https://transparencyreport.google.com/safer-email/overview
https://www.chromium.org/Home/chromium-security/prefer-secure-origins-for-powerful-new-features
https://www.chromium.org/Home/chromium-security/deprecating-powerful-features-on-insecure-origins
https://www.chromium.org/Home/chromium-security/deprecating-powerful-features-on-insecure-origins
https://www.usenix.org/system/files/conference/soups2016/soups2016-paper-porter-felt.pdf
https://www.chromium.org/Home/chromium-security/prefer-secure-origins-for-powerful-new-features
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To help further protect its users, Chrome has announced that by the 
end of 2017, it will mark all HTTP connections as non-secure. Starting 
with Chrome 56, by default, users will see a warning if an HTTP page 
includes a form with password or credit card fields. With Chrome 62, 
a warning will be shown when a user enters in data on an HTTP page, 
and for all HTTP pages visited in Incognito mode. Eventually, Chrome 
will show a warning for all pages that are served over HTTP.

To see how particular configurations are displayed to users in 
Chrome, you can use the BadSSL tool.

6.2 Key Transparency

A significant deterrent to the widespread adoption of message 
encryption is the difficulty of public key exchange: how can I reliably 
find the public key for a new user with which I am communicating? To 
help solve this issue, in January 2017, Google announced Key 
Transparency. This is an open framework that provides a generic, 
secure, and auditable means to distribute public keys. The framework 
removes the need for users to perform manual key verification. Key 
Transparency is primarily targeted at the distribution of users’ public 
keys in communications, for example, E2E and OpenPGP email 
encryption. Key Transparency’s design is a new approach to key 
recovery and distribution and is based on insights gained from 
Certificate Transparency and CONIKS.

Key Transparency’s development is open-source and it is imple-
mented using a large-scale Merkle tree. Key Transparency Verification 
allows account owners to see what keys have been associated with 
their accounts and how long an account has been active and stable. 
The long-term goal of Google’s Key Transparency work is to enable 
anyone to run a Key Transparency server and make it easy to integrate 
into any number of applications. 

6.3 Post-quantum cryptography

Google plans to remain the industry leader in encryption in transit. To 
this end, we have started work in the area of post-quantum cryptogra-
phy. This type of cryptography allows us to replace existing crypto 
primitives, that are vulnerable to efficient quantum attacks, with 
post-quantum candidates that are believed to be more robust. In  

https://www.chromium.org/Home/chromium-security/marking-http-as-non-secure
https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
https://blog.chromium.org/2017/04/next-steps-toward-more-connection.html
https://badssl.com/
https://github.com/google/keytransparency/
https://github.com/google/keytransparency/
https://www.certificate-transparency.org/
https://coniks.cs.princeton.edu/
https://github.com/google/keytransparency/
https://github.com/google/keytransparency/blob/master/docs/design-improvements.md
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July 2016 we announced that we had conducted an experiment on  
the feasibility of deploying such an algorithm by using the New Hope 
post-quantum crypto algorithm in the developer version of Chrome.  
In addition to this work, researchers at Google have published papers 
on other practical post-quantum key-exchange protocols.

Appendix 

For general information on Google Cloud security and compliance, 
see the security sections of the Google Cloud Platform website and 
the G Suite website, including the Google Infrastructure Security 
Design Overview and the public SOC3 audit report.

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://eprint.iacr.org/2015/1092.pdf
https://eprint.iacr.org/2015/1092.pdf
https://eprint.iacr.org/2016/659
https://cloud.google.com/security/
https://gsuite.google.com/security/?secure-by-design_activeEl=data-centers
https://cloud.google.com/security/security-design/
https://cloud.google.com/security/security-design/
https://www.google.com/cloud/security/compliance/soc-3/
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Executive summary
 

• Google’s Application Layer Transport Security (ALTS) is a mutual 
authentication and transport encryption system developed by 
Google and typically used for securing Remote Procedure Call 
(RPC) communications within Google’s infrastructure. ALTS  
is similar in concept to mutually authenticated TLS but has  
been designed and optimized to meet the needs of Google’s 
datacenter environments.

• The ALTS trust model has been tailored for cloud-like containerized 
applications. Identities are bound to entities instead of to a  
specific server name or host. This trust model facilitates seamless 
microservice replication, load balancing, and rescheduling  
across hosts.

• ALTS relies on two protocols: the Handshake protocol (with session 
resumption) and the Record protocol. These protocols govern how 
sessions are established, authenticated, encrypted, and resumed.

