
1

Google Cloud
Security
Whitepapers

Google Cloud
Infrastructure Security
Design Overview

March 2018

Encryption at Rest in
Google Cloud

Encryption in Transit in
Google Cloud

Application Layer
Transport Security
in Google Cloud

2

Table of Contents

Google Cloud Infrastructure
Security Design Overview . 3

Encryption at Rest
in Google Cloud . 23

Encryption in Transit
in Google Cloud . 43

Application Layer Transport
Security in Google Cloud . 75

3

 A technical whitepaper from Google Cloud

4

Table of Contents

Introduction . 7

Secure Low Level Infrastructure . 8
Security of Physical Premises
Hardware Design and Provenance
Secure Boot Stack and Machine Identity

Secure Service Deployment . 9
Service Identity, Integrity, and Isolation
Inter-Service Access Management
Encryption of Inter-Service Communication
Access Management of End User Data

Secure Data Storage .14
Encryption at Rest
Deletion of Data

Secure Internet Communication .15
Google Front End Service
Denial of Service (DoS) Protection
User Authentication

Operational Security .17
Safe Software Development
Keeping Employee Devices and Credentials Safe
Reducing Insider Risk
Intrusion Detection

5

Securing the Google Cloud Platform (GCP) .19

Conclusion .21

Additional Reading . 22

The content contained herein is correct as of January 2017, and represents the status quo as of the time it was written.
Google’s security policies and systems may change going forward, as we continually improve protection for our customers.

6

CIO-level summary

• Google has a global scale technical infrastructure designed to
provide security through the entire information processing lifecycle
at Google. This infrastructure provides secure deployment of
services, secure storage of data with end user privacy safeguards,
secure communications between services, secure and private
communication with customers over the internet, and safe
operation by administrators.

• Google uses this infrastructure to build its internet services,
including both consumer services such as Search, Gmail, and
Photos, and enterprise services such as G Suite and Google
Cloud Platform.

• The security of the infrastructure is designed in progressive layers
starting from the physical security of data centers, continuing on
to the security of the hardware and software that underlie the
infrastructure, and finally, the technical constraints and processes
in place to support operational security.

• Google invests heavily in securing its infrastructure with many
hundreds of engineers dedicated to security and privacy
distributed across all of Google, including many who are
recognized industry authorities.

7

Introduction

This document gives an overview of how security is designed into
Google’s technical infrastructure. This global scale infrastructure is
designed to provide security through the entire information
processing lifecycle at Google. This infrastructure provides secure
deployment of services, secure storage of data with end user privacy
safeguards, secure communications between services, secure and
private communication with customers over the internet, and safe
operation by administrators.

Google uses this infrastructure to build its internet services, including
both consumer services such as Search, Gmail, and Photos, and
enterprise services such as G Suite and Google Cloud Platform.

We will describe the security of this infrastructure in progressive
layers starting from the physical security of our data centers,
continuing on to how the hardware and software that underlie the
infrastructure are secured, and finally, describing the technical
constraints and processes in place to support operational security.

Google Infrastructure Security Layers

[Figure 1]
Google Infrastructure
Security Layers

The various layers of security
starting from hardware
infrastructure at the bottom
layer up to operational security
at the top layer. The contents of
each layer are described in detail
in the paper.

8

Secure Low Level Infrastructure
In this section we describe how we secure the
lowest layers of our infrastructure, ranging from
the physical premises to the purpose-built
hardware in our data centers to the low-level
software stack running on every machine.

Security of Physical Premises

 Google designs and builds its own data centers, which incorporate
multiple layers of physical security protections. Access to these data
centers is limited to only a very small fraction of Google employees.
We use multiple physical security layers to protect our data center
floors and use technologies like biometric identification, metal
detection, cameras, vehicle barriers, and laser-based intrusion
detection systems. Google additionally hosts some servers in third-
party data centers, where we ensure that there are Google-controlled
physical security measures on top of the security layers provided by
the data center operator. For example, in such sites we may operate
independent biometric identification systems, cameras, and

metal detectors.

Hardware Design and Provenance

A Google data center consists of thousands of server machines
connected to a local network. Both the server boards and the net-
working equipment are custom-designed by Google. We vet
component vendors we work with and choose components with care,
while working with vendors to audit and validate the security proper-
ties provided by the components. We also design custom chips,
including a hardware security chip that is currently being deployed on
both servers and peripherals. These chips allow us to securely iden-
tify and authenticate legitimate Google devices at the hardware level.

Secure Boot Stack and Machine Identity

Google server machines use a variety of technologies to ensure that
they are booting the correct software stack. We use cryptographic

A Google data
center consists of
thousands of server
machines connected
to a local network .
Both the server
boards and the
networking
equipment are
custom designed
by Google .

9

signatures over low-level components like the BIOS, bootloader,
kernel, and base operating system image. These signatures can be
validated during each boot or update. The components are all Google-
controlled, built, and hardened. With each new generation of hardware
we strive to continually improve security: for example, depending on
the generation of server design, we root the trust of the boot chain in
either a lockable firmware chip, a microcontroller running Google-
written security code, or the above mentioned Google-designed
security chip.

Each server machine in the data center has its own specific identity
that can be tied to the hardware root of trust and the software with
which the machine booted. This identity is used to authenticate API
calls to and from low-level management services on the machine.

Google has authored automated systems to ensure servers run up-to-
date versions of their software stacks (including security patches), to
detect and diagnose hardware and software problems, and to remove
machines from service if necessary.

Secure Service Deployment

 We will now go on to describe how we go from the base hardware and
software to ensuring that a service is deployed securely on our infra-
structure. By ‘service’ we mean an application binary that a developer
wrote and wants to run on our infrastructure, for example, a Gmail
SMTP server, a BigTable storage server, a YouTube video transcoder,
or an App Engine sandbox running a customer application. There may
be thousands of machines running copies of the same service to
handle the required scale of the workload. Services running on the
infrastructure are controlled by a cluster orchestration service
called Borg.

As we will see in this section, the infrastructure does not assume any
trust between services running on the infrastructure. In other words,
the infrastructure is fundamentally designed to be multi-tenant.

10

Service Identity, Integrity, and Isolation

We use cryptographic authentication and authorization at the
application layer for inter-service communication. This provides
strong access control at an abstraction level and granularity that
administrators and services can naturally understand.

We do not rely on internal network segmentation or firewalling as our
primary security mechanisms, though we do use ingress and egress
filtering at various points in our network to prevent IP spoofing as a
further security layer. This approach also helps us to maximize our
network’s performance and availability.

Each service that runs on the infrastructure has an associated
service account identity. A service is provided cryptographic
credentials that it can use to prove its identity when making or
receiving remote procedure calls (RPCs) to other services. These
identities are used by clients to ensure that they are talking to the
correct intended server, and by servers to limit access to methods
and data to particular clients.

Google’s source code is stored in a central repository where both
current and past versions of the service are auditable. The infrastruc-
ture can additionally be configured to require that a service’s binaries
be built from specific reviewed, checked in, and tested source code.
Such code reviews require inspection and approval from at least one
engineer other than the author, and the system enforces that code
modifications to any system must be approved by the owners of that
system. These requirements limit the ability of an insider or adversary
to make malicious modifications to source code and also provide a
forensic trail from a service back to its source.

We have a variety of isolation and sandboxing techniques for protect-
ing a service from other services running on the same machine.
These techniques include normal Linux user separation, language
and kernel-based sandboxes, and hardware virtualization. In general,
we use more layers of isolation for riskier workloads; for example,
when running complex file format converters on user-supplied data
or when running user supplied code for products like Google App
Engine or Google Compute Engine. As an extra security boundary,

We use
cryptographic
authentication and
authorization at the
application layer for
inter-service
communication .
This provides strong
access control at an
abstraction level and
granularity that
administrators and
services can
naturally understand .

11

we enable very sensitive services, such as the cluster orchestration
service and some key management services, to run exclusively on
dedicated machines.

Inter-Service Access Management

The owner of a service can use access management features
provided by the infrastructure to specify exactly which other services
can communicate with it. For example, a service may want to offer
some APIs solely to a specific whitelist of other services. That service
can be configured with the whitelist of the allowed service account
identities and this access restriction is then automatically enforced
by the infrastructure.

Google engineers accessing services are also issued individual
identities, so services can be similarly configured to allow or deny
their accesses. All of these types of identities (machine, service, and
employee) are in a global name space that the infrastructure main-
tains. As will be explained later in this document, end user identities
are handled separately.

The infrastructure provides a rich identity management workflow
system for these internal identities including approval chains, logging,
and notification. For example, these identities can be assigned to
access control groups via a system that allows two party-control
where one engineer can propose a change to a group that another
engineer (who is also an administrator of the group) must approve.
This system allows secure access management processes to scale
to the thousands of services running on the infrastructure.

In addition to the automatic API-level access control mechanism, the
infrastructure also provides services the ability to read from central
ACL and group databases so that they can implement their own
custom, fine-grained access control where necessary.

Encryption of Inter-Service Communication

Beyond the RPC authentication and authorization capabilities dis-
cussed in the previous sections, the infrastructure also provides
cryptographic privacy and integrity for RPC data on the network.

The owner of a
service can use
access management
features provided by
the infrastructure to
specify exactly which
other services can
communicate with it .

12

To provide these security benefits to other application layer protocols
such as HTTP, we encapsulate them inside our infrastructure RPC
mechanisms. In essence, this gives application layer isolation and
removes any dependency on the security of the network path.
Encrypted inter-service communication can remain secure even if the
network is tapped or a network device is compromised.

Services can configure the level of cryptographic protection they want
for each infrastructure RPC (e.g. only configure integrity-level protec-
tion for low value data inside data centers). To protect against
sophisticated adversaries who may be trying to tap our private WAN
links, the infrastructure automatically encrypts all infrastructure RPC
traffic which goes over the WAN between data centers, without requir-
ing any explicit configuration from the service. We have started to
deploy hardware cryptographic accelerators that will allow us to
extend this default encryption to all infrastructure RPC traffic inside
our data centers.

Access Management of End User Data

A typical Google service is written to do something for an end user.
For example, an end user may store their email on Gmail. The end
user’s interaction with an application like Gmail spans other services
within the infrastructure. So for example, the Gmail service may call
an API provided by the Contacts service to access the end user’s
address book.

We have seen in the preceding section that the Contacts service can
be configured such that the only RPC requests that are allowed are
from the Gmail service (or from any other particular services that the
Contacts service wants to allow).

This, however, is still a very broad set of permissions. Within the
scope of this permission the Gmail service would be able to request
the contacts of any user at any time.

Since the Gmail service makes an RPC request to the Contacts ser-
vice on behalf of a particular end user, the infrastructure provides a
capability for the Gmail service to present an “end user permission
ticket” as part of the RPC. This ticket proves that the Gmail service is

To protect against
sophisticated
adversaries who may
be trying to tap our
private WAN links,
the infrastructure
automatically
encrypts all
infrastructure RPC
traffic which goes
over the WAN
between data
centers .

13

[Figure 2]
Service Identity and
Access Management

The infrastructure provides
 service identity, automatic
 mutual authentication,
 encrypted inter-service
communication and
 enforcement of access
�policies�defined�by�the�
 service owner.

currently servicing a request on behalf of that particular end user.
This enables the Contacts service to implement a safeguard where it
only returns data for the end user named in the ticket.

The infrastructure provides a central user identity service which
issues these “end user permission tickets”. An end user login is veri-
fied by the central identity service which then issues a user credential,
such as a cookie or OAuth token, to the user’s client device. Every
subsequent request from the client device into Google needs to
present that user credential.

When a service receives an end user credential, it passes the creden-
tial to the central identity service for verification. If the end user
credential verifies correctly, the central identity service returns a
short-lived “end user permission ticket” that can be used for RPCs
related to the request. In our example, that service which gets the
“end user permission ticket” would be the Gmail service, which would
pass it to the Contacts service. From that point on, for any cascading
calls, the “end user permission ticket” can be handed down by the
calling service to the callee as a part of the RPC call.

14

Secure Data Storage
Up to this point in the discussion, we have
described how we deploy services securely . We
now turn to discussing how we implement
secure data storage on the infrastructure .

Encryption at Rest

Google’s infrastructure provides a variety of storage services, such as
BigTable and Spanner, and a central key management service. Most
applications at Google access physical storage indirectly via these
storage services. The storage services can be configured to use keys
from the central key management service to encrypt data before it is
written to physical storage. This key management service supports
automatic key rotation, provides extensive audit logs, and integrates
with the previously mentioned end user permission tickets to link keys
to particular end users.

Performing encryption at the application layer allows the infrastruc-
ture to isolate itself from potential threats at the lower levels of
storage such as malicious disk firmware. That said, the infrastructure
also implements additional layers of protection. We enable hardware
encryption support in our hard drives and SSDs and meticulously
track each drive through its lifecycle. Before a decommissioned
encrypted storage device can physically leave our custody, it is
cleaned using a multi-step process that includes two independent
verifications. Devices that do not pass this wiping procedure are
physically destroyed (e.g. shredded) on-premise.

Deletion of Data

Deletion of data at Google most often starts with marking specific
data as “scheduled for deletion” rather than actually removing the
data entirely. This allows us to recover from unintentional deletions,
whether customer-initiated or due to a bug or process error internally.
After having been marked as “scheduled for deletion,” the data is
deleted in accordance with service-specific policies.

To protect against
sophisticated
adversaries who may
be trying to tap our
private WAN links,
the infrastructure
automatically
encrypts all
infrastructure RPC
traffic which goes
over the WAN
between data
centers .

15

When an end user deletes their entire account, the infrastructure
notifies services handling end user data that the account has been
deleted. The services can then schedule data associated with the
deleted end user account for deletion.

Secure Internet Communication
Until this point in this document, we have
described how we secure services on our
infrastructure . In this section we turn to
describing how we secure communication
between the internet and these services .

As discussed earlier, the infrastructure consists of a large set of
physical machines which are interconnected over the LAN and WAN
and the security of inter-service communication is not dependent on
the security of the network. However, we do isolate our infrastructure
from the internet into a private IP space so that we can more easily
implement additional protections such as defenses against denial of
service (DoS) attacks by only exposing a subset of the machines
directly to external internet traffic.

Google Front End Service

When a service wants to make itself available on the Internet, it can
register itself with an infrastructure service called the Google Front
End (GFE). The GFE ensures that all TLS connections are terminated
using correct certificates and following best practices such as
supporting perfect forward secrecy. The GFE additionally applies
protections against Denial of Service attacks (which we will discuss
in more detail later). The GFE then forwards requests for the service
using the RPC security protocol discussed previously.

In effect, any internal service which chooses to publish itself exter-
nally uses the GFE as a smart reverse-proxy front end. This front end
provides public IP hosting of its public DNS name, Denial of Service
(DoS) protection, and TLS termination. Note that GFEs run on the
infrastructure like any other service and thus have the ability to scale
to match incoming request volumes.

The Google Front
End ensures that all
TLS connections are
terminated using
correct certificates
and following best
practices such as
supporting perfect
forward secrecy .

16

Denial of Service (DoS) Protection

The sheer scale of our infrastructure enables Google to simply
absorb many DoS attacks. That said, we have multi-tier, multi-layer
DoS protections that further reduce the risk of any DoS impact on a
service running behind a GFE.

After our backbone delivers an external connection to one of our data
centers, it passes through several layers of hardware and software
load-balancing. These load balancers report information about
incoming traffic to a central DoS service running on the infrastructure.
When the central DoS service detects that a DoS attack is taking
place, it can configure the load balancers to drop or throttle traffic
associated with the attack.

At the next layer, the GFE instances also report information about
requests that they are receiving to the central DoS service, including
application layer information that the load balancers don’t have. The
central DoS service can then also configure the GFE instances to drop
or throttle attack traffic.

User Authentication

After DoS protection, the next layer of defense comes from our cen-
tral identity service. This service usually manifests to end users as the
Google login page. Beyond asking for a simple username and pass-
word, the service also intelligently challenges users for additional
information based on risk factors such as whether they have logged
in from the same device or a similar location in the past. After authen-
ticating the user, the identity service issues credentials such as
cookies and OAuth tokens that can be used for subsequent calls.

Users also have the option of employing second factors such as OTPs
or phishing-resistant Security Keys when signing in. To ensure that
the benefits go beyond Google, we have worked in the FIDO Alliance
with multiple device vendors to develop the Universal 2nd Factor
(U2F) open standard. These devices are now available in the market
and other major web services also have followed us in implementing
U2F support

The sheer scale of
our infrastructure
enables Google to
simply absorb many
DoS attacks. That
said, we have multi-
tier, multi-layer DoS
protections that
further reduce the
risk of any DoS
impact on a service
running behind
a GFE .

17

Operational Security

Up to this point we have described how security is designed into our
infrastructure and have also described some of the mechanisms for
secure operation such as access controls on RPCs.

We now turn to describing how we actually operate the infrastructure
securely: We create infrastructure software securely, we protect our
employees’ machines and credentials, and we defend against threats
to the infrastructure from both insiders and external actors.

Safe Software Development

Beyond the central source control and two-party review features
described earlier, we also provide libraries that prevent developers
from introducing certain classes of security bugs. For example, we
have libraries and frameworks that eliminate XSS vulnerabilities in
web apps. We also have automated tools for automatically detecting
security bugs including fuzzers, static analysis tools, and web secu-
rity scanners.

As a final check, we use manual security reviews that range from
quick triages for less risky features to in-depth design and implemen-
tation reviews for the most risky features. These reviews are
conducted by a team that includes experts across web security,
cryptography, and operating system security. The reviews can also
result in new security library features and new fuzzers that can then
be applied to other future products.

In addition, we run a Vulnerability Rewards Program where we pay
anyone who is able to discover and inform us of bugs in our infra-
structure or applications. We have paid several million dollars in
rewards in this program.

Google also invests a large amount of effort in finding 0-day exploits
and other security issues in all the open source software we use and
upstreaming these issues. For example, the OpenSSL Heartbleed bug
was found at Google and we are the largest submitter of CVEs and
security bug fixes for the Linux KVM hypervisor.

We run a
Vulnerability
Rewards Program
where we pay
anyone who is able
to discover and
inform us of bugs in
our infrastructure or
applications .

18

Keeping Employee Devices and Credentials Safe

We make a heavy investment in protecting our employees’ devices
and credentials from compromise and also in monitoring activity to
discover potential compromises or illicit insider activity. This is a
critical part of our investment in ensuring that our infrastructure is
operated safely.

Sophisticated phishing has been a persistent way to target our
employees. To guard against this threat we have replaced phishable
OTP second factors with mandatory use of U2F-compatible Security
Keys for our employee accounts.

We make a large investment in monitoring the client devices that our
employees use to operate our infrastructure. We ensure that the
operating system images for these client devices are up-to-date with
security patches and we control the applications that can be installed.
We additionally have systems for scanning user-installed apps, down-
loads, browser extensions, and content browsed from the web for
suitability on corp clients.

Being on the corporate LAN is not our primary mechanism for
granting access privileges. We instead use application-level access
management controls which allow us to expose internal applications
to only specific users when they are coming from a correctly man-
aged device and from expected networks and geographic locations.
(For more detail see our additional reading about ‘BeyondCorp’.)

Reducing Insider Risk

We aggressively limit and actively monitor the activities of employees
who have been granted administrative access to the infrastructure
and continually work to eliminate the need for privileged access for
particular tasks by providing automation that can accomplish the
same tasks in a safe and controlled way. This includes requiring
two-party approvals for some actions and introducing limited APIs
that allow debugging without exposing sensitive information.

Google employee access to end user information can be logged
through low-level infrastructure hooks. Google’s security team
actively monitors access patterns and investigates unusual events.

19

Intrusion Detection

Google has sophisticated data processing pipelines which integrate
host-based signals on individual devices, network-based signals
from various monitoring points in the infrastructure, and signals
from infrastructure services. Rules and machine intelligence built on
top of these pipelines give operational security engineers warnings
of possible incidents. Our investigation and incident response t
eams triage, investigate, and respond to these potential incidents
24 hours a day, 365 days a year. We conduct Red Team exercises
 to measure and improve the effectiveness of our detection and
response mechanisms.

Securing the Google Cloud
Platform (GCP)
In this section, we highlight how our public cloud
infrastructure, GCP, benefits from the security
of the underlying infrastructure . In this section,
we will take Google Compute Engine (GCE) as
an example service and describe in detail the
service-specific security improvements that we
build on top of the infrastructure .

GCE enables customers to run their own virtual machines on Google’s
infrastructure. The GCE implementation consists of several logical
components, most notably the management control plane and the
virtual machines themselves.

The management control plane exposes the external API surface and
orchestrates tasks like virtual machine creation and migration. It runs
as a variety of services on the infrastructure, thus it automatically
gets foundational integrity features such as a secure boot chain. The
individual services run under distinct internal service accounts so that
every service can be granted only the permissions it requires when
making remote procedure calls (RPCs) to the rest of the control plane.
As discussed earlier, the code for all of these services is stored in the
central Google source code repository, and there is an audit trail
between this code and the binaries that are eventually deployed.

Rules and machine
intelligence built on
top of signal
monitoring pipelines
give operational
Security Engineers
warnings of possible
incidents .

20

The GCE control plane exposes its API via the GFE, and so it takes
advantage of infrastructure security features like Denial of Service
(DoS) protection and centrally managed SSL/TLS support.
Customers can get similar protections for applications running on
their GCE VMs by choosing to use the optional Google Cloud Load
Balancer service which is built on top of the GFE and can mitigate
many types of DoS attacks.

End user authentication to the GCE control plane API is done via
Google’s centralized identity service which provides security features
such as hijacking detection. Authorization is done using the central
Cloud IAM service.

The network traffic for the control plane, both from the GFEs to the
first service behind it and between other control plane services is
automatically authenticated by the infrastructure and encrypted
whenever it travels from one data center to another. Additionally, the
infrastructure has been configured to encrypt some of the control
plane traffic within the data center as well.

Each virtual machine (VM) runs with an associated virtual machine
manager (VMM) service instance. The infrastructure provides these
services with two identities. One identity is used by the VMM service
instance for its own calls and one identity is used for calls that the
VMM makes on behalf of the customer’s VM. This allows us to further
segment the trust placed in calls coming from the VMM.

GCE persistent disks are encrypted at-rest using keys protected by
the central infrastructure key management system. This allows for
automated rotation and central auditing of access to these keys.

Customers today have the choice of whether to send traffic from their
VMs to other VMs or the internet in the clear, or to implement any
encryption they choose for this traffic. We have started rolling out
automatic encryption for the WAN traversal hop of customer VM to
VM traffic. As described earlier, all control plane WAN traffic within
the infrastructure is already encrypted. In the future we plan to take
advantage of the hardware-accelerated network encryption dis-
cussed earlier to also encrypt inter-VM LAN traffic within the
data center.

The Google
Compute Engine
(GCE) control plane
exposes its API via
the Google Front-
end (GFE), and so it
takes advantage of
infrastructure
security features like
Denial of Service
(DoS) protection and
centrally managed
SSL/TLS support.

21

The isolation provided to the VMs is based on hardware virtualization
using the open source KVM stack. We have further hardened our
particular implementation of KVM by moving some of the control and
hardware emulation stack into an unprivileged process outside the
kernel. We have also extensively tested the core of KVM using tech-
niques like fuzzing, static analysis, and manual code review. As
mentioned earlier, the majority of the recently publicly disclosed
vulnerabilities which have been upstreamed into KVM came
from Google.

Finally, our operational security controls are a key part of making
sure that accesses to data follow our policies. As part of the Google
Cloud Platform, GCE’s use of customer data follows the GCP use
of customer data policy, namely that Google will not access or
use customer data, except as necessary to provide services
to customers.

Conclusion

We have described how the Google infrastructure is designed to
build, deploy and operate services securely at internet scale. This
includes both consumer services such as Gmail and our enterprise
services. In addition, our Google Cloud offerings are built on top of
this same infrastructure.

We invest heavily in securing our infrastructure. We have many
hundreds of engineers dedicated to security and privacy distributed
across all of Google, including many who are recognized
industry authorities.

As we have seen, the security in the infrastructure is designed in
layers starting from the physical components and data center, to
hardware provenance, and then on to secure boot, secure inter-ser-
vice communication, secured data at rest, protected access to
services from the internet and finally, the technologies and people
processes we deploy for operational security.

We invest heavily in
securing our
infrastructure . We
have many hundreds
of engineers
dedicated to security
& privacy distributed
across all of Google,
including many who
are recognized
industry authorities .

22

Additional Reading

Please see the following papers for more detail on specific areas:

1. Physical security of our data centers
 https://goo.gl/WYlKGG

2. Design of our cluster management and orchestration
 http://research.google.com/pubs/pub43438.html

3. Storage encryption and our customer facing GCP encryption features
 https://cloud.google.com/security/encryption-at-rest/

4. BigTable storage service
 http://research.google.com/archive/bigtable.html

5. Spanner storage service
 http://research.google.com/archive/spanner.html

6. Architecture of our network load balancing
 http://research.google.com/pubs/pub44824.html

7. BeyondCorp approach to enterprise security
 http://research.google.com/pubs/pub43231.html

8. Combating phishing with Security Key & the Universal 2nd Factor (U2F) standard
 http://research.google.com/pubs/pub45409.html

9. More about the Google Vulnerability Rewards Program
 https://bughunter.withgoogle.com/

10. More about HTTPs and other load balancing offerings on GCP
 https://cloud.google.com/compute/docs/load-balancing/

11. More about DoS protection best practices on GCP
 https://cloud.google.com/files/GCPDDoSprotection-04122016.pdf

12. Google Cloud Platform use of customer data policy
 https://cloud.google.com/terms/

13. More about application security & compliance in G Suite (Gmail, Drive, etc)
 https://goo.gl/3J20R2

https://goo.gl/WYlKGG

23

An encryption whitepaper from Google Cloud

24

Table of Contents

CIO-level summary . 26

Introduction . 27
What is encryption?
Why encryption helps secure customer data
What we consider customer data

Google’s default encryption . 29
Encryption of data at rest
 Layers of encryption
 Encryption at the storage system layer
 Encryption at the storage device layer
 Encryption of backups
 Are there cases where data is not encrypted at rest?
Key management
 Data encryption keys, key encryption keys, and Google’s Key Management Service
 Encryption key hierarchy and root of trust
 Global availability and replication
Google’s common cryptographic library
Granularity of encryption in each Google Cloud Platform product

Additional encryption options for Cloud customers 40

Research and innovation in cryptography . 40

Further references . 42
Google Cloud Platform security
Google Cloud Platform compliance
G Suite security

25

This is the second of two whitepapers on how Google uses encryption to protect
your data. We also released a G Suite encryption whitepaper. You may still find it
useful to read both documents to learn about the use of encryption at Google.

In this whitepaper, you will find more detail on Google’s key hierarchy and root of
trust, as well as information on the granularity of encryption in specific GCP
services for data at rest (this document does not cover encryption in transit).

For all Google products, we strive to keep customer data highly protected, and to
be as transparent as possible about how we secure it.

The content contained herein is correct as of August 2016, and represents the
status quo as of the time it was written. Google Cloud Platform’s security policies
and systems may change going forward, as we continually improve protection for
our customers.

http://services.google.com/fh/files/helpcenter/google_encryptionwp2016.pdf

26

CIO-level summary

• Google uses several layers of encryption to protect customer data
at rest in Google Cloud Platform products.

• Google Cloud Platform encrypts customer content stored at rest,
without any action required from the customer, using one or more
encryption mechanisms. There are some minor exceptions, noted
further in this document.

• Data for storage is split into chunks, and each chunk is encrypted
with a unique data encryption key. These data encryption keys are
stored with the data, encrypted with ("wrapped" by) key encryption
keys that are exclusively stored and used inside Google’s central
Key Management Service. Google’s Key Management Service is
redundant and globally distributed.

• Data stored in Google Cloud Platform is encrypted at the storage
level using either AES256 or AES128.

• Google uses a common cryptographic library, Keyczar, to
implement encryption consistently across almost all Google
Cloud Platform products. Because this common library is widely
accessible, only a small team of cryptographers needs to
properly implement and maintain this tightly controlled and
reviewed code.

27

Introduction
For many individuals and companies, security
is a deciding factor in choosing a public cloud
vendor . At Google, security is of the utmost
importance. We take security and privacy
seriously, and we work tirelessly to protect your
data — whether it is traveling over the Internet,
moving between our data centers, or stored on
our servers .

Central to our comprehensive security strategy is encryption in transit
and at rest, which ensures the data can be accessed only by the
authorized roles and services with audited access to the encryption
keys. This paper describes Google’s approach to encryption at rest for
the Google Cloud Platform, and how Google uses it to keep your
information more secure.

This document is targeted at CISOs and security operations teams
currently using or considering using Google Cloud Platform. With the
exception of the introduction, this document assumes a basic under-
standing of encryption and cryptographic primitives.

What is encryption?

Encryption is a process that takes legible data as input (often called
plaintext), and transforms it into an output (often called ciphertext)
that reveals little or no information about the plaintext. The encryption
algorithm used is public, such as the Advanced Encryption Standard
(AES), but execution depends on a key, which is kept secret. To
decrypt the ciphertext back to its original form, you need to employ
the key. At Google, the use of encryption to keep data confidential is
usually combined with integrity protection; someone with access to
the ciphertext can neither understand it nor make a modification
without knowledge of the key. For more information on cryptography,
a good resource is an Introduction to Modern Cryptography.

Encryption is a
process that takes
legible data as input,
called plaintext, and
transforms it into an
output, called
ciphertext, that
reveals little or no
information about
the plaintext .

http://www.cs.umd.edu/~jkatz/imc.html

28

In this whitepaper, we focus on encryption at rest. By encryption at
rest, we mean encryption used to protect data that is stored on a disk
(including solid-state drives) or backup media.

Why encryption helps secure customer data

Encryption is one piece of a broader security strategy. Encryption
adds a layer of defense in depth for protecting data — encryption
ensures that if the data accidentally falls into an attacker’s hands,
they cannot access the data without also having access to the
encryption keys. Even if an attacker obtains the storage devices
containing your data, they won’t be able to understand or decrypt it.

Encryption at rest reduces the surface of attack by effectively "cutting
out" the lower layers of the hardware and software stack. Even if
these lower layers are compromised (for example, through physical
access to devices), the data on those devices is not compromised if
adequate encryption is deployed. Encryption also acts as a "choke-
point" — centrally managed encryption keys create a single place
where access to data is enforced and can be audited.

Encryption provides an important mechanism in how Google ensures
the privacy of customer data — it allows systems to manipulate data,
e.g., for backup, and engineers to support our infrastructure, without
providing access to content..

What we consider customer data

As defined in the Google Cloud Platform terms of service, customer
data refers to content provided to Google by a Google Cloud Platform
customer (or at their direction), directly or indirectly, via Google Cloud
Platform services used by that customer’s account. Customer data
includes customer content and customer metadata.

Customer content is data that Google Cloud Platform customers
generate themselves or provide to Google, like data stored in Google
Cloud Storage, disk snapshots used by Google Compute Engine, and
Cloud IAM policies. The encryption at rest of customer content is the
focus of this whitepaper.

https://cloud.google.com/terms/

29

Customer metadata makes up the rest of customer data, and refers
to all data that cannot be classified as customer content. This could
include auto-generated project numbers, timestamps, and IP
addresses, as well as the byte size of an object in Google Cloud
Storage, or the machine type in Google Compute Engine. Metadata
is protected to a degree that is reasonable for ongoing performance
and operations.