• ALTS is a custom transport layer security solution that we use at 
Google. We have tailored ALTS to our production environment, so 
there are some tradeoffs between ALTS and the industry standard, 
TLS. Section 5 discusses these tradeoffs in more detail.

https://www.ietf.org/rfc/rfc5246.txt
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1 . Introduction
 
Production systems at Google consist of a constellation of microser-
vices1 that collectively issue O(1010) Remote Procedure Calls (RPCs) 
per second. When a Google engineer schedules a production work-
load2, any RPCs issued or received by that workload are protected with 
ALTS by default. This automatic, zero-configuration protection is pro-
vided by Google’s Application Layer Transport Security (ALTS).  In 
addition to the automatic protections conferred on RPC’s, ALTS also 
facilitates easy service replication, load balancing, and rescheduling 
across production machines. This paper describes ALTS and explores 
its deployment over Google’s production infrastructure.

Audience: This document is aimed at infrastructure security profes-
sionals who are curious about how authentication and transport 
security are performed at scale in Google.

Prerequisites: In addition to this introduction, we assume a basic 
understanding of cluster management at Google.

2 . Application-Level Security  
and ALTS
 
Many applications, from web browsers to VPNs, rely on secure 
communication protocols, such as TLS (Transport Layer Security) 
and IPSec, to protect data in transit3. At Google, we use ALTS, a 
mutual authentication and transport encryption system that runs 
at the application layer, to protect RPC communications. Using 
application-level security allows applications to have authenticated 
remote peer identity, which can be used to implement fine-grained 
authorization policies.

2.1 Why Not TLS?

It may seem unusual for Google to use a custom security solution 
such as ALTS when the majority of Internet traffic today is encrypted 
using TLS. ALTS began development at Google in 2007. At the time, 
TLS was bundled with support for many legacy protocols that did not 
satisfy our minimum security standards. We could have designed 
our security solution by adopting the TLS components we needed 
and implementing the ones we wanted; however, the advantages of 

When a Google 
engineer schedules  
a production 
workload, any RPCs 
that workload issues 
has automatic,  
zero-configuration 
protection using 
Google’s Application 
Layer Transport 
Security (ALTS) .

1 A microservice is an architectural style that structures an application as a collection of loosely coupled services which implement business capabilities. 
2 A production workload is an application that Google engineers schedule to run in Google’s datacenters. 
3 For more information on how Google protects data in transit, see our whitepaper, “Encryption in Transit in Google Cloud”.

https://research.google.com/pubs/pub43438.html
https://cloud.google.com/security/encryption-in-transit
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building a more Google-suited system from scratch outweighed the 
benefits of patching an existing system. In addition, ALTS is more 
appropriate for our needs, and historically more secure than older 
TLS. Listed below are the key differences between TLS and ALTS. 
  
 • There is a significant difference between the trust models4 
  of TLS with HTTPS semantics and ALTS. In the former, server  
  identities are bound to a specific name and corresponding  
  naming scheme. In ALTS, the same identity can be used with  
  multiple naming schemes. This level of indirection provides  
  more flexibility and greatly simplifies the process of microservice  
  replication, load balancing, and rescheduling between hosts.

 • Compared to TLS, ALTS is simpler in its design and  
  implementation. As a result, it is easier to monitor for bugs and  
  security vulnerabilities using manual inspection of source code  
  or extensive fuzzing.

 • ALTS uses Protocol Buffer to serialize its certificates and  
  protocol messages, while TLS uses X.509 certificates encoded  
  with ASN.1. The  majority of our production services use protocol  
  buffers for communication (and sometimes storage), making  
  ALTS a better fit for Google’s environment.

2.2 ALTS Design

ALTS is designed to be a highly reliable, trusted system that allows 
for service-to-service authentication and security with minimal user 
involvement. To achieve this, the properties listed below are part of 
ALTS’s design:

 • Transparency: ALTS configuration is transparent to the  
  application layer. By default, service RPCs are secured using  
  ALTS. This allows application developers to focus on the  
  functional logic of their services without having to worry about 
  credential management or security configurations. During  
  service-to-service connection establishment, ALTS provides  
  applications with an authenticated remote peer identity which  
  can be used for fine-grained authorization checks and auditing.

 • State-of-the-art cryptography: All cryptographic primitives and  
  protocols used by ALTS are up-to-date with current known  
  attacks. ALTS runs on Google-controlled machines, meaning that 

ALTS is designed to 
be a highly reliable, 
trusted system that 
allows for service- 
to-service 
authentication and 
security with minimal 
user involvement .

4 A trust model is the mechanism through with a security protocol identifies, distributes and rotates credentials and identities.

https://developers.google.com/protocol-buffers/docs/proto3


81

  all supported cryptographic protocols can be easily upgraded  
  and quickly deployed.

 • Identity model: ALTS performs authentication primarily by  
  identity rather than host name. At Google, every network entity  
  (e.g. a corporate user, a physical machine, or a production  
  service or workload) has an associated identity. All  
  communications between services are mutually authenticated.  

 • Key distribution: ALTS relies on each workload having an identity, 
  which is expressed as a set of credentials. These credentials  
  are deployed in each workload during initialization, without user  
  involvement. In parallel, a root of trust and a trust chain for these  
  credentials are established for machines and workloads. The  
  system allows for automatic certificate rotation and revocation 
  without application developers involvement.

 • Scalability: ALTS is designed to be very scalable in order  
  to support the massive scale of Google’s infrastructure. This  
  requirement resulted in the development of efficient session  
  resumption, see Section 4.3.

 • Long-lived connections: Authenticated key exchange  
  cryptographic operations are computationally expensive.  
  To accommodate the scale of Google’s infrastructure, after an  
  initial ALTS handshake, connections can be persisted for a longer  
  time to improve overall system performance.

 • Simplicity: TLS by default comes with support for legacy  
  protocol versions and backwards compatibility. ALTS is  
  considerably simpler as Google controls both clients and servers,  
  which we designed to natively support ALTS.

3 . ALTS Trust Model

ALTS performs authentication primarily by identity rather than host. 
At Google, every network entity (e.g., a corporate user, a physical 
machine, or a production service) has an associated identity. These 
identities are embedded in ALTS certificates and used for peer 
authentication during secure connection establishment. The model 
we pursue is that our production services run as production entities 
that can be managed by our Site Reliability Engineers (SREs)5. The 

ALTS performs 
authentication 
primarily by identity 
rather than host .  
At Google, every 
network entity (e .g ., 
a corporate user, a 
physical machine,  
or a production 
service) has an 
associated identity .

5 Some services are managed directly by developers.
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development versions of these production services run as test 
entities that can be managed by both SREs and developers.

For example, let’s assume we have a product with two services:  
service-frontend and service-backend. SREs can launch the 
production version of these services: service-frontend-prod  
and service-backend-prod. Developers can build and launch 
development versions of these services, service-frontend-
dev and service-backend-dev, for testing purposes. The 
authorization policy in the production services will be configured 
not to trust the development versions of the services. 

3.1 ALTS Credentials

There are three types of ALTS credential, all of which are expressed 
in Protocol Buffer message format.

 • Master certificate: signed by a remote Signing Service and used  
  to verify handshake certificates. The master certificate contains  
  a public key associated with a master private key, e.g., RSA  
  keypair. This private key is used to sign handshake certificates.  
  These certificates, when exercised in combination with the ALTS  
  policy discussed below, are essentially constrained intermediate  
  Certificate Authority (CA) certificates. Master certificates  
  are typically issued for production machines and schedulers of  
  containerized workloads such as the Borgmaster6.

 • Handshake certificate: created and signed locally by the master  
  private key. This certificate contains the parameters used during  
  the ALTS handshake (secure connection establishment), for  
  example, static Diffie-Hellman (DH) parameters and the  
  handshake ciphers. Also, the handshake certificate contains the  
  master certificate that it is derived from, i.e., the one associated  
  with the master private key that signs the handshake certificate.

 • Resumption key: is a secret that is used to encrypt resumption  
  tickets. This key is identified by a Resumption Identifier IDR that  
  is unique for, and shared among, all production workloads  
  running with the same identity and in the same datacenter cell.  
  For more details on session resumption in ALTS, see Section 4.3.

https://developers.google.com/protocol-buffers/docs/proto3


83

Figure 1 shows the ALTS certificate chain, which consists of a 
Signing Service verification key, a master certificate and a handshake 
certificate. The Signing Service verification keys are the root of trust 
in ALTS and are installed on all Google machines in our production 
and corporate networks. 

In ALTS, a Signing Service certifies Master certificates which in 
turn certify Handshake certificates. As Handshake certificates 
are created more often than Master certificates, this architecture 
reduces the load on the Signing service. Certificate rotation happens 
frequently at Google, especially for handshake certificates7. This 
frequent rotation compensates for the static key exchange pairs 
carried by the handshake certificates8.