Google’s default encryption

Encryption of data at rest

Layers of encryption

Google uses several layers of encryption to protect data. Using multi-
ple layers of encryption adds redundant data protection and allows us
to select the optimal approach based on application requirements.

Encryption at the storage system layer

To understand how specifically Google Cloud Storage encryption
works, it’s important to understand how Google stores customer
data. Data is broken into subfile chunks for storage; each chunk can
be up to several GB in size. Each chunk is encrypted at the storage
level with an individual encryption key: two chunks will not have the
same encryption key, even if they are part of the same Google Cloud

Customer data
refers to content
provided to Google
by a Google Cloud
Platform customer
or at their direction,
directly or indirectly,
via Cloud services
used by that
customer’s account .

Application Google Cloud Platform services

Block storage

Storage devices: protected by
AES256 or AES128 encryption

Database and file storage: protected
by AES256 or AES128 encryption

Distributed file system: data chunks in
storage systems protected by AES256
encryption with integrity

Platform

Infrastructure

Hardware

Primary focus
of this document

[Figure 1]

Several layers of encryption
are used to protect data
stored in Google Cloud
Platform. Either distributed
file�system�encryption�or�
database�and�file�storage�
encryption is in place for
almost�all�files;�and�storage�
device encryption is in place
for�almost��all�files.

30

Storage object, owned by the same customer, or stored on the same
machine1. If a chunk of data is updated, it is encrypted with a new key,
rather than by reusing the existing key. This partition of data, each
using a different key, means the "blast radius" of a potential data
encryption key compromise is limited to only that data chunk.

Google encrypts data prior to it being written to disk. Encryption is
inherent in all of Google’s storage systems — rather than added
on afterward.

Each data chunk has a unique identifier. Access control lists (ACLs)
ensure that each chunk can be decrypted only by Google services
operating under authorized roles, which are granted access at that
point in time. This prevents access to the data without authorization,
bolstering both data security and privacy.

Each chunk is distributed across Google’s storage systems, and is
replicated in encrypted form for backup and disaster recovery. A
malicious individual who wanted to access customer data would
need to know and be able to access (1) all storage chunks corre-
sponding to the data they want, and (2) the encryption keys
corresponding to the chunks.

Google uses the Advanced Encryption Standard (AES) algorithm to
encrypt data at rest. AES is widely used because (1) both AES256
and AES128 are recommended by the National Institute of Standards
and Technology (NIST) for long-term storage use (as of November
2015), and (2) AES is often included as part of customer
compliance requirements.

Each data chunk is
encrypted at the
storage level with an
individual encryption
key — two chunks
will not have the
same encryption key,
even if they are part
of the same Google
Cloud Storage
object, owned by the
same customer, or
stored on the same
machine .

[Figure 2]

Data at Google is broken up into
encrypted chunks for storage.

1 Data chunks in Cloud Datastore, App Engine, and Cloud Pub/Sub may contain two customers’ data. See the

section on granularity of data encryption by service

.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf

31

Data stored across Google Cloud Storage is encrypted at the storage
level using AES, in Galois/Counter Mode (GCM) in almost all cases.
This is implemented in the BoringSSL library that Google maintains.
This library was forked from OpenSSL for internal use, after many
flaws were exposed in OpenSSL. In select cases, AES is used in
Cipher Block Chaining (CBC) mode with a hashed message authenti-
cation code (HMAC) for authentication; and for some replicated files,
AES is used in Counter (CTR) mode with HMAC. (Further details on
algorithms are provided later in this document.) In other Google Cloud
Platform products, AES is used in a variety of modes.

Encryption at the storage device layer

In addition to the storage system level encryption described above, in
most cases data is also encrypted at the storage device level, with at
least AES128 for hard disks (HDD) and AES256 for new solid state
drives (SSD), using a separate device-level key (which is different than
the key used to encrypt the data at the storage level). As older devices
are replaced, solely AES256 will be used for device-level encryption.

Encryption of backup

Google’s backup system ensures that data remains encrypted
throughout the backup process. This approach avoids unnecessarily
exposing plaintext data.

In addition, the backup system further encrypts each backup file
independently with its own data encryption key (DEK), derived from
a key stored in Google’s Key Management Service (KMS) plus a
randomly generated per-file seed at backup time. Another DEK is
used for all metadata in backups, which is also stored in Google’s
KMS. (Further information on key management is in a later section.)

Are there cases where data is not encrypted
at rest?

Google Cloud Platform encrypts customer content stored at rest,
without any action from the customer, using one or more encryption
mechanisms, with the following exceptions.

• Serial console logs from virtual machines in Google Compute
 Engine; this is currently being remediated

Google Cloud
Platform encrypts
customer content
stored at rest,
without any action
from the customer,
using one or more
encryption
mechanisms, except
for some minor
exceptions .

https://csrc.nist.gov/projects/block-cipher-techniques/bcm
https://boringssl.googlesource.com/boringssl/
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html

32

• Core dumps written to local drives, when a process fails
 unexpectedly; this is currently being remediated

• Debugging logs written to local disk; this is currently
 being remediated

• Temporary files used by storage systems; this is currently
 being remediated

• Some logs that may include customer content as well as
 customer metadata; this is planned for remediation

This data is still protected extensively by the rest of Google’s security
infrastructure, and in almost all cases still protected by storage-
level encryption.

Key Management

Data encryption keys, key encryption keys, and
Google’s Key Management Service

The key used to encrypt the data in a chunk is called a data encryption
key (DEK). Because of the high volume of keys at Google, and the
need for low latency and high availability, these keys are stored near
the data that they encrypt. The DEKs are encrypted with (or “wrapped”
by) a key encryption key (KEK). One or more KEKs exist for each
Google Cloud Platform service. These KEKs are stored centrally in
Google’s Key Management Service (KMS), a repository built specifi-
cally for storing keys. Having a smaller number of KEKs than DEKs
and using a central key management service makes storing and
encrypting data at Google scale manageable, and allows us to track
and control data access from a central point.

For each Google Cloud Platform customer, any non-shared
resources2 are split into data chunks and encrypted with keys
separate from keys used for other customers3. These DEKs are
even separate from those that protect other pieces of the same
data owned by that same customer.

2 An example of a shared resource (where this segregation does not apply) would be a shared base image in Google Compute Engine — naturally, multiple customers refer to a single
 copy, which is encrypted by a single DEK.
3 With the exception of data stored in Cloud Datastore, App Engine, and Cloud Pub/Sub, where two customers’ data may be encrypted with the same DEK. See the section on granularity of
 data encryption by service.

The key used to
encrypt the data in
a chunk is called a
data encryption key
(DEK) . The DEKs are
encrypted with a key
encryption key (KEK) .
KEKs are stored
centrally in Google’s
Key Management
Service (KMS), a
repository built
specifically for this
purpose .

33

DEKs are generated by the storage system using Google’s common
 cryptographic library. They are then sent to KMS to wrap with that
storage system’s KEK, and the wrapped DEKs are passed back to the
storage system to be kept with the data chunks. When a storage
system needs to retrieve encrypted data, it retrieves the wrapped DEK
and passes it to KMS. KMS then verifies that this service is authorized
to use the KEK, and if so, unwraps and returns the plaintext DEK to the
service. The service then uses the DEK to decrypt the data chunk into
plaintext and verify its integrity.

Most KEKs for encrypting data chunks are generated within KMS, and
the rest are generated inside the storage services. For consistency, all
KEKs are generated using Google’s common cryptographic library,
using a random number generator (RNG) built by Google. This RNG is
based on NIST 800-90A and generates an AES256 KEK4. This RNG is
seeded from the Linux kernel’s RNG, which in turn is seeded from
multiple independent entropy sources. This includes entropic events
from the data center environment, such as fine-grained measure-
ments of disk seeks and inter-packet arrival times, and Intel’s
RDRAND instruction where it is available (on Ivy Bridge and
newer CPUs).

Data stored in Google Cloud Platform is encrypted with DEKs using
AES256 or AES128, as described above; and any new data encrypted
in persistent disks in Google Compute Engine is encrypted using
AES256. DEKs are wrapped with KEKs using AES256 or AES128,
depending on the Google Cloud Platform service. We are currently
working on upgrading all KEKs for Cloud services to AES256.

Google’s KMS manages KEKs, and was built solely for this purpose.
It was designed with security in mind. KEKs are not exportable from
Google’s KMS by design; all encryption and decryption with these

keys must be done within KMS. This helps prevent leaks and misuse,
and enables KMS to emit an audit trail when keys are used.

KMS can automatically rotate KEKs at regular time intervals, using
Google’s common cryptographic library to generate new keys.
Though we often refer to just a single key, we really mean that data is
protected using a key set: one key active for encryption and a set of

4 Note that in the past, this was AES128, and some of these keys remain active for decrypting data.

KEKs are not
exportable from
Google’s KMS by
design — all
encryption and
decryption with
these keys must be
done within KMS .
This helps prevent
leaks and misuse .

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide

34

historical keys for decryption, the number of which is determined by
the key rotation schedule. The actual rotation schedule for a KEK
varies by service, but the standard rotation period is 90 days. Google
Cloud Storage specifically rotates its KEKs every 90 days, and can
store up to 20 versions, requiring re-encryption of data at least once
every 5 years (though in practice, data re-encryption is much more
frequent). KMS-held keys are backed up for disaster recovery pur-
poses, and they are indefinitely recoverable.

The use of KEKs is managed by access control lists (ACLs) in KMS for
each key, with a per-key policy. Only authorized Google services and
users are allowed access to a key. The use of each key is tracked at
the level of the individual operation that requires that key — so every
time an individual uses a key, it is authenticated and logged. All
human data accesses are auditable as part of Google’s overall secu-
rity and privacy policies.

[Figure 3]

To decrypt a data chunk,
the storage service calls
Google’s Key
Management Service
(KMS) to retrieve the
unwrapped data
encryption key (DEK)
for that data chunk.

When a Google Cloud Platform service accesses an encrypted chunk
of data, here’s what happens:

 1. The service makes a call to the storage system for the data
 it needs.

 2. The storage system identifies the chunks in which that data is
 stored (the chunk IDs) and where they are stored.

 3. For each chunk, the storage system pulls the wrapped DEK
 stored with that chunk (in some cases, this is done by the
 service), and sends it to KMS for unwrapping.

35

 4. The storage system verifies that the identified job is allowed to
 access that data chunk based on a job identifier, and using the
 chunk ID; and KMS verifies that the storage system is authorized
 both to use the KEK associated with the service, and to unwrap
 that specific DEK.

 5. KMS does one of the following:
 • Passes the unwrapped DEK back to the storage system,
 which decrypts the data chunk and passes it to the service.
 Or, in some rare cases,

 • Passes the unwrapped DEK to the service; the storage
 system passes the encrypted data chunk to the service,
 which decrypts the data chunk and uses it.

This process is different in dedicated storage devices, such as local
SSDs, where the device manages and protects the device-level DEK.

Encryption key hierarchy and root of trust

Google’s KMS is protected by a root key called the KMS master key,
which wraps all the KEKs in KMS. This KMS master key is AES2565,
and is itself stored in another key management service, called the
Root KMS. Root KMS stores a much smaller number of keys—approxi-
mately a dozen. For additional security, Root KMS is not run on
general production machines, but instead is run only on dedicated
machines in each Google data center.

Root KMS in turn has its own root key, called the root KMS master key,
which is also AES2566 and is stored in a peer-to-peer infrastructure,
the root KMS master key distributor, which replicates these keys
globally. The root KMS master key distributor only holds the keys in
RAM on the same dedicated machines as Root KMS, and uses log-
ging to verify proper use. One instance of the root KMS master key
distributor runs for every instance of Root KMS. (The root KMS mas-
ter key distributor is still being phased in, to replace a system that
operated in a similar manner but was not peer to peer.)

5 Note that in the past, this was AES128, and some of these keys remain active for decrypting data.
6 Note that in the past, this was AES128, and some of these keys remain active for decrypting data.

Google’s root of
trust, the root KMS
master key, is kept
in RAM and is also
secured in physical
safes in limited
Google locations
in case of a
global restart.

36

When a new instance of the root KMS master key distributor is
started, it is configured with a list of host names already running
distributor instances. Distributor instances can then obtain the root
KMS master key from other running instances. Other than the
disaster-recovery mechanisms described below, the root KMS
master key exists only in RAM on a limited number of specially
secured machines.

To address the scenario where all instances of the root KMS master
key distributor restart simultaneously, the root KMS master key is also
backed up on secure hardware devices stored in physical safes in
highly secured areas in two physically separated, global Google
locations. This backup would be needed only if all distributor
instances were to go down at once; for example, in a global restart.
Fewer than 20 Google employees are able to access these safes.

[Figure 4]

The encryption key
hierarchy protects a
chunk of data with a DEK,
wrapped with a KEK in
KMS, which is in turn
protected by Root KMS
and the root KMS master
key distributor.

37

To summarize:
 • Data is chunked and encrypted with DEKs
 • DEKs are encrypted with KEKs
 • KEKs are stored in KMS
 • KMS is run on multiple machines in data centers globally
 • KMS keys are wrapped with the KMS master key, which is
 stored in Root KMS
 • Root KMS is much smaller than KMS and runs only on dedicated
 machines in each data center
 • Root KMS keys are wrapped with the root KMS master key,
 which is stored in the root KMS master key distributor
 • The root KMS master key distributor is a peer-to-peer
 infrastructure running concurrently in RAM globally on
 dedicated machines; each gets its key material from other
 running instances
 • If all instances of the distributor were to go down (total
 shutdown), a master key is stored in (different) secure
 hardware in (physical) safes in limited Google locations.
 • The root KMS master key distributor is currently being phased in,
 to replace a system that operated in a similar manner but was not
 peer to peer.

Global availability and replication

High availability and low latency, global access to keys, are critical at
every level; these characteristics are needed for key management
services to be used across Google.

For this reason, KMS is highly scalable, and it is replicated thousands
of times in Google’s data centers globally. It is run on regular
machines in Google’s production fleet, and instances of KMS run
globally to support Google Cloud Platform operations. As a result, the
latency of any single key operation is very low.

Root KMS is run on several machines dedicated to security opera-
tions, in each data center. The root KMS master key distributor is run
on these same machines, one-to-one with Root KMS. The root KMS
master key distributor provides a distribution mechanism via a
gossiping protocol — at a fixed time interval, each instance of the

http://dl.acm.org/citation.cfm?doid=41840.41841

38

distributor picks a random other instance to compare its keys with,
and reconciles any differences in key versions. With this model,
there is no central node that all of Google’s infrastructure depends
on; this allows Google to maintain and protect key material with
high availability.

Google’s common cryptographic library

Google’s common cryptographic library is Keyczar7, which imple-
ments cryptographic algorithms using BoringSSL8. Keyczar is
available to all Google developers. Because this common library is
widely accessible, only a small team of cryptographers needs to
properly implement this tightly controlled and reviewed code — it's not
necessary for every team at Google to "roll their own" cryptography.
A special Google security team is responsible for maintaining this
common cryptographic library for all products.

The Keyczar encryption library supports a wide variety of encryption
key types and modes, and these are reviewed regularly to ensure they
are current with the latest attacks.

At the time of this document’s publication, Google uses the following
encryption algorithms for encryption at rest for DEKs and KEKs.
These are subject to change as we continue to improve our capabili-
ties and security.