3.1.1 Certificate Issuance

In order to participate in an ALTS secure handshake, entities on the 
network need to be provisioned with handshake certificates. First, the 
issuer obtains a master certificate signed by the Signing Service and 
optionally passes it down to the entity. Then, a handshake certificate 
is created and signed by the associated master private key. 

Typically, the issuer is our internal Certificate Authority (CA) when 
issuing certificates to machines and humans, or the Borgmaster 
when issuing certificates to workloads. However, it can be any other 
entity, e.g., a restricted Borgmaster for a test datacenter cell.

[Figure 1]

ALTS  
certificate�chain

6 Borgmaster is responsible for scheduling and initializing Google production workloads. For more information see Large-scale cluster management at Google with Borg.
7 More information about certificate rotation frequencies can be found in “Encryption in Transit in Google Cloud”. 
8 If a key is compromised, only the traffic for the lifetime of this keypair will be discoverable by the attacker.

https://research.google.com/pubs/pub43438.html
https://cloud.google.com/security/encryption-in-transit/
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Figure 2 shows how the Signing service is used to create a master 
certificate. The process consists of the following steps.

 1. The Certificate Issuer sends a Certificate Signing Request (CSR)  
 to the Signing Service. This request asks the Signing Service to  
 create a certificate for identity A. This identity, for example, can be  
 a corporate user  or the identity of a Google production service. 

 2. The Signing Service sets the issuer of the certificate (included  
 in the CSR) to the requester (the Certificate Issuer in this case)  
 and signs it. Recall that the corresponding Signing Service public 
 (verifying) key is installed on all Google machines. 

 3. The Signing Service sends the signed certificate back.
 
 4. A handshake certificate is created for identity A and is signed  
 by the master certificate associated private key.

As shown in the process above, with ALTS, the issuer and signer of a 
certificate are two different logical entities. In this case, the issuer is 
the Certificate Issuer entity while the signer is the Signing Service.

[Figure 2]

Certificate�Issuance
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There are three common categories of certificates in ALTS, namely: 
Human, Machine, and Workload. The following sections outline how 
each of these certificates are created and used in ALTS.

3.1.2 Human Certificates

At Google, we use ALTS to secure RPCs issued by human users 
to production services. To issue an RPC, a user must provide a 
valid handshake certificate. For example, if Alice wants to use an 
application to issue an ALTS-secure RPC, she can authenticate to 
our internal CA. Alice authenticates to the CA using her username, 
password, and two-factor authentication. This operation results in 
Alice getting a handshake certificate that is valid for 20 hours.

3.1.3 Machine Certificates

Every production machine in Google’s datacenters has a machine 
master certificate. This certificate is used to create handshake 
certificates for core applications on that machine, e.g. machine 
management daemons. The primary identity embedded in a machine 
certificate refers to the typical purpose of the machine. For example, 
machines used to run different kinds of production and development 
workloads can have different identities. The master certificates 
are only usable by machines running verified software stacks; in 
some cases this trust is rooted in custom security hardware9.  All 
production machine master certificates are issued by the CA and 
rotated every few months. Also, all handshake certificates are 
rotated every few hours.

3.1.4 Workload Certificates

A key advantage of ALTS is that it operates on the idea of a workload 
identity which facilitates easy service replication, load balancing, and 
rescheduling across machines. In our production network, we use a 
system called Borg10 for cluster management and machine resource 
allocation at scale. The way that Borg issues certificates is part of 
the ALTS machine-independent workload identity implementation. 
The remainder of this section provides an overview of our 
workload certification.

Each workload in our production network runs in a Borg cell. Each 
cell contains a logically centralized controller called the Borgmaster, 
and several agent processes called Borglets that run on each 

9   Titan in depth: Security in plaintext. 
10  Large-scale cluster management at Google with Borg. 

https://cloudplatform.googleblog.com/2017/08/Titan-in-depth-security-in-plaintext.html
https://research.google.com/pubs/pub43438.html
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machine in that cell. Workloads are initialized with associated 
Workload Handshake Certificates issued by the Borgmaster. Figure 3 
shows the process of workload certification in ALTS with Borg.

 1. Each Borgmaster comes pre-installed with a Machine Master  
 Certificate and associated private key (not shown in the diagram). 
 