7 An older version of Keyczar has been open-sourced, but the open-source version has not been updated recently and does not reflect internal developments.
8 OpenSSL is also in use, in some places in Google Cloud Storage.
9 Other cryptographic protocols exist in the library and were historically supported, but this list covers the primary uses in Google Cloud Platform.

Google uses a widely
accessible common
cryptographic library
that is tightly
managed, controlled
and reviewed by a
small team of
cryptographers —
so that it is not
necessary for every
team at Google to
"roll their own"
cryptography .

https://boringssl.googlesource.com/boringssl/
https://github.com/google/keyczar

39

Granularity of encryption in each Google Cloud
 Platform product

Each Google Cloud Platform service splits data at a different level of
granularity for encryption.

10 Refers to granularity of encryption for customer content. This does not include customer metadata, such as resource names. In some services, all metadata is encrypted with
 a single DEK.
11 Not unique to a single customer.
12 Includes application code and application settings. Data used in App Engine is stored in Cloud Datastore, Cloud SQL or Cloud Storage depending on customer configurations.
13 Not unique to a single customer.
14 Cloud Pub/Sub rotates the DEK used to encrypt messages every hour, or sooner if 1,000,000 messages are encrypted. Not unique to a single customer.

40

Additional encryption options for
Cloud customers

In addition to providing encryption by default in Google Cloud
Platform, we are working to offer customers additional encryption
and key management options for greater control.

We want to enable Google Cloud Platform customers to:

 • Remain the ultimate custodian of their data, and be able to
 control access to and use of that data at the finest level of
 granularity, to ensure both data security and privacy

 • Manage encryption for their cloud-hosted data in the same
 way they currently do on-premises — or, ideally, better

 • Have a provable and auditable root of trust over their
 resources

 • Be able to further separate and segregate their data, beyond
 the use of ACLs

Customers can use existing encryption keys that they manage with
the Google Cloud Platform, using the Customer supplied encryption
keys feature. This feature is available for Google Cloud Storage and
for Google Compute Engine.

We are currently working to introduce new encryption options. Details
will be provided as they become available.

Research and innovation in
cryptography

To keep pace with the evolution of encryption, Google has a team of
world-class security engineers tasked with following, developing, and
improving encryption technology. Our engineers take part in standard-
ization processes and in maintaining widely used encryption

We are working to
offer Google Cloud
Platform customers
additional encryption
and key management
options .

https://cloud.google.com/storage/docs/encryption#customer-supplied
https://cloud.google.com/compute/docs/disks/customer-supplied-encryption

41

software. We regularly publish our research in the field of encryption
so that everyone in the industry — including the general public — can
benefit from our knowledge. For example, in 2014 we revealed a
significant vulnerability in SSL 3.0 encryption (known as POODLE),
and in 2015 we identified a high-risk vulnerability in OpenSSL.

Google plans to remain the industry leader in encryption for cloud
services. In terms of developing, implementing, and researching
newer cryptographic techniques, we have teams working on:

 • Partially homomorphic cryptography, which allows some
 operations to be performed on data while it is encrypted, so
 the cloud never sees the data in plaintext, even in memory.
 One place this technology is being used is as part of our
 experimental encrypted BigQuery client, which is
 openly available.

 • Format- and order- preserving cryptography, which allows
 some comparison and ranking operations to be performed
 on data while it is encrypted.

 • Post-quantum cryptography, which allows us to replace
 existing crypto primitives that are vulnerable to efficient
 quantum attacks with post-quantum candidates that are
 believed to be more robust against such attacks. The
 primary focus here is in researching and prototyping
 lattice-based public-key cryptography, including NIST
 recommendations on post-quantum algorithms.
 Lattice-based crypto is currently thought to be one of
 the most likely encryption techniques to be used in a
 post-quantum world, although we are still in early days in
 terms of best algorithms, concrete parameters, and
 cryptanalysis for applying lattice-based crypto. Although
 symmetric key encryption and MACs are weakened by
 known quantum algorithms, they can still be upgraded to
 similar bits of security in a post-quantum world by doubling
 key sizes.

Google has a team
of world-class
security engineers
tasked with
following,
developing,
and improving
encryption
technology .

https://www.google.com/about/appsecurity/research/
https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html
https://www.openssl.org/news/secadv/20150709.txt
https://github.com/google/encrypted-bigquery-client
https://pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
https://pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
https://pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf

42

Further references

Google Cloud Platform security

For general information on Google Cloud Platform security, see the
Security section of the Google Cloud Platform website.

Google Cloud Platform compliance

For information on Google Cloud Platform compliance and compli-
ance certifications, see the Compliance section of the Google Cloud
Platform website, which includes Google’s public SOC3 audit report.

G Suite security

For information on G Suite encryption and key management, see the
G Suite encryption whitepaper. That whitepaper covers much of the
same content included here, but focuses solely on G Suite. For all
Google Cloud solutions, we strive to keep customer data protected,
and to be as transparent as possible about how we secure it.

Further information on general G Suite security is available in the
Google Cloud Security and Compliance whitepaper.

We are working
to offer Google
Cloud Platform
customers additional
encryption and
key management
options .

https://cloud.google.com/security/
https://cloud.google.com/security/compliance
https://cloud.google.com/security/compliance
https://www.google.com/cloud/security/compliance/soc-3/
http://G Suite encryption
http://services.google.com/fh/files/helpcenter/google_encryptionwp2016.pdf
https://static.googleusercontent.com/media/apps.google.com/en//files/google-apps-security-and-compliance-whitepaper.pdf

43

An encryption whitepaper from Google Cloud

44

Table of Contents

CIO-level summary . 47

1 . Introduction .48
1 .1 Authentication, Integrity, and Encryption

2 . Google’s Network Infrastructure . 50
2 .1 Physical boundaries of Google’s network
2.2 How traffic gets routed

3 . Encryption in Transit by Default .55
3 .1 User to Google Front End encryption
 3.1.1 Transport Layer Security (TLS)
 3 .1 .2 BoringSSL
 3.1.3 Google’s Certificate Authority
 3 .1 .3 .1 Root key migration and key rotation
3 .2 Google Front End to Application Front Ends
3.3 Google Cloud’s virtual network encryption and authentication
3 .4 Service-to-service authentication, integrity, and encryption
 3 .4 .1 ALTS Protocol
 3 .4 .2 Encryption in ALTS
3.5 Virtual machine to Google Front End encryption

4. User-configurable options for encryption in transit . . .66
4 .1 On-premises data center to Google Cloud
 4 .1 .1 TLS using GCLB external load balancers
 4 .1 .2 IPsec tunnel using Google Cloud VPN
4 .2 User to Google Front End
 4.2.1 Managed SSL certificates: Free and automated certificates
 4 .2 .2 Require TLS in Gmail
 4 .2 .3 Gmail S/MIME
4 .3 Service-to-service and VM-to-VM encryption

45

5 . How Google helps the Internet encrypt data
in transit . 69
5.1 Certificate Transparency
5 .2 Increasing the use of HTTPS
5.3 Increasing the use of secure SMTP: Gmail indicators
5 .4 Chrome APIs

6 . Ongoing Innovation in Encryption in Transit 72
6 .1 Chrome Security User Experience
6 .2 Key Transparency
6 .3 Post-quantum cryptography

Appendix . 74

46

This is the third whitepaper on how Google uses encryption to protect your data.
We also released Encryption at Rest in Google Cloud Platform, and G Suite
encryption. You might find it useful to read these other documents to learn about
the use of encryption at Google. In this whitepaper, you will find more detail on
encryption in transit for Google Cloud, including Google Cloud Platform
and G Suite.

For all Google products, we strive to keep customer data highly protected and to
be as transparent as possible about how we secure it.

The content contained herein is correct as of November 2017. This whitepaper
represents the status quo as of the time it was written. Google Cloud’s security
policies and systems might change going forward, as we continually improve
protection for our customers.

https://cloud.google.com/security/encryption-at-rest/default-encryption/
https://storage.googleapis.com/gfw-touched-accounts-pdfs/google-encryption-whitepaper-gsuite.pdf
https://storage.googleapis.com/gfw-touched-accounts-pdfs/google-encryption-whitepaper-gsuite.pdf

47

CIO-level summary

• Google employs several security measures to help ensure the
authenticity, integrity, and privacy of data in transit.

• Google encrypts and authenticates all data in transit at one or more
network layers when data moves outside physical boundaries not
controlled by Google or on behalf of Google. Data in transit inside a
physical boundary controlled by or on behalf of Google is generally
authenticated but not necessarily encrypted.

• Depending on the connection that is being made, Google applies
default protections to data in transit. For example, we secure
communications between the user and the Google Front End (GFE)
using TLS.

• Google Cloud customers with additional requirements for
encryption of data over WAN can choose to implement further
protections for data as it moves from a user to an application, or
virtual machine to virtual machine. These protections include IPsec
tunnels, Gmail S/MIME, managed SSL certificates, and Istio.

• Google works actively with the industry to help bring encryption in
transit to everyone, everywhere. We have several open-source
projects that encourage the use of encryption in transit and data
security on the Internet at large including Certificate Transparency,
Chrome APIs, and secure SMTP.

• Google plans to remain the industry leader in encryption in transit.
To this end, we dedicate resources toward the development and
improvement of encryption technology. Our work in this area
includes innovations in the areas of Key Transparency and post-
quantum cryptography.

48

1 . Introduction

Security is often a deciding factor when choosing a public cloud
provider. At Google, security is of the utmost importance. We work
tirelessly to protect your data—whether it is traveling over the Internet,
moving within Google’s infrastructure, or stored on our servers.

Central to Google’s security strategy are authentication, integrity, and
encryption, for both data at rest and in transit. This paper describes
our approach to encryption in transit for Google Cloud.

For data at rest, see Encryption at Rest in Google Cloud Platform. For
an overview across all of Google Security, see Google Infrastructure
Security Design Overview.

Audience: this document is aimed at CISOs and security operations
teams using or considering Google Cloud.

Prerequisites: in addition to this introduction, we assume a basic
understanding of encryption and cryptographic primitives.

1.1 Authentication, Integrity, and Encryption

Google employs several security measures to help ensure the
authenticity, integrity, and privacy of data in transit.

 • Authentication: we verify the data source, either a human or a
 process, and destination.

 • Integrity: we make sure data you send arrives at its destination
 unaltered.

 • Encryption: we make your data unintelligible while in transit to
 keep it private.

In this paper, we focus on encryption in Google Cloud, and how we
use it to protect your data. Encryption is the process through which
legible data (plaintext) is made illegible (ciphertext) with the goal of
ensuring the plaintext is only accessible by parties authorized by the

Encryption in transit
protects your data
if communications
are intercepted
while data moves
between your site
and the cloud
provider or between
two services .

https://cloud.google.com/security/encryption-at-rest/default-encryption/
https://cloud.google.com/security/security-design/
https://cloud.google.com/security/security-design/
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Cryptographic_primitive

49

owner of the data. The algorithms used in the encryption process are
public, but the key required for decrypting the ciphertext is private.
Encryption in transit often uses asymmetric key exchange, such as
elliptic-curve-based Diffie-Hellman, to establish a shared symmetric
key that is used for data encryption. For more information on encryp-
tion, see Introduction to Modern Cryptography.

Encryption can be used to protect data in three states:

 • Encryption at rest protects your data from a system compromise
 or data exfiltration by encrypting data while stored. The Advanced
 Encryption Standard (AES) is often used to encrypt data at rest.

 • Encryption in transit protects your data if communications are
 intercepted while data moves between your site and the cloud
 provider or between two services. This protection is achieved by
 encrypting the data before transmission; authenticating the
 endpoints; and decrypting and verifying the data on arrival. For
 example, Transport Layer Security (TLS) is often used to encrypt
 data in transit for transport security, and Secure/Multipurpose
 Internet Mail Extensions (S/MIME) is used often for email
 message security.

 • Encryption in use protects your data when it is being used by
 servers to run computations, e.g. homomorphic encryption.

Encryption is one component of a broader security strategy.
Encryption in transit defends your data, after a connection is
established and authenticated, against potential attackers by:

 • Removing the need to trust the lower layers of the network which
 are commonly provided by third parties

 • Reducing the potential attack surface

 • Preventing attackers from accessing data if communications
 are intercepted

http://www.cs.umd.edu/~jkatz/imc.html

50

With adequate authentication, integrity, and encryption, data that
travels between users, devices, or processes can be protected in a
hostile environment. The remainder of this paper explains Google’s
approach to the encryption of data in transit and where it is applied.

2 . Google’s Network Infrastructure

2.1 Physical boundaries of Google’s network

Google applies different protections to data in transit when it is
transmitted outside a physical boundary controlled by or on behalf
of Google. A physical boundary is the barrier to a physical space that
is controlled by or on behalf of Google, where we can ensure that
rigorous security measures are in place. Physical access to these
locations is restricted and heavily monitored. Only a small percentage
of Google employees have access to hardware. Data in transit within
these physical boundaries is generally authenticated, but may not be
encrypted by default - you can choose which additional security
measures to apply based on your threat model.

Due to the scale of the global Internet, we cannot put these same
physical security controls in place for the fiber links in our WAN, or
anywhere outside of physical boundaries controlled by or on behalf
of Google. For this reason, we automatically enforce additional pro-
tections outside of our physical trust boundary. These protections
include encryption of data in transit.

2.2 How traffic gets routed

The previous section discussed the physical boundary of Google’s
network and how we apply different protections to data sent outside
this boundary. To fully understand how encryption in transit works at
Google, it is also necessary to explain how traffic gets routed through
the Internet. This section describes how requests get from an end
user to the appropriate Google Cloud service or customer application,
and how traffic is routed between services.

A Google Cloud service is a modular cloud service that we offer to
our customers. These services include computing, data storage, data
analytics and machine learning. For example, Google Cloud Storage

Google applies
different protections
to data in transit
when it is
transmitted outside
a physical boundary
controlled by or on
behalf of Google .
A physical boundary
is the barrier to a
physical space that
is controlled by or on
behalf of Google,
where we can
ensure that rigorous
security measures
are in place .

51

and Gmail are both Google Cloud services. A customer application is
an application hosted on Google Cloud that you, as a Google cus-
tomer, can build and deploy using Google Cloud services. Customer
applications or partner solutions that are hosted on Google Cloud are
not considered Google Cloud services1. For example, an application
you build using Google App Engine, Google Container Engine, or a VM
in Google Compute Engine is a customer application.

The five kinds of routing requests discussed below are shown in
Figure 1. This figure shows the interactions between the various
network components and the security in place for each connection.

End user (Internet) to a Google Cloud Service

Google Cloud services accept requests from around the world using a
globally distributed system called the Google Front End (GFE). GFE
terminates traffic for incoming HTTP(S), TCP and TLS proxy traffic,
provides DDoS attack countermeasures, and routes and load bal-
ances traffic to the Google Cloud services themselves. There are GFE
points of presence around the globe with routes advertised via uni-
cast or Anycast.

GFEs proxy traffic to Google Cloud services. GFEs route the user’s
request over our network backbone to a Google Cloud service. This
connection is authenticated and encrypted from GFE to the front-end
of the Google Cloud service or customer application, when those
communications leave a physical boundary controlled by Google
or on behalf of Google. Figure 1 shows this interaction (labelled
connection A).

End user (Internet) to a customer application hosted on
Google Cloud

There are several ways traffic from the Internet can be routed to a
customer application you host on Google Cloud. The way your traffic
is routed depends on your configuration, as explained below. Figure 1
shows this interaction (labelled connection B).

 • Using a Google Cloud HTTP(S) or TCP/SSL proxy Load Balancer
 external load balancer: A customer application hosted on Google
 Compute Engine VMs can use a Google Cloud Load Balancer

Google Cloud
services accept
requests from
around the world
using a globally
distributed system
called the Google
Front End (GFE) . GFE
terminates traffic for
incoming HTTP(S),
TCP and TLS proxy
traffic, provides
DDoS attack
countermeasures,
and routes and load
balances traffic to
the Google Cloud
services themselves .

1 Partner solutions include both solutions offered in Cloud Launcher, as well as products built in collaboration with partners, such as Cloud Dataprep.

https://docs.google.com/document/d/1sEAnL_xF5sYyDVAgrgmBS5kTedPAuInj-eJyhtQrMtI/edit?ts=59f29ec9#heading=h.cz0mhpohaq4
https://tools.ietf.org/html/rfc1546

52

[Figure 1]

Protection by default and
options overlaid on
Google’s network

 (GCLB) service to terminate HTTP(S), TLS, or TCP connections
 and to proxy, route, and distribute this traffic to their VMs. These
 load balancer services are implemented by the GFEs, much as
 GFEs terminate and route traffic for Google Cloud services. When
 GCLB routes traffic between GFEs, the connections are

53

 authenticated, and encrypted when the traffic leaves a physical
 boundary controlled by or on behalf of Google. When GCLB
 routes traffic between a GFE and a physical machine that hosts a
 customer’s VM, this traffic is authenticated and encrypted, when
 it leaves a physical boundary controlled by or on behalf of Google.

 • Using a Google Cloud HTTP(S) or TCP/SSL proxy Load Balancer
 external load balancer: A customer application hosted on Google
 Compute Engine VMs can use a Google Cloud Load Balancer
 (GCLB) service to terminate HTTP(S), TLS, or TCP connections
 and to proxy, route, and distribute this traffic to their VMs. These
 load balancer services are implemented by the GFEs, much as
 GFEs terminate and route traffic for Google Cloud services. When
 GCLB routes traffic between GFEs, the connections are
 authenticated, and encrypted when the traffic leaves a physical
 boundary controlled by or on behalf of Google. When GCLB
 routes traffic between a GFE and a physical machine that hosts
 a customer’s VM, this traffic is authenticated and encrypted,
 when it leaves a physical boundary controlled by or on behalf
 of Google.

 For HTTPS load balancers, connections between end users and
 the GFE are encrypted and authenticated with TLS or QUIC, using
 certificates that customers provide for the load balancer. For
 HTTP load balancers, connections between end users and GFE
 are not encrypted or authenticated.

 For SSL load balancers, connections between end users and the
 GFE are encrypted with TLS, similarly using customer-provided
 certificates. For TCP load balancers, there is no encryption
 between the end user and the GFE. The customer’s application
 may, however, use its own encryption between the end user and
 the VMs.

 • Using a connection directly to a VM using an external IP or
 network load balancer IP: If you are connecting via the the VM’s
 external IP, or via a network-load-balanced IP, the connection
 does not go through the GFE. This connection is not encrypted by
 default and its security is provided at the user’s discretion.

 • Using Cloud VPN: If you are connecting from a host on your
 premises to a Google Cloud VM via a VPN, the connection goes
 from/to your on-premises host, to the on-premises VPN, to the

54

 Google VPN, to the Google Cloud VM; the connection does not
 go through the GFE. The connection is protected from the
 on-premises VPN to the Google VPN with IPsec. The connection
 from the Google VPN to the Google Cloud VM is authenticated
 and encrypted, when those communications leave a physical
 boundary controlled by or on behalf of Google.

 • Using Cloud Dedicated Interconnect: If you are connecting via
 Dedicated Interconnect, the connection goes from/to your
 on-premises host directly and the connection does not go
 through the GFE. This connection is not encrypted by default and
 its security is provided at the user’s discretion.

Virtual Machine to Virtual Machine

VM to VM routing that takes place on our network backbone, using
RFC1918 private IP addresses, may require routing traffic outside of
the physical boundaries controlled by or on behalf of Google.
Examples of VM to VM routing include:

 • Compute Engine VMs sending requests to each other

 • A customer VM connecting to a Google-managed VM like
 Cloud SQL

VM to VM connections are encrypted if they leave a physical bound-
ary, and are authenticated within the physical boundary. VM to VM
traffic, using public IP addresses, is not encrypted by default and its
security is provided at the user’s discretion. Figure 1 shows this
interaction (labelled connection C).

Virtual Machine to Google Cloud service

If a VM routes a request to a Google Cloud service, the request is
routed to a GFE (except in cases where the Google Cloud service is
running on a Google-managed VM, as discussed above). The GFE
receives the request, then routes the request in the same way it does
for requests coming from the Internet: for traffic from a VM to a
Google Cloud service, this is routed through private Google paths to
the same public IPs for the GFEs. Private Google access allows VMs
without public IPs to access some Google Cloud services and cus-
tomer applications hosted on Google App Engine. (Note that if a VM
is connecting to a customer application hosted on Google Compute

https://tools.ietf.org/html/rfc1918
https://cloud.google.com/vpc/docs/private-google-access

55

Engine or Google Container Engine, that traffic is routed the same way
requests coming from the Internet are routed, over external paths.)
Figure 1 shows this interaction (labelled connection D). An example of
this kind of routing request is between a Compute Engine VM to
Google Cloud Storage, or to a Machine Learning API. Google Cloud
services support protecting these connections with TLS by default2.
This protection is in place from the VM to the GFE. The connection is
authenticated from the GFE to the service and encrypted if the con-
nection leaves a physical boundary.

Google Cloud service to Google Cloud service

Routing from one production service to another takes place on our
network backbone and may require routing traffic outside of physical
boundaries controlled by or on behalf of Google. Figure 1 shows this
interaction (labelled connection E). An example of this kind of traffic
is a Google Cloud Storage event triggering Google Cloud Functions.
Connections between production services are encrypted if they leave
a physical boundary, and authenticated within the physical boundary.

3 . Encryption in Transit by Default

Google uses various methods of encryption, both default and user
configurable, for data in transit. The type of encryption used depends
on the OSI layer, the type of service, and the physical component of
the infrastructure. Figures 2 and 3 below illustrate the optional and
default protections Google Cloud has in place for layers 3, 4, and 7.

The remainder of this section describes the default protections that
Google uses to protect data in transit.

3.1 User to Google Front End encryption

Today, many systems use the HTTPS protocol to communicate over
the Internet. HTTPS provides security by directing the protocol over a
TLS connection, ensuring the authenticity, integrity, and privacy of
requests and responses. To accept HTTPS requests, the receiver
requires a public–private key pair and an X.509 certificate, for server
authentication, from a Certificate Authority (CA). The key pair and
certificate help protect a user’s requests at the application layer (layer
7) by proving that the receiver owns the domain name for which
requests are intended. The following subsections discuss the compo-
nents of user to GFE encryption, namely: TLS, BoringSSL, and

2 You can still disable this encryption, for example for HTTP access to Google Cloud Storage buckets.

56

[Figure 2]

[Figure3]

 Protection by Default

Protection by Default and Options at
Layer 7 across Google Cloud3

3 VM-to-Service communications not protected at Layer 7 are still protected at layers 3 and 4

Google’s Certificate Authority. Recall that not all customer paths route
via the GFE; notably, the GFE is used for traffic from a user to a Google
Cloud service, and from a user to a customer application hosted on
Google Cloud that uses Google Cloud Load Balancing.

57

3.1.1 Transport Layer Security (TLS)

When a user sends a request to a Google Cloud service, we secure
the data in transit; providing authentication, integrity, and encryption,
using the HTTPS protocol with a certificate from a web (public) certif-
icate authority. Any data the user sends to the GFE is encrypted in
transit with Transport Layer Security (TLS) or QUIC. GFE negotiates a
particular encryption protocol with the client depending on what the
client is able to support. GFE negotiates more modern encryption
protocols when possible.

GFE’s scaled TLS encryption applies not only to end-user interactions
with Google, it also facilitates API interactions with Google over TLS,
including Google Cloud. Additionally, our TLS encryption is used in
Gmail to exchange email with external mail servers (more detail in
section 4.2.2).

Google is an industry leader in both the adoption of TLS and the
strengthening of its implementation. To this end, we have enabled, by
default, many of the security features of TLS. For example, since 2011
we have been using forward secrecy in our TLS implementation.
Forward secrecy makes sure the key that protects a connection is not
persisted, so an attacker that intercepts and reads one message
cannot read previous messages.

When a user sends a
request to a Google
Cloud service, we
secure the data
in transit; providing
authentication,
integrity, and
encryption, using
the HTTPS protocol
with a certificate
from a web (public)
certificate authority.

https://security.googleblog.com/2011/11/protecting-data-for-long-term-with.html

58

3.1.2 BoringSSL

BoringSSL is a Google-maintained, open-source implementation of
the TLS protocol, forked from OpenSSL, that is mostly interface-com-
patible with OpenSSL. Google forked BoringSSL from OpenSSL to
simplify OpenSSL, both for internal use and to better support the
Chromium and Android Open Source Projects. BoringCrypto, the core
of BoringSSL, has been validated to FIPS 140-2 level 1.

TLS in the GFE is implemented with BoringSSL. Table 1 shows the
encryption protocols that GFE supports when communicating
with clients.

3.1.3 Google’s Certificate Authority

As part of TLS, a server must prove its identity to the user when it
receives a connection request. This identity verification is achieved in
the TLS protocol by having the server present a certificate containing
its claimed identity. The certificate contains both the server’s DNS
hostname and its public key. Once presented, the certificate is signed
by an issuing Certificate Authority (CA) that is trusted by the user
requesting the connection10. As a result, users who request connec-
tions to the server only need to trust the root CA. If the server wants
to be accessed ubiquitously, the root CA needs to be known to the
client devices worldwide. Today, most browsers, and other TLS client
implementations, each have their own set of root CAs that are config-
ured as trusted in their “root store”.

Protocols

TLS 1.34

TLS 1.2
TLS 1.1
TLS 1.05

QUIC6

RSA 2048
ECDSA
P-256

Curve25519
P-256 (NIST
secp256r1)

AES-128-GCM
AES-256-GCM
AES-128-CBC
AES-256-CBC
ChaCha20-Poly1305
3DES7

SHA384
SHA256
SHA18

MD59

Authenticaion Key Exchange Encryption Hash Functions

[Table 1]

Encryption Implemented
in the Google Front End
for Google Cloud Services
and Implemented in the
BoringSSL Cryptographic
Library

4 TLS 1.3 is not yet finalized. The draft version is implemented only for certain Google domains for testing, such as Gmail.
5 Google supports TLS 1.0 for browsers that still use this version of the protocol. Note that any Google site processing credit card information will no longer support
 TLS 1.0 by July 2018 when Payment Card Industry (PCI) compliance requires its deprecation.
6 For details on QUIC, see https://www.chromium.org/quic.
7-9 For backwards compatibility with some legacy operating systems, we support 3DES, SHA1 and MD5.
10 In the case of chained certificates, the CA is transitively trusted.

https://boringssl.googlesource.com/boringssl
https://www.imperialviolet.org/2015/10/17/boringssl.html

59

Historically, Google operated its own issuing CA, which we used to
sign certificates for Google domains. We did not, however, operate
our own root CA. Today, our CA certificates are cross-signed by
multiple root CAs which are ubiquitously distributed, including
Symantec (“GeoTrust”) and roots previously operated by GlobalSign
(“GS Root R2” and “GS Root R4”).

In June 2017, we announced a transition to using Google-owned root
CAs. Over time, we plan to operate a ubiquitously distributed root CA
which will issue certificates for Google domains and for our
customers.

3.1.3.1 Root key migration and key rotation

Root CA keys are not changed often, as migrating to a new root CA
requires all browsers and devices to embed trust of that certificate,
which takes a long time. As a result, even though Google now oper-
ates its own root CAs, we will continue to rely on multiple third-party
root CAs for a transitional period to account for legacy devices while
we migrate to our own.

Creating a new root CA requires a key ceremony. At Google, the cere-
mony mandates that a minimum 3 of the 6 possible authorized
individuals physically gather to use hardware keys that are stored in a
safe. These individuals meet in a dedicated room, shielded from
electromagnetic interference, with an air-gapped Hardware Security
Module (HSM), to generate a set of keys and certificates. The dedi-
cated room is in a secure location in Google data centers. Additional
controls, such as physical security measures, cameras, and other
human observers, ensure that the process goes as planned. If the
ceremony is successful the generated certificate is identical to a
sample certificate, except for the issuer name, public key and signa-
ture. The resulting root CA certificate is then submitted to browser
and device root programs for inclusion. This process is designed to
ensure that the privacy and security of the associated private keys are
well understood so the keys can be relied upon for a decade or more.

As described earlier, CAs use their private keys to sign certificates,
and these certificates verify identities when initiating a TLS hand-
shake as part of a user session. Server certificates are signed with
intermediate CAs, the creation of which is similar to the creation of a
root CA. The intermediate CA’s certificates are distributed as part of

https://cloudplatform.googleblog.com/2017/06/Google-Cloud-services-are-switching-Certificate-Authority.html

60

the TLS session so it’s easier to migrate to a new intermediate CA.
This method of distribution also enables the CA operator to keep the
root CA key material in a offline state.

The security of a TLS session is dependent on how well the server’s
key is protected. To further mitigate the risk of key compromise,
Google’s TLS certificate lifetimes are limited to approximately three
months and the certificates are rotated approximately every
two weeks.

A client that has previously connected to a server can use a private
ticket key11 to resume a prior session with an abbreviated TLS hand-
shake, making these tickets very valuable to an attacker. Google
rotates ticket keys at least once a day and expires the keys across all
properties every 3 days. To learn more about session key ticket rota-
tion, see Measuring the Security Harm of TLS Crypto Shortcuts.

3.2 Google Front End to Application Front Ends

In some cases, as discussed in section 2.2, the user connects to a
GFE inside of a different physical boundary than the desired service
and the associated Application Front End. When this occurs, the
user’s request and any other layer 7 protocol, such as HTTP, is either
protected by TLS, or encapsulated in an RPC which is protected using
Application Layer Transport Security (ALTS), discussed in section 3.4.
These RPCs are authenticated and encrypted.

3.3 Google Cloud’s virtual network encryption
and authentication

Google Cloud’s virtual network infrastructure enables encryption
when traffic goes outside our physical boundaries. Encryption is
performed at the network layer and applies to private IP traffic within
the same Virtual Private Cloud (VPC) or across peered VPC networks.

We assume that any network crossing a physical boundary not con-
trolled by or on behalf of Google can be compromised by an active
adversary, who can snoop, inject, or alter traffic on the wire. We
ensure the integrity and privacy of communications using encryption
when data moves outside physical boundaries we don’t control.

11 This could be either a session ticket (RFC 5077) or a session ID (RFC 5246).

Google Cloud’s
virtual network
infrastructure
enables encryption
when traffic goes
outside our physical
boundaries .
Encryption is
performed at the
network layer .

https://jhalderm.com/pub/papers/forward-secrecy-imc16.pdf
https://tools.ietf.org/html/rfc5077
https://tools.ietf.org/html/rfc5246

61

For Google Cloud services, RPCs are protected using ALTS by default.
For customer applications hosted on Google Cloud, if traffic is routed
via the Google Front End, for example if they are using the Google
Cloud Load Balancer, traffic to the VM is protected using Google
Cloud’s virtual network encryption, described in the next section.

We use the Advanced Encryption Standard (AES) in Galois/Counter
Mode (GCM) with a 128 bit key (AES-128-GCM) to implement encryp-
tion at the network layer. Each pair of communicating hosts
establishes a session key via a control channel protected by ALTS for
authenticated and encrypted communications. The session key is
used to encrypt all VM-to-VM communication between those hosts,
and session keys are rotated periodically.

At the network layer (layer 3), Google Cloud’s virtual network authenti-
cates all traffic between VMs. This authentication, achieved via
security tokens, protects a compromised host from spoofing packets
on the network.