 2. The ALTSd11 generates a Borgmaster Handshake Certificate  
 and signs it using the Machine Master private key. This Handshake 
 Certificate allows Borgmaster to issue ALTS-secure RPCs. 
  
 3. The Borgmaster creates a Base Workload Master Certificate,  
 and the corresponding private key. The Borgmaster initiates a  
 request to get its Base Workload Master Certificate signed by the  
 Signing Service. As a result, the Signing Service lists the  
 Borgmaster as the issuer on this certificate.

The Borgmaster is now ready to schedule workloads that need to use 
ALTS. The steps below happen when a client schedules a workload 
to run on Borg as a given identity.

11  ALTSd: a daemon responsible for, amongst other ALTS operations, the creation of handshake certificates.

[Figure 3]

Handshake�Certificate�Creation�in� 
the Google Production Network
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 4. The Borgmaster verifies that the client is authorized to run  
 workloads as the identity that is specified in the workload  
 configuration. If so, the Borgmaster schedules the Borg workload  
 on the Borglet, and issues a Workload Handshake Certificate  
 and its corresponding private key. This certificate is chained from 
 the Base Workload Master Certificate. The Workload Handshake 
 Certificate and its private key are then securely delivered to the  
 Borglet (over a mutually authenticated ALTS protected channel 
 between the Borgmaster and the Borglet). The Borgmaster rotates 
 its Base Workload Master Certificate and reissues Handshake  
 Certificates for all running workloads approximately every two  
 days. In addition, each workload running as the same user in the  
 same cell  receives the same resumption key and identifier (IDR)  
 provisioned by the Borgmaster.

 5. When the workload needs to make an ALTS-secure RPC, it uses  
 the Workload Handshake Certificate in the handshake protocol.  
 IDR is also used as part of the handshake to initiate session  
 resumption. For more information about session resumption in  
 ALTS, see Section 4.3.

3.2 ALTS Policy Enforcement

The ALTS policy is a document that lists which issuers are authorized 
to issue certain categories of certificates for which identities. 
It is distributed to every machine on our production network. 
For example, the ALTS policy allows the CA to issue certificate 
to machines and humans. It also allows Borgmaster to issue 
certificates to workloads.

We have found that policy enforcement during certificate verification, 
as opposed to certificate issuance, is a more flexible approach as 
it allows for different policies to be enforced on different types of 
deployments. For example, we may want a policy in a test cluster to 
be more permissive than one in a production cluster.

During the ALTS handshake, the certificate validation includes a 
check of the ALTS policy. The policy ensures that the issuer listed in 
the certificate being validated is authorized to issue that certificate. 
If that is not the case, the certificate is rejected and the handshake 
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process fails. Figure 4 illustrates how the policy enforcement works 
in ALTS. Following the scenario in Figure 2, assume that Mallory (a 
corporate user who wants to escalate her privileges) wants to issue a 
master certificate to the Network Admin, which is a powerful identity 
that can reconfigure the network. It goes without saying that Mallory 
is not authorized on the ALTS policy to perform this operation.

 1. Mallory issues a master certificate for Network Admin 
 identity and gets it signed by the Signing Service. This is  
 similar to the first three steps in Figure 2. 

 2. Mallory creates and signs a handshake certificate locally  
 for Network Admin, using the master private key associated  
 with the created master certificate.

 3. If Mallory tries to impersonate the Network Admin identity  
 by using the created handshake certificate, the ALTS policy  
 enforcer, at the peer that Mallory tries to communicate with,  
 will block the operation.

[Figure 4]

Certificate�Issuance�and�Usage
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3.3 Certificate Revocation

At Google, a certificate is invalidated when it expires or it is included 
in our Certificate Revocation List (CRL). This section describes the 
design of Google’s internal certificate revocation mechanisms,  
which, at the time of writing this paper, are still undergoing deploy-
ment testing.

All certificates issued to human corporate users have a daily  
expiration timestamp which forces the users to reauthenticate daily. 
Many of the certificates issued to production machines do not use 
expiration timestamps. We avoid relying on timestamps to expire 
production certificates as it can lead to outages caused by clock 
synchronization issues. Instead, we use the CRL as our source of 
truth for rotation and incident-response handling of certificates. 
Figure 5 shows how the CRL operates.

[Figure 5]

Master�Certificate�Creation�
with a Revocation ID

12 In practice, the CA has access to the Signing Service private keys, making the two logical entities as a single physical one.
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 1. When an instance of our CA is initialized12, it contacts the  
 CRL Service and asks for a revocation ID range. A revocation  
 ID is a 64-bit long ID with two components, an 8-bit certificate  
 category (e.g. human or  machine certificate), and a 56-bit 
  certificate identifier. The CRL Service chooses a range of  
 these IDs and returns it to the CA.

 2. When the CA receives a request for a master certificate, it  
 creates the certificate and embeds a revocation ID it picks  
 from the range.

 3. In parallel, the CA maps the new certificate to the  
 revocation ID and sends this information to the CRL Service.

 4. The CA issues the master certificate.

Revocation IDs assigned to handshake certificates depend on how 
the certificate is used. For example, handshake certificates that are 
issued to human corporate users inherit the revocation ID of the 
user’s master certificate. For handshake certificates that are issued to 
Borg workloads, the revocation ID is assigned by the Borgmaster’s 
range of revocation IDs. This ID range is assigned to the Borgmaster 
by the CRL Service in a process similar to that shown in Figure 5. 
Whenever a peer is involved in an ALTS handshake, it checks a local 
copy of the CRL file to ensure that the remote peer certificate has not 
been revoked.

The CRL Service compiles all revocation IDs into a single file that can 
be pushed to all Google machines that use ALTS. While the CRL 
database is several hundred megabytes, the generated CRL file is only 
a few megabytes due to a variety of compression techniques.

4 . ALTS Protocols  

ALTS relies on two protocols: the Handshake protocol (with session 
resumption) and the Record protocol. This section provides a high 
level overview of each protocol. These overviews should not be inter-
preted as detailed specifications of the protocols.

ALTS relies on two 
protocols: the 
Handshake protocol 
(with session 
resumption) and  
the Record protocol .
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4.1 Handshake Protocol

The ALTS handshake protocol is a Diffie-Hellman-based authenti-
cated key exchange protocol that supports both Perfect Forward 
Secrecy (PFS) and session resumption. The ALTS infrastructure 
ensures that each client and server have a certificate with their 
respective identities and an Elliptic Curve Diffie-Hellman (ECDH)  
key that chains to a trusted Signing Service verification key. In ALTS, 
PFS is not enabled by default because these static ECDH keys are 
frequently updated to renew forward secrecy even if PFS is not used  
on a handshake. During a handshake, the client and server securely 
negotiate a shared transit encryption key, and the Record protocol  
the encryption key will be used to protect. For example, the client  
and server might agree to a 128-bit key that will be used to protect  
an RPC session using AES-GCM. The handshake consists of four 
serialized Protocol Buffer messages, an overview of which can be 
seen in Figure 6.

 1. The client initiates the handshake by sending a  
 ClientInit message. This message contains the client’s  
 handshake certificate, and a list of the handshake-related  
 ciphers and record protocols the client supports. If the client 
 is attempting to resume a terminated session, it will include a 
 resumption identifier and encrypted server resumption ticket.

[Figure 6]

ALTS Handshake  
Protocol Messages
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 2. On receipt of the ClientInit message, the server  
 verifies the client certificate. If valid, the server chooses a  
 handshake cipher and record protocol from the list provided  
 by the client. The server uses a combination of the  
 information contained in the ClientInit message and its 
 own local information to compute the DH exchange result.  
 This result is used as an input to Key Derivation Functions13  
 along with the transcript of the protocol to generate the  
 following session secrets:

  • A record protocol secret key M used to encrypt and  
    authenticate payload messages,

  • A resumption secret R to be used in a resumption  
    ticket in future sessions, 
 
  • An authenticator secret A. 
 
 The server sends a ServerInit message containing its  
 certificate, the chosen handshake cipher, record protocol, and 
 an optional encrypted  resumption ticket.

 3. The server sends a ServerFinished message contain- 
 ing a handshake  authenticator14. The value for this  
 authenticator is calculated using a Hash- based Message  
 Authentication Code (HMAC) computed over a pre-defined bit 
 string and the authenticator secret A. 

 4. Once the client receives ServerInit, it verifies the server  
 certificate, computes the DH exchange result similar to the  
 server, and derives the same M, R, and A secrets. The client 
  uses the derived A to verify the authenticator value in the  
 received ServerFinished message. At this point in the  
 handshake process, the client can start using M to encrypt  
 messages. As the client is now capable of sending  
 encrypted messages, we can say that ALTS has a one RTT 
 handshake protocol.