[Figure 4]

Security Tokens

62

During authentication, security tokens are encapsulated in a tunnel
header which contains authentication information about the sender
and receiver. The control plane12 on the sending side sets the token,
and the receiving host validates the token. Security tokens are
pre-generated for every flow, and consist of a token key (containing
the sender’s information) and the host secret. One secret exists for
every source-receiver pair of physical boundaries controlled by or on
behalf of Google. Figure 4 shows how token keys, host secrets, and
security tokens are created.

The physical boundary secret is a 128-bit pseudorandom number,
from which host secrets are derived by taking an HMAC-SHA1. The
physical boundary secret is negotiated by a handshake between the
network control planes of a pair of physical boundaries and renegoti-
ated every few hours. The security tokens used for individual
VM-to-VM authentication, derived from these and other inputs, are
HMACs, negotiated for a given sender and receiver pair.

3.4 Service-to-service authentication, integrity,
and encryption

1Within Google’s infrastructure, at the application layer (layer 7), we
use our Application Layer Transport Security (ALTS) for the authenti-
cation, integrity, and encryption of Google RPC calls from the GFE to a
service, and from service to service.

ALTS uses service accounts for authentication. Each service that
runs in Google’s infrastructure runs as a service account identity
with associated cryptographic credentials. When making or
receiving RPCs from other services, a service uses its credentials
to authenticate. ALTS verifies these credentials using an internal
certificate authority.

Within a physical boundary controlled by or on behalf of Google, ALTS
provides both authentication and integrity for RPCs in “authentication
and integrity” mode. For traffic over the WAN outside of physical
boundaries controlled by or on behalf of Google, ALTS enforces
encryption for infrastructure RPC traffic automatically in “authentica-
tion, integrity, and privacy” mode. Currently, all traffic to Google
services, including Google Cloud services, benefits from these
same protections.

Within Google’s
infrastructure, at the
application layer, we
use our Application
Layer Transport
Security (ALTS) for
the authentication,
integrity, and
encryption of
Google RPC calls
from the GFE to a
service, and from
service to service .

12 The control plane is the part of the network that carries signalling traffic and is responsible for routing.

https://grpc.io/

63

ALTS is also used to encapsulate other layer 7 protocols, such as
HTTP, in infrastructure RPC mechanisms for traffic moving from the
Google Front End to the Application Front End. This protection iso-
lates the application layer and removes any dependency on the
network path’s security.

Services can be configured to accept and send ALTS communica-
tions only in “authentication, integrity and privacy” mode, even within
physical boundaries controlled by or on behalf of Google. One exam-
ple is Google’s internal key management service, which stores and
manages the encryption keys used to protect data stored at rest in
Google’s infrastructure.

3.4.1 ALTS Protocol

ALTS has a secure handshake protocol similar to mutual TLS.
Two services wishing to communicate using ALTS employ this hand-
shake protocol to authenticate and negotiate communication
parameters before sending any sensitive information. The protocol
is a two-step process:

Step 1: Handshake
The client initiates an elliptic curve-Diffie Hellman (ECDH) handshake
with the server using Curve25519. The client and server each have
certified ECDH public parameters as part of their certificate, which is
used during a Diffie Hellman key exchange. The handshake results in
a common traffic key that is available on the client and the server. The
peer identities from the certificates are surfaced to the application
layer to use in authorization decisions.

Step 2: Record encryption
Using the common traffic key from Step 1, data is transmitted
from the client to the server securely. Encryption in ALTS is imple-
mented using BoringSSL and other encryption libraries. Encryption
 is most commonly AES-128-GCM while integrity is provided by
AES-GCM’s GMAC.

https://cloud.google.com/security/encryption-at-rest/default-encryption/#key_management

64

[Figure 5]

ALTS
Handshake

Figure 5 below shows the ALTS handshake in detail. In newer imple-
mentations, a process helper does the handshake; there are still some
cases where this is done directly by the applications.

As described at the start of section 3.4, ALTS uses service accounts
for authentication, with each service that runs on Google’s infrastruc-
ture running as a service identity with associated cryptographic
credentials. During the ALTS handshake, the process helper accesses
the private keys and corresponding certificates that each client-server
pair uses in their communications. The private key and corresponding
certificate (signed protocol buffer) have been provisioned for the
service account identity of the service.

ALTS Certificates
There are multiple kinds of ALTS certificate:

 • Machine certificates: provide an identity to core services on a
 specific machine. These are rotated approximately every 6 hours.

https://developers.google.com/protocol-buffers/docs/overview

65

[Table 2]

Encryption in ALTS

 • User certificates: provide an end user identity for a Google
 engineer developing code. These are rotated approximately
 every 20 hours.
 • Borg job certificates: provide an identity to jobs running within
 Google’s infrastructure. These are rotated approximately every
 48 hours.

The root certification signing key is stored in Google’s internal
certificate authority (CA), which is unrelated and independent of
our external CA.

3.4.2 Encryption in ALTS

Encryption in ALTS can be implemented using a variety of algorithms,
depending on the machines that are used. For example, most ser-
vices use AES-128-GCM13. More information on ALTS encryption can
be found in Table 2.

Most Google services use ALTS, or RPC encapsulation that uses
ALTS. In cases where ALTS is not used, other protections are
employed. For example:

 • Some low-level machine management and bootstrapping
 services use SSH

 • Some low-level infrastructure logging services TLS or Datagram
 TLS (DTLS)14

 • Some services that use non-TCP transports use other
 cryptographic protocols or network level protections when inside
 physical boundaries controlled by or on behalf of Google

13 Previously, other protocols were used but are now deprecated. Less than 1% of jobs use these older protocols.
14 Datagram TLS (DTLS) provides security for datagram-based applications by allowing them to communicate in a way that prevents eavesdropping and tampering.

Most common

Sandy Bridge or older

Machines

AES-128-GCM
AES-128-VCM Uses a VMAC instead of a GMAC

and is slightly more efficient on
these older machines.

Message encryption used

https://research.google.com/pubs/pub43438.html
https://research.google.com/pubs/pub46483.html

66

Communications between VMs and Google Cloud Platform services
use TLS to communicate with the Google Front End, not ALTS. We
describe these communications in section 3.5.

3.5 Virtual machine to Google Front End
encryption

VM to GFE traffic uses external IPs to reach Google services, but you
can configure the Private Google Access feature to use Google-only
IP addresses for the requests.

As with requests from an external user to Google, we support TLS
traffic by default from a VM to the GFE. The connection happens in
the same way as any other external connection. For more information
on TLS, see section 3.1.1.

4. User-configurable options for
encryption in transit

Section 3 of this document described the default protections that
Google has in place for data in transit. This section describes the
configurations our users can make to these default protections.

4.1 On-premises data center to Google Cloud

4.1.1 TLS using GCLB external load balancers

If your cloud service uses a Google HTTPS or SSL Proxy external load
balancer, then GFE terminates the TLS connections from your users
using SSL certificates that you provision and control. More informa-
tion on customizing your certificate can be found in our SSL
Certificates documentation.

4.1.2 IPsec tunnel using Google Cloud VPN

As a Google Cloud customer, you can use Google Cloud VPN to
securely connect your on-premises network to your Google Cloud
Platform Virtual Private Cloud (VPC) network through an IPsec VPN

https://cloud.google.com/vpc/docs/private-google-access
https://cloud.google.com/load-balancing/
https://cloud.google.com/load-balancing/
https://cloud.google.com/compute/docs/load-balancing/http/ssl-certificates
https://cloud.google.com/compute/docs/load-balancing/http/ssl-certificates
https://cloud.google.com/compute/docs/load-balancing/http/ssl-certificates

67

connection (layer 3). Traffic traveling between the two networks is
encrypted by one VPN gateway and decrypted by the other VPN
gateway. This protects your data over the Internet. In addition, you can
set up multiple, load-balanced tunnels through multiple VPN gate-
ways. The Google Cloud VPN protects your data in the following ways:

 • Packets from your VMs to the Cloud VPN remain within Google’s
 network. These packets are encrypted by Google Cloud’s virtual
 network if they travel outside the physical boundaries controlled
 by or on behalf of Google.

 • Packets from the Cloud VPN to your on-premises VPN are
 encrypted and authenticated using an IPsec tunnel.

 • Packets from your on-premises VPN to your on-premises hosts
 are protected by whatever controls you have in place on
 your network.

To set up a VPN, create a Cloud VPN gateway and tunnel on the
hosted service’s VPC network, then permit traffic between the
networks. You also have the option of setting up a VPN between
two VPCs.

You can further customize your network by specifying the Internet Key
Exchange (IKE)15 version for your VPN tunnel. There are two versions
of IKE to choose from, IKEv1 and IKEv2, each of which supports
different ciphers. If you specify IKEv1, Google encrypts the packets
using AES-128-CBC and provides integrity through SHA-1 HMAC16.
For IKEv2, a variety of ciphers are available and supported. In all
cases, Google Cloud VPN will negotiate the most secure common
protocol the peer devices support. Full instructions on setting up a
VPN can be found in our documentation Creating a VPN.

An alternative to an IPsec tunnel is Google Cloud Dedicated
Interconnect. Dedicated Interconnect provides direct physical con-
nections and RFC1918 communication between your on-premises
network and Google’s network. The data traveling over this connec-
tion is NOT encrypted by default and so, should be secured at the
application layer, using TLS for example. Google Cloud VPN and
Google Cloud Interconnect use the same attachment point so you

15 Internet Key Exchange (IKE) is the protocol used to set up a security association in the IPsec protocol suite.
16 HMAC-SHA-1 is not broken by a SHA-1 collision, such as the SHAttered collision Google researchers found.

As a Google Cloud
customer, you can
use Google Cloud
VPN to securely
connect your
on-premises
network to your
Google Cloud
Platform Virtual
Private Cloud (VPC)
network through an
IPsec VPN
connection .

https://cloud.google.com/vpn/docs/concepts/advanced#supported_ike_ciphers
https://cloud.google.com/vpn/docs/how-to/creating-vpns
https://cloud.google.com/interconnect/docs/
https://cloud.google.com/interconnect/docs/
https://shattered.io/

68

can use IPsec VPN encryption with Dedicated Interconnect however,
to achieve this, you will need to use a third party solution. MACsec
(layer 2 protection) is not currently supported.

4.2 User to Google Front End

4.2.1 Managed SSL certificates: Free and
automated certificates

When building an application on Google Cloud, you can leverage
GFE’s support of TLS by configuring the SSL certificate you use. For
example, you can have the TLS session terminate in your application.
This termination is different to the TLS termination described in
section 4.1.1.

Google also provides free and automated SSL certificates in both the
Firebase Hosting and Google App Engine custom domains. These
certificates are only available for Google-hosted properties. With
Google App Engine custom domains, you can also provide your own
SSL certificates and use an HTTPS Strict Transport Protocol
(HSTS) header.

Once your domain is pointed at Google’s infrastructure, we request
and obtain a certificate for that domain to allow secure communica-
tions. We manage the TLS server private keys, which are either
2048-bit RSA or secp256r1 ECC, and renew certificates on behalf
of our customers.

4.2.2 Require TLS in Gmail

As discussed in section 3.1.1, Gmail uses TLS by default. Gmail
records and displays whether the last hop an email made was over a
TLS session17. When a Gmail user exchanges an email with another
Gmail user, the emails are protected by TLS, or in some cases, sent
directly within the application. In these cases, the RPCs used by the
Gmail application are protected with ALTS as described in section 3.4.
For incoming messages from other email providers, Gmail does not
enforce TLS. Gmail administrators can configure Gmail to require a
secure TLS connection for all incoming and outgoing emails.

17 For G Suite enterprise, this isn’t shown in the UI. Domain administrators can examine data for their domain using Email Log Search.

When building an
application on
Google Cloud, you
can leverage GFE’s
support of TLS by
configuring the SSL
certificate you use.

https://firebase.google.com/docs/hosting/custom-domain
https://cloud.google.com/appengine/docs/standard/python/securing-custom-domains-with-ssl
https://cloud.google.com/appengine/docs/standard/python/securing-custom-domains-with-ssl#using_your_own_ssl_certificates
https://cloud.google.com/appengine/docs/standard/python/securing-custom-domains-with-ssl#using_your_own_ssl_certificates
https://support.google.com/a/answer/6374496?hl=en
https://support.google.com/a/answer/2604578

69

4.2.3 Gmail S/MIME

Secure/Multipurpose Internet Mail Extensions (S/MIME) is an email
security standard that provides authentication, integrity, and encryp-
tion. The implementation of the S/MIME standard mandates that
certificates associated with users sending emails are hosted in a
public CA.

As an administrator, you can configure Gmail to enable S/MIME for
outgoing emails, set up policies for content and attachment compli-
ance, and create routing rules for incoming and outgoing emails.
Once configured, you must upload users’ public certificates to Gmail
using the Gmail API. For users external to Gmail, an initial S/MIME-
signed message must be exchanged to set S/MIME as the default.

4.3 Service-to-service and VM-to-VM
encryption

Istio is an open-source service mesh developed by Google, IBM,
Lyft, and others, to simplify service discovery and connectivity. Istio
authentication provides automatic encryption of data in transit
between services, and management of associated keys and certifi-
cates. Istio can be used in Google Container Engine and Google
Compute Engine.

If you want to implement mutual authentication and encryption for
workloads, you can use istio auth. Specifically, for a workload in
Kubernetes, Istio auth allows a cluster-level CA to generate and
distribute certificates, which are then used for pod-to-pod mutual
Transport Layer Security (mTLS).

5 . How Google helps the Internet
encrypt data in transit

Sections three and four explained the default and customizable
protections Google Cloud has in place for customer data in transit. In
addition, Google has several open-source projects and other efforts
that encourage the use of encryption in transit and data security on
the Internet at large.

Istio is an open-
source service mesh
designed to simplify
service discovery
and connectivity .
Istio authentication
provides automatic
encryption of data in
transit between
services, and
management of
associated keys and
certificates.

https://support.google.com/a/answer/6374496?hl=en
https://support.google.com/a/answer/7280976?hl=en
https://developers.google.com/gmail/api/guides/smime_certs
https://istio.io/
https://istio.io/blog/2017/0.1-auth.html
https://kubernetes.io/
https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/

70

5.1 Certificate Transparency

As discussed in section 3.1, to offer HTTPS, a site must apply first for
a certificate from a trusted web (public) Certificate Authority (CA).
The Certificate Authority is responsible for verifying that the applicant
is authorized by the domain holder, as well as ensuring that any other
information included in the certificate is accurate.This certificate is
then presented to the browser to authenticate the site the user is
trying to access. In order to ensure HTTPS is properly authenticated,
it’s important to ensure that CAs only issue certificates that the
domain holder has authorized.

Certificate Transparency (CT) is an effort that Google launched in
March 2013 to provide a way for site operators and domain holders to
detect if a CA has issued any unauthorized or incorrect certificates. It
works by providing a mechanism for domain holders, CAs, and the
public to log the trusted certificates they see or, in the case of CAs,
the certificates they issue, to publicly verifiable, append-only, tam-
per-proof logs. The certificates in these logs can be examined by
anyone to ensure the information is correct, accurate, and authorized.

The first version of Certificate Transparency was specified in an IETF
experimental RFC, RFC 6962. During the development of Certificate
Transparency, Google open-sourced a number of tools, including an
open-source log server that can record certificates, as well as tools
to create Certificate Transparency logs. In addition, Google Chrome
requires that some certificates must be publicly disclosed, such
as for Extended Validation (EV) certificates or certificates issued
from CAs that have improperly issued certificates in the past. From
2018, Chrome will require that all new publicly trusted certificates
be disclosed.