13 Specifically, HKDF-Extract and HKDF-Expand as defined in RFC-5869. 
14 ALTS handshaker protocol implementation concatenates ServerInit and ServerFinished messages into a single wire payload.
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 5. At the end of the handshake, the client sends a  
 ClientFinished  message with a similar authenticator  
 value (see step 3) computed over different pre-defined bit  
 string. If needed, the client can include an encrypted  
 resumption ticket for future sessions. Once this message  
 is received and verified by the server, the ALTS handshake  
 protocol is concluded and the server can start using M to  
 encrypt and authenticate further payload messages.

The Handshake protocol was reviewed by Thai Duong from Google’s 
internal security analysis team and formally verified using the Proverif 
tool15 by Bruno Blanchet with the assistance of Martin Abadi.

4.2 Record Protocol

Section 4.1 described how we use the Handshake protocol to negoti-
ate a Record protocol secret. This protocol secret is used to encrypt 
and authenticate network traffic. The layer of the stack that performs 
these operations is called the ALTS Record Protocol (ALTSRP).

ALTSRP contains a suite of encryption schemes with varying key 
sizes and security features. During the handshake, the client sends its 
list of preferred schemes, sorted by preference. The server chooses 
the first protocol in the client list that matches the server’s local 
configuration. This method of scheme selection allows both clients 
and servers to have different encryption preferences and allows us to 
phase in (or remove) encryption schemes.

4.2.1 Framing

Frames are the smallest data unit in ALTS. Depending on its size, 
each ALTSRP message can consist of one or more frames. Each 
frame contains the following fields: 
 
 • Length: a 32-bit unsigned value indicating the length of the frame, 
  in bytes. This 4-byte length field is not included as part of the total 
  frame length. 
 • Type: a 32-bit value specifying the frame type, e.g., data frame 
 • Payload: the actual authenticated and optionally encrypted  
  data being sent.

15 ProVerif: Cryptographic protocol verifier in the formal model.

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
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The maximum length of a frame is 1MB plus 4 length bytes. For 
current RPC protocols, we further limit the frame length as shorter 
frames require less memory for buffering. Larger frames could also 
be exploited by a potential attacker during a Denial of Service (DoS) 
attack in an attempt to starve a server. As well as limiting the frame 
length, we also restrict the number of frames that can be encrypted 
using the same record protocol secret M. The limit varies depending 
on the encryption scheme that is used to encrypt and decrypt the 
frame payload. Once this limit is reached, the connection must  
be closed.

4.2.2 Payload

In ALTS each frame contains a payload that is integrity protected and 
optionally encrypted16. As of the publication of this paper, ALTS sup-
ports the following modes:

 • AES-128-GCM, AES-128-VCM: AES-GCM and AES-VCM modes,  
  respectively, with 128-bit keys. These modes protect the  
  confidentiality and integrity of the payload using the GCM, and  
  the VCM schemes17, respectively.

 • AES-128-GMAC, AES-128-VMAC: these modes support  
  integrity-only protection using GMAC and VMAC, respectively,  
  for tag computation. The payload is transferred in plaintext  
  with a cryptographic tag that protects its integrity.

At Google, we use different modes of protection depending on the 
threat model and performance requirements. If the communicating 
entities are within the same physical boundary controlled by or on 
behalf of Google, integrity-only protection is used. These entities can 
still choose to upgrade to authenticated encryption based on the 
sensitivity of their data. If the communicating entities are in different 
physical boundaries controlled by or on behalf of Google, and so the 
communications pass over the Wide Area Network, we automatically 
upgrade the security of the connection to authenticated encryption, 
regardless of the chosen mode. Google applies different protections 
to data in transit when it is transmitted outside a physical boundary 
controlled by or on behalf of Google, since the same rigorous security 
measures cannot be applied.

16 Payload encryption is negotiated as part of the Record protocol in the handshake.
17 The 128-bit AES-GCM scheme is based on NIST 800-38D, and AES-VCM is discussed in details in AES-VCM, An AES-GCM Construction Using an Integer-Based  
Universal Hash Function.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://research.google.com/pubs/pub46483.html
https://research.google.com/pubs/pub46483.html
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Each frame is separately integrity protected and optionally encrypted. 
Both peers maintain both request and response counters, which 
synchronize during normal operation. If the server receives requests 
that are out of order, or repeated, cryptographic integrity verification 
fails, dropping the request. Similarly, the client drops a repeated or 
mis-ordered response. Furthermore, having both peers maintain the 
counters (as opposed to including their values in the frame header) 
saves additional bytes on the wire.

4.3 Session Resumption

ALTS allows its users to resume previous sessions without the  
need to perform heavy asymmetric cryptographic operations.  
Session resumption is a feature that is built into the ALTS  
Handshake protocol.

The ALTS handshake allows clients and servers to securely exchange 
(and cache) resumption tickets which can be used to resume future 
connections18. Each cached resumption ticket is indexed by a 
Resumption Identifier (IDR) that is unique to all workloads running with 
the same identity and in the same datacenter cell. These tickets are 
encrypted using symmetric keys associated with their corresponding 
identifiers.

ALTS supports two types of session resumption:

 1. Server side session resumption: a client creates and  
 encrypts a resumption ticket containing the server identity  
 and the derived resumption secret R. The resumption ticket is  
 sent to the server at the end of the handshake, in the  
 ClientFinished  message. In future sessions, the server 
 can choose to resume the session by sending the ticket back 
 to the client in its ServerInit message. On receipt of the  
 ticket, the client can recover both the resumption secret R  
 and the server’s identity. The client can use this information  
 to resume the session.  
 
 The IDR is always associated with a identity and not with  
 specific connections. In ALTS, multiple clients can use the  
 same identity in the same datacenter. This allows clients to  

18 Session resumption involves lightweight symmetric operations only if ephemeral parameters are not involved. 
 

The ALTS handshake 
allows clients and 
servers to securely 
exchange 
resumption tickets 
which can be used  
to resume future 
connections .
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 resume sessions with servers that they may not have  
 communicated with before, e.g. if a load balancer sends the 
 client to a different server running the same application.

 2. Client side session resumption: at the end of a handshake 
 the server sends an encrypted resumption ticket to the client  
 in the ServerFinished message. This ticket includes the  
 resumption secret R and the client’s identity. The client can 
 use this ticket to resume a connection with any server sharing  
 the same IDR.

When a session is resumed, the resumption secret R is used to derive 
new session secrets M’, R’ and A’. M’ is used to encrypt and authenti-
cate payload messages, A’ is used to authenticate ServerFinished 
and ClientFinished messages, and R’ is encapsulated in a new 
resumption ticket. Note that the same resumption secret R is never 
used more than once.

5. Tradeoffs 

5.1 Key Compromise Impersonation Attacks

By design, the ALTS handshake protocol is susceptible to Key 
Compromise Impersonation (KCI) attacks. If an adversary compro-
mises the DH private key, or the resumption key, of a workload they 
can use the key to impersonate other workloads to this workload19. 

19 Key Agreement Protocols and Their Security Analysis. 
 

https://dl.acm.org/citation.cfm?id=742138
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This is explicitly in our resumption threat model, as we want resump-
tion tickets issued by one instance of an identity to be usable by other 
instances of that identity.

There is a variant of the ALTS handshake protocol that protects 
against KCI attacks, but it would only be worth using in environments 
where resumption is not desired.

5.2 Privacy for Handshake Messages

ALTS is not designed to disguise which internal identities are commu-
nicating, so it does not encrypt any handshake messages to hide the 
identities of the peers.

5.3 Perfect Forward Secrecy

Perfect Forward Secrecy (PFS) is supported, but not enabled by 
default, in ALTS. We instead use frequent certificate rotation to  
establish forward secrecy for most applications. With TLS 1.2 (and its 
prior versions), session resumption is not protected with PFS. When 
PFS is enabled with ALTS, PFS is also enabled for resumed sessions.

5.4 Zero-Roundtrip Resumption

TLS 1.3 provides session resumption that requires zero roundtrips 
(0-RTT), however this has weaker security properties20. We decided 
not to include a 0-RTT option in ALTS because RPC connections at 
Google are generally long-lived. Consequently, reducing the channel 
setup latency was not a good tradeoff for the additional complexity 
and/or reduced security that 0-RTT handshakes require. 

6. Further References 

For information on how Google encrypts data in transit, see our 
Encryption in Transit in Google Cloud whitepaper. 

For an overview of how security is designed into Google’s  
technical infrastructure, see our Google Infrastructure Security  
Design Overview.

20 Replay Attacks on Zero Round-Trip Time: The Case of the TLS 1.3 Handshake Candidates.

https://cloud.google.com/security/encryption-in-transit/
https://cloud.google.com/security/security-design/
https://cloud.google.com/security/security-design/
https://eprint.iacr.org/2017/082.pdf