As a site operator, you can use Certificate Transparency to detect if
unauthorized certificates have been issued for your website. A num-
ber of free tools exist to make this easy to do, such as Google’s
Certificate Transparency Report, Certificate Search, or tools from
Facebook. Even if you don’t use Certificate Transparency, a number of
browsers now examine Certificate Transparency regularly to ensure
that the CAs your users trust to access your website are adhering to
industry requirements and best practices, reducing the risk of fraudu-
lent certificates being issued.

https://www.certificate-transparency.org/
https://tools.ietf.org/html/rfc6962
https://www.certificate-transparency.org/known-logs
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/sz_3W_xKBNY
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/sz_3W_xKBNY
https://transparencyreport.google.com/https/certificates
https://crt.sh/
https://www.facebook.com/notes/protect-the-graph/introducing-our-certificate-transparency-monitoring-tool/1811919779048165/
https://www.facebook.com/notes/protect-the-graph/introducing-our-certificate-transparency-monitoring-tool/1811919779048165/

71

5.2 Increasing the use of HTTPS

As described in section 3.1, we work hard to make sure that our sites
and services provide modern HTTPS by default. Our goal is to achieve
100% encryption across our products and services. To this end, we
publish an annual HTTPS Transparency Report that tracks our prog-
ress towards our goal for all properties, including Google Cloud. We
continue to work through the technical barriers that make it difficult to
support encryption in some of our products, such as solutions for
browsers or other clients that do not support HTTPS Strict Transport
Protocol (HSTS)18. We use HSTS for some of our sites, including the
google.com homepage, to allow users to connect to a server only
over HTTPS.

We know that the rest of the Internet is working on moving to HTTPS.
We try to facilitate this move in the following ways:

 • We provide developers with advice on why HTTPS matters, how
 to enable HTTPS, and best practices when implementing HTTPS

 • We have created tools in Chrome like the Security panel in
 DevTools to help developers assess the HTTPs status of
 their site(s)

 • We financially support the Let’s Encrypt initiative that allows
 anyone to obtain a free certificate for their website. Google
 representatives sit on the technical advisory board of the Let’s
 Encrypt’s parent organization, Internet Security Research Group.

In 2016, we began publishing metrics on “HTTPS usage on the
Internet” for the Top 100 non-Google sites on the Internet. With these
metrics, we aim to increase awareness and help make the Internet a
safer place for all users. In October 2017, Chrome formally renewed
its financial support of Let’s Encrypt as a Platinum sponsor.

18 HTTPS Strict Transport Protocol is a mechanism enabling web sites to declare themselves accessible only via secure connections and/or for users to be able to direct
 their user agent(s) to interact with given sites only over secure connections.

Our goal is to
achieve 100%
encryption across
our products and
services . To this end,
we publish an annual
HTTPS Transparency
Report that tracks
our progress
towards this our goal
for all properties.

https://transparencyreport.google.com/https/overview
https://security.googleblog.com/2016/07/bringing-hsts-to-wwwgooglecom.html
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/enable-https
https://support.google.com/webmasters/answer/6073543?hl=en
https://developers.google.com/web/updates/2015/12/security-panel
https://developers.google.com/web/updates/2015/12/security-panel
https://letsencrypt.org/
https://letsencrypt.org/isrg/
https://transparencyreport.google.com/https/top-sites?hl=en
https://blog.google/topics/safety-security/say-yes-https-chrome-secures-web-one-site-time/
https://blog.google/topics/safety-security/say-yes-https-chrome-secures-web-one-site-time/

72

5.3 Increasing the use of secure SMTP:
Gmail indicators

Most email is exchanged using the Simple Mail Transfer Protocol
(SMTP) which, by default, sends email without using encryption. To
encrypt an email, the mail provider must implement security controls
like TLS.

As discussed in section 3.1, Gmail uses TLS by default. In addition,
section 4.2.2 describes how Gmail administrators can enforce the use
of TLS protection for incoming and outgoing emails. Like Google’s
efforts with HTTPS transparency, Gmail provides data on TLS use for
incoming emails to Gmail. This data is presented in our Safer Email
Transparency Report.

Google, in partnership with the IETF and other industry key players, is
leading the development of SMTP STS. SMTP STS is like HSTS for
HTTPS, forcing the use of SMTP over only encrypted channels.

5.4 Chrome APIs

In February 2015, Chrome announced that powerful new features will
be available only to secure origins19. Such features include the han-
dling of private information and access to sensors on a user’s device.
Starting with geolocation in Chrome 50, we began deprecating these
features for insecure origins.

6 . Ongoing Innovation in Encryption
in Transit

6.1 Chrome Security User Experience

Google Chrome is an industry leader in leveraging its UI to display
security information in ways that allow users to quickly understand
the safety of their connection to a site. With this information, users
can make informed decisions about when and how they share their
data. Chrome conducts extensive user research, the results of which
are shared in peer-reviewed papers.

19 Secure origins are connections that match certain scheme, host, or port patterns.

Google Chrome is an
industry leader in
leveraging its UI to
display security
information in ways
that allow users to
quickly understand
the safety of their
connection to a site .

https://transparencyreport.google.com/safer-email/overview
https://transparencyreport.google.com/safer-email/overview
https://www.chromium.org/Home/chromium-security/prefer-secure-origins-for-powerful-new-features
https://www.chromium.org/Home/chromium-security/deprecating-powerful-features-on-insecure-origins
https://www.chromium.org/Home/chromium-security/deprecating-powerful-features-on-insecure-origins
https://www.usenix.org/system/files/conference/soups2016/soups2016-paper-porter-felt.pdf
https://www.chromium.org/Home/chromium-security/prefer-secure-origins-for-powerful-new-features

73

To help further protect its users, Chrome has announced that by the
end of 2017, it will mark all HTTP connections as non-secure. Starting
with Chrome 56, by default, users will see a warning if an HTTP page
includes a form with password or credit card fields. With Chrome 62,
a warning will be shown when a user enters in data on an HTTP page,
and for all HTTP pages visited in Incognito mode. Eventually, Chrome
will show a warning for all pages that are served over HTTP.

To see how particular configurations are displayed to users in
Chrome, you can use the BadSSL tool.

6.2 Key Transparency

A significant deterrent to the widespread adoption of message
encryption is the difficulty of public key exchange: how can I reliably
find the public key for a new user with which I am communicating? To
help solve this issue, in January 2017, Google announced Key
Transparency. This is an open framework that provides a generic,
secure, and auditable means to distribute public keys. The framework
removes the need for users to perform manual key verification. Key
Transparency is primarily targeted at the distribution of users’ public
keys in communications, for example, E2E and OpenPGP email
encryption. Key Transparency’s design is a new approach to key
recovery and distribution and is based on insights gained from
Certificate Transparency and CONIKS.

Key Transparency’s development is open-source and it is imple-
mented using a large-scale Merkle tree. Key Transparency Verification
allows account owners to see what keys have been associated with
their accounts and how long an account has been active and stable.
The long-term goal of Google’s Key Transparency work is to enable
anyone to run a Key Transparency server and make it easy to integrate
into any number of applications.

6.3 Post-quantum cryptography

Google plans to remain the industry leader in encryption in transit. To
this end, we have started work in the area of post-quantum cryptogra-
phy. This type of cryptography allows us to replace existing crypto
primitives, that are vulnerable to efficient quantum attacks, with
post-quantum candidates that are believed to be more robust. In

https://www.chromium.org/Home/chromium-security/marking-http-as-non-secure
https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
https://blog.chromium.org/2017/04/next-steps-toward-more-connection.html
https://badssl.com/
https://github.com/google/keytransparency/
https://github.com/google/keytransparency/
https://www.certificate-transparency.org/
https://coniks.cs.princeton.edu/
https://github.com/google/keytransparency/
https://github.com/google/keytransparency/blob/master/docs/design-improvements.md

74

July 2016 we announced that we had conducted an experiment on
the feasibility of deploying such an algorithm by using the New Hope
post-quantum crypto algorithm in the developer version of Chrome.
In addition to this work, researchers at Google have published papers
on other practical post-quantum key-exchange protocols.

Appendix

For general information on Google Cloud security and compliance,
see the security sections of the Google Cloud Platform website and
the G Suite website, including the Google Infrastructure Security
Design Overview and the public SOC3 audit report.

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://eprint.iacr.org/2015/1092.pdf
https://eprint.iacr.org/2015/1092.pdf
https://eprint.iacr.org/2016/659
https://cloud.google.com/security/
https://gsuite.google.com/security/?secure-by-design_activeEl=data-centers
https://cloud.google.com/security/security-design/
https://cloud.google.com/security/security-design/
https://www.google.com/cloud/security/compliance/soc-3/

75

A techinical whitepaper from Google Cloud

Cesar Ghali, Adam Stubblefield,
Ed Knapp, Jiangtao Li,
Benedikt Schmidt, Julien Boeuf

76

Table of Contents

Executive summary . 79

1 . Introduction . 79

2 . Application-Level Security and ALTS . 79
2 .1 Why Not TLS?
2 .2 ALTS Design

3 . ALTS Trust Model .81
 3 .1 ALTS Credentials
 3.1.1 Certificate Issuance
 3.1.2 Human Certificates
 3.1.3 Machine Certificates
 3.1.4 Workload Certificates
3 .2 ALTS Policy Enforcement
3.3 Certificate Revocation

4 . ALTS Protocols .90
4 .1 Handshake Protocol
4 .2 Record Protocol
 4 .2 .1 Framing
 4 .2 .2 Payload
4 .3 Session Resumption

77

5. Tradeoffs . 96
5.1 Key Compromise Impersonation Attacks
5 .2 Privacy for Handshake Messages
5.3 Perfect Forward Secrecy
5 .4 Zero-Roundtrip Resumption

6. Further References . 97

78

Executive summary

• Google’s Application Layer Transport Security (ALTS) is a mutual
authentication and transport encryption system developed by
Google and typically used for securing Remote Procedure Call
(RPC) communications within Google’s infrastructure. ALTS
is similar in concept to mutually authenticated TLS but has
been designed and optimized to meet the needs of Google’s
datacenter environments.

• The ALTS trust model has been tailored for cloud-like containerized
applications. Identities are bound to entities instead of to a
specific server name or host. This trust model facilitates seamless
microservice replication, load balancing, and rescheduling
across hosts.

• ALTS relies on two protocols: the Handshake protocol (with session
resumption) and the Record protocol. These protocols govern how
sessions are established, authenticated, encrypted, and resumed.

• ALTS is a custom transport layer security solution that we use at
Google. We have tailored ALTS to our production environment, so
there are some tradeoffs between ALTS and the industry standard,
TLS. Section 5 discusses these tradeoffs in more detail.

https://www.ietf.org/rfc/rfc5246.txt

79

1 . Introduction

Production systems at Google consist of a constellation of microser-
vices1 that collectively issue O(1010) Remote Procedure Calls (RPCs)
per second. When a Google engineer schedules a production work-
load2, any RPCs issued or received by that workload are protected with
ALTS by default. This automatic, zero-configuration protection is pro-
vided by Google’s Application Layer Transport Security (ALTS). In
addition to the automatic protections conferred on RPC’s, ALTS also
facilitates easy service replication, load balancing, and rescheduling
across production machines. This paper describes ALTS and explores
its deployment over Google’s production infrastructure.

Audience: This document is aimed at infrastructure security profes-
sionals who are curious about how authentication and transport
security are performed at scale in Google.

Prerequisites: In addition to this introduction, we assume a basic
understanding of cluster management at Google.

2 . Application-Level Security
and ALTS

Many applications, from web browsers to VPNs, rely on secure
communication protocols, such as TLS (Transport Layer Security)
and IPSec, to protect data in transit3. At Google, we use ALTS, a
mutual authentication and transport encryption system that runs
at the application layer, to protect RPC communications. Using
application-level security allows applications to have authenticated
remote peer identity, which can be used to implement fine-grained
authorization policies.

2.1 Why Not TLS?

It may seem unusual for Google to use a custom security solution
such as ALTS when the majority of Internet traffic today is encrypted
using TLS. ALTS began development at Google in 2007. At the time,
TLS was bundled with support for many legacy protocols that did not
satisfy our minimum security standards. We could have designed
our security solution by adopting the TLS components we needed
and implementing the ones we wanted; however, the advantages of

When a Google
engineer schedules
a production
workload, any RPCs
that workload issues
has automatic,
zero-configuration
protection using
Google’s Application
Layer Transport
Security (ALTS) .

1 A microservice is an architectural style that structures an application as a collection of loosely coupled services which implement business capabilities.
2 A production workload is an application that Google engineers schedule to run in Google’s datacenters.
3 For more information on how Google protects data in transit, see our whitepaper, “Encryption in Transit in Google Cloud”.

https://research.google.com/pubs/pub43438.html
https://cloud.google.com/security/encryption-in-transit

80

building a more Google-suited system from scratch outweighed the
benefits of patching an existing system. In addition, ALTS is more
appropriate for our needs, and historically more secure than older
TLS. Listed below are the key differences between TLS and ALTS.

 • There is a significant difference between the trust models4
 of TLS with HTTPS semantics and ALTS. In the former, server
 identities are bound to a specific name and corresponding
 naming scheme. In ALTS, the same identity can be used with
 multiple naming schemes. This level of indirection provides
 more flexibility and greatly simplifies the process of microservice
 replication, load balancing, and rescheduling between hosts.

 • Compared to TLS, ALTS is simpler in its design and
 implementation. As a result, it is easier to monitor for bugs and
 security vulnerabilities using manual inspection of source code
 or extensive fuzzing.

 • ALTS uses Protocol Buffer to serialize its certificates and
 protocol messages, while TLS uses X.509 certificates encoded
 with ASN.1. The majority of our production services use protocol
 buffers for communication (and sometimes storage), making
 ALTS a better fit for Google’s environment.

2.2 ALTS Design

ALTS is designed to be a highly reliable, trusted system that allows
for service-to-service authentication and security with minimal user
involvement. To achieve this, the properties listed below are part of
ALTS’s design:

 • Transparency: ALTS configuration is transparent to the
 application layer. By default, service RPCs are secured using
 ALTS. This allows application developers to focus on the
 functional logic of their services without having to worry about
 credential management or security configurations. During
 service-to-service connection establishment, ALTS provides
 applications with an authenticated remote peer identity which
 can be used for fine-grained authorization checks and auditing.

 • State-of-the-art cryptography: All cryptographic primitives and
 protocols used by ALTS are up-to-date with current known
 attacks. ALTS runs on Google-controlled machines, meaning that

ALTS is designed to
be a highly reliable,
trusted system that
allows for service-
to-service
authentication and
security with minimal
user involvement .

4 A trust model is the mechanism through with a security protocol identifies, distributes and rotates credentials and identities.

https://developers.google.com/protocol-buffers/docs/proto3

81

 all supported cryptographic protocols can be easily upgraded
 and quickly deployed.

 • Identity model: ALTS performs authentication primarily by
 identity rather than host name. At Google, every network entity
 (e.g. a corporate user, a physical machine, or a production
 service or workload) has an associated identity. All
 communications between services are mutually authenticated.

 • Key distribution: ALTS relies on each workload having an identity,
 which is expressed as a set of credentials. These credentials
 are deployed in each workload during initialization, without user
 involvement. In parallel, a root of trust and a trust chain for these
 credentials are established for machines and workloads. The
 system allows for automatic certificate rotation and revocation
 without application developers involvement.

 • Scalability: ALTS is designed to be very scalable in order
 to support the massive scale of Google’s infrastructure. This
 requirement resulted in the development of efficient session
 resumption, see Section 4.3.

 • Long-lived connections: Authenticated key exchange
 cryptographic operations are computationally expensive.
 To accommodate the scale of Google’s infrastructure, after an
 initial ALTS handshake, connections can be persisted for a longer
 time to improve overall system performance.

 • Simplicity: TLS by default comes with support for legacy
 protocol versions and backwards compatibility. ALTS is
 considerably simpler as Google controls both clients and servers,
 which we designed to natively support ALTS.

3 . ALTS Trust Model

ALTS performs authentication primarily by identity rather than host.
At Google, every network entity (e.g., a corporate user, a physical
machine, or a production service) has an associated identity. These
identities are embedded in ALTS certificates and used for peer
authentication during secure connection establishment. The model
we pursue is that our production services run as production entities
that can be managed by our Site Reliability Engineers (SREs)5. The

ALTS performs
authentication
primarily by identity
rather than host .
At Google, every
network entity (e .g .,
a corporate user, a
physical machine,
or a production
service) has an
associated identity .

5 Some services are managed directly by developers.

82

development versions of these production services run as test
entities that can be managed by both SREs and developers.

For example, let’s assume we have a product with two services:
service-frontend and service-backend. SREs can launch the
production version of these services: service-frontend-prod
and service-backend-prod. Developers can build and launch
development versions of these services, service-frontend-
dev and service-backend-dev, for testing purposes. The
authorization policy in the production services will be configured
not to trust the development versions of the services.

3.1 ALTS Credentials

There are three types of ALTS credential, all of which are expressed
in Protocol Buffer message format.

 • Master certificate: signed by a remote Signing Service and used
 to verify handshake certificates. The master certificate contains
 a public key associated with a master private key, e.g., RSA
 keypair. This private key is used to sign handshake certificates.
 These certificates, when exercised in combination with the ALTS
 policy discussed below, are essentially constrained intermediate
 Certificate Authority (CA) certificates. Master certificates
 are typically issued for production machines and schedulers of
 containerized workloads such as the Borgmaster6.

 • Handshake certificate: created and signed locally by the master
 private key. This certificate contains the parameters used during
 the ALTS handshake (secure connection establishment), for
 example, static Diffie-Hellman (DH) parameters and the
 handshake ciphers. Also, the handshake certificate contains the
 master certificate that it is derived from, i.e., the one associated
 with the master private key that signs the handshake certificate.

 • Resumption key: is a secret that is used to encrypt resumption
 tickets. This key is identified by a Resumption Identifier IDR that
 is unique for, and shared among, all production workloads
 running with the same identity and in the same datacenter cell.
 For more details on session resumption in ALTS, see Section 4.3.

https://developers.google.com/protocol-buffers/docs/proto3

83

Figure 1 shows the ALTS certificate chain, which consists of a
Signing Service verification key, a master certificate and a handshake
certificate. The Signing Service verification keys are the root of trust
in ALTS and are installed on all Google machines in our production
and corporate networks.

In ALTS, a Signing Service certifies Master certificates which in
turn certify Handshake certificates. As Handshake certificates
are created more often than Master certificates, this architecture
reduces the load on the Signing service. Certificate rotation happens
frequently at Google, especially for handshake certificates7. This
frequent rotation compensates for the static key exchange pairs
carried by the handshake certificates8.

3.1.1 Certificate Issuance

In order to participate in an ALTS secure handshake, entities on the
network need to be provisioned with handshake certificates. First, the
issuer obtains a master certificate signed by the Signing Service and
optionally passes it down to the entity. Then, a handshake certificate
is created and signed by the associated master private key.

Typically, the issuer is our internal Certificate Authority (CA) when
issuing certificates to machines and humans, or the Borgmaster
when issuing certificates to workloads. However, it can be any other
entity, e.g., a restricted Borgmaster for a test datacenter cell.

[Figure 1]

ALTS
certificate�chain

6 Borgmaster is responsible for scheduling and initializing Google production workloads. For more information see Large-scale cluster management at Google with Borg.
7 More information about certificate rotation frequencies can be found in “Encryption in Transit in Google Cloud”.
8 If a key is compromised, only the traffic for the lifetime of this keypair will be discoverable by the attacker.

https://research.google.com/pubs/pub43438.html
https://cloud.google.com/security/encryption-in-transit/

84

Figure 2 shows how the Signing service is used to create a master
certificate. The process consists of the following steps.

 1. The Certificate Issuer sends a Certificate Signing Request (CSR)
 to the Signing Service. This request asks the Signing Service to
 create a certificate for identity A. This identity, for example, can be
 a corporate user or the identity of a Google production service.

 2. The Signing Service sets the issuer of the certificate (included
 in the CSR) to the requester (the Certificate Issuer in this case)
 and signs it. Recall that the corresponding Signing Service public
 (verifying) key is installed on all Google machines.

 3. The Signing Service sends the signed certificate back.

 4. A handshake certificate is created for identity A and is signed
 by the master certificate associated private key.

As shown in the process above, with ALTS, the issuer and signer of a
certificate are two different logical entities. In this case, the issuer is
the Certificate Issuer entity while the signer is the Signing Service.

[Figure 2]

Certificate�Issuance

85

There are three common categories of certificates in ALTS, namely:
Human, Machine, and Workload. The following sections outline how
each of these certificates are created and used in ALTS.

3.1.2 Human Certificates

At Google, we use ALTS to secure RPCs issued by human users
to production services. To issue an RPC, a user must provide a
valid handshake certificate. For example, if Alice wants to use an
application to issue an ALTS-secure RPC, she can authenticate to
our internal CA. Alice authenticates to the CA using her username,
password, and two-factor authentication. This operation results in
Alice getting a handshake certificate that is valid for 20 hours.

3.1.3 Machine Certificates

Every production machine in Google’s datacenters has a machine
master certificate. This certificate is used to create handshake
certificates for core applications on that machine, e.g. machine
management daemons. The primary identity embedded in a machine
certificate refers to the typical purpose of the machine. For example,
machines used to run different kinds of production and development
workloads can have different identities. The master certificates
are only usable by machines running verified software stacks; in
some cases this trust is rooted in custom security hardware9. All
production machine master certificates are issued by the CA and
rotated every few months. Also, all handshake certificates are
rotated every few hours.

3.1.4 Workload Certificates

A key advantage of ALTS is that it operates on the idea of a workload
identity which facilitates easy service replication, load balancing, and
rescheduling across machines. In our production network, we use a
system called Borg10 for cluster management and machine resource
allocation at scale. The way that Borg issues certificates is part of
the ALTS machine-independent workload identity implementation.
The remainder of this section provides an overview of our
workload certification.

Each workload in our production network runs in a Borg cell. Each
cell contains a logically centralized controller called the Borgmaster,
and several agent processes called Borglets that run on each

9 Titan in depth: Security in plaintext.
10 Large-scale cluster management at Google with Borg.

https://cloudplatform.googleblog.com/2017/08/Titan-in-depth-security-in-plaintext.html
https://research.google.com/pubs/pub43438.html

86

machine in that cell. Workloads are initialized with associated
Workload Handshake Certificates issued by the Borgmaster. Figure 3
shows the process of workload certification in ALTS with Borg.

 1. Each Borgmaster comes pre-installed with a Machine Master
 Certificate and associated private key (not shown in the diagram).

 2. The ALTSd11 generates a Borgmaster Handshake Certificate
 and signs it using the Machine Master private key. This Handshake
 Certificate allows Borgmaster to issue ALTS-secure RPCs.

 3. The Borgmaster creates a Base Workload Master Certificate,
 and the corresponding private key. The Borgmaster initiates a
 request to get its Base Workload Master Certificate signed by the
 Signing Service. As a result, the Signing Service lists the
 Borgmaster as the issuer on this certificate.

The Borgmaster is now ready to schedule workloads that need to use
ALTS. The steps below happen when a client schedules a workload
to run on Borg as a given identity.

11 ALTSd: a daemon responsible for, amongst other ALTS operations, the creation of handshake certificates.

[Figure 3]

Handshake�Certificate�Creation�in�
the Google Production Network

87

 4. The Borgmaster verifies that the client is authorized to run
 workloads as the identity that is specified in the workload
 configuration. If so, the Borgmaster schedules the Borg workload
 on the Borglet, and issues a Workload Handshake Certificate
 and its corresponding private key. This certificate is chained from
 the Base Workload Master Certificate. The Workload Handshake
 Certificate and its private key are then securely delivered to the
 Borglet (over a mutually authenticated ALTS protected channel
 between the Borgmaster and the Borglet). The Borgmaster rotates
 its Base Workload Master Certificate and reissues Handshake
 Certificates for all running workloads approximately every two
 days. In addition, each workload running as the same user in the
 same cell receives the same resumption key and identifier (IDR)
 provisioned by the Borgmaster.

 5. When the workload needs to make an ALTS-secure RPC, it uses
 the Workload Handshake Certificate in the handshake protocol.
 IDR is also used as part of the handshake to initiate session
 resumption. For more information about session resumption in
 ALTS, see Section 4.3.

3.2 ALTS Policy Enforcement

The ALTS policy is a document that lists which issuers are authorized
to issue certain categories of certificates for which identities.
It is distributed to every machine on our production network.
For example, the ALTS policy allows the CA to issue certificate
to machines and humans. It also allows Borgmaster to issue
certificates to workloads.

We have found that policy enforcement during certificate verification,
as opposed to certificate issuance, is a more flexible approach as
it allows for different policies to be enforced on different types of
deployments. For example, we may want a policy in a test cluster to
be more permissive than one in a production cluster.

During the ALTS handshake, the certificate validation includes a
check of the ALTS policy. The policy ensures that the issuer listed in
the certificate being validated is authorized to issue that certificate.
If that is not the case, the certificate is rejected and the handshake

88

process fails. Figure 4 illustrates how the policy enforcement works
in ALTS. Following the scenario in Figure 2, assume that Mallory (a
corporate user who wants to escalate her privileges) wants to issue a
master certificate to the Network Admin, which is a powerful identity
that can reconfigure the network. It goes without saying that Mallory
is not authorized on the ALTS policy to perform this operation.

 1. Mallory issues a master certificate for Network Admin
 identity and gets it signed by the Signing Service. This is
 similar to the first three steps in Figure 2.

 2. Mallory creates and signs a handshake certificate locally
 for Network Admin, using the master private key associated
 with the created master certificate.

 3. If Mallory tries to impersonate the Network Admin identity
 by using the created handshake certificate, the ALTS policy
 enforcer, at the peer that Mallory tries to communicate with,
 will block the operation.

[Figure 4]

Certificate�Issuance�and�Usage

89

3.3 Certificate Revocation

At Google, a certificate is invalidated when it expires or it is included
in our Certificate Revocation List (CRL). This section describes the
design of Google’s internal certificate revocation mechanisms,
which, at the time of writing this paper, are still undergoing deploy-
ment testing.

All certificates issued to human corporate users have a daily
expiration timestamp which forces the users to reauthenticate daily.
Many of the certificates issued to production machines do not use
expiration timestamps. We avoid relying on timestamps to expire
production certificates as it can lead to outages caused by clock
synchronization issues. Instead, we use the CRL as our source of
truth for rotation and incident-response handling of certificates.
Figure 5 shows how the CRL operates.

[Figure 5]

Master�Certificate�Creation�
with a Revocation ID

12 In practice, the CA has access to the Signing Service private keys, making the two logical entities as a single physical one.

90

 1. When an instance of our CA is initialized12, it contacts the
 CRL Service and asks for a revocation ID range. A revocation
 ID is a 64-bit long ID with two components, an 8-bit certificate
 category (e.g. human or machine certificate), and a 56-bit
 certificate identifier. The CRL Service chooses a range of
 these IDs and returns it to the CA.

 2. When the CA receives a request for a master certificate, it
 creates the certificate and embeds a revocation ID it picks
 from the range.

 3. In parallel, the CA maps the new certificate to the
 revocation ID and sends this information to the CRL Service.

 4. The CA issues the master certificate.

Revocation IDs assigned to handshake certificates depend on how
the certificate is used. For example, handshake certificates that are
issued to human corporate users inherit the revocation ID of the
user’s master certificate. For handshake certificates that are issued to
Borg workloads, the revocation ID is assigned by the Borgmaster’s
range of revocation IDs. This ID range is assigned to the Borgmaster
by the CRL Service in a process similar to that shown in Figure 5.
Whenever a peer is involved in an ALTS handshake, it checks a local
copy of the CRL file to ensure that the remote peer certificate has not
been revoked.

The CRL Service compiles all revocation IDs into a single file that can
be pushed to all Google machines that use ALTS. While the CRL
database is several hundred megabytes, the generated CRL file is only
a few megabytes due to a variety of compression techniques.

4 . ALTS Protocols

ALTS relies on two protocols: the Handshake protocol (with session
resumption) and the Record protocol. This section provides a high
level overview of each protocol. These overviews should not be inter-
preted as detailed specifications of the protocols.

ALTS relies on two
protocols: the
Handshake protocol
(with session
resumption) and
the Record protocol .

91

4.1 Handshake Protocol

The ALTS handshake protocol is a Diffie-Hellman-based authenti-
cated key exchange protocol that supports both Perfect Forward
Secrecy (PFS) and session resumption. The ALTS infrastructure
ensures that each client and server have a certificate with their
respective identities and an Elliptic Curve Diffie-Hellman (ECDH)
key that chains to a trusted Signing Service verification key. In ALTS,
PFS is not enabled by default because these static ECDH keys are
frequently updated to renew forward secrecy even if PFS is not used
on a handshake. During a handshake, the client and server securely
negotiate a shared transit encryption key, and the Record protocol
the encryption key will be used to protect. For example, the client
and server might agree to a 128-bit key that will be used to protect
an RPC session using AES-GCM. The handshake consists of four
serialized Protocol Buffer messages, an overview of which can be
seen in Figure 6.

 1. The client initiates the handshake by sending a
 ClientInit message. This message contains the client’s
 handshake certificate, and a list of the handshake-related
 ciphers and record protocols the client supports. If the client
 is attempting to resume a terminated session, it will include a
 resumption identifier and encrypted server resumption ticket.

[Figure 6]

ALTS Handshake
Protocol Messages

92

 2. On receipt of the ClientInit message, the server
 verifies the client certificate. If valid, the server chooses a
 handshake cipher and record protocol from the list provided
 by the client. The server uses a combination of the
 information contained in the ClientInit message and its
 own local information to compute the DH exchange result.
 This result is used as an input to Key Derivation Functions13
 along with the transcript of the protocol to generate the
 following session secrets:

 • A record protocol secret key M used to encrypt and
 authenticate payload messages,

 • A resumption secret R to be used in a resumption
 ticket in future sessions,

 • An authenticator secret A.

 The server sends a ServerInit message containing its
 certificate, the chosen handshake cipher, record protocol, and
 an optional encrypted resumption ticket.

 3. The server sends a ServerFinished message contain-
 ing a handshake authenticator14. The value for this
 authenticator is calculated using a Hash- based Message
 Authentication Code (HMAC) computed over a pre-defined bit
 string and the authenticator secret A.

 4. Once the client receives ServerInit, it verifies the server
 certificate, computes the DH exchange result similar to the
 server, and derives the same M, R, and A secrets. The client
 uses the derived A to verify the authenticator value in the
 received ServerFinished message. At this point in the
 handshake process, the client can start using M to encrypt
 messages. As the client is now capable of sending
 encrypted messages, we can say that ALTS has a one RTT
 handshake protocol.

13 Specifically, HKDF-Extract and HKDF-Expand as defined in RFC-5869.
14 ALTS handshaker protocol implementation concatenates ServerInit and ServerFinished messages into a single wire payload.

93

 5. At the end of the handshake, the client sends a
 ClientFinished message with a similar authenticator
 value (see step 3) computed over different pre-defined bit
 string. If needed, the client can include an encrypted
 resumption ticket for future sessions. Once this message
 is received and verified by the server, the ALTS handshake
 protocol is concluded and the server can start using M to
 encrypt and authenticate further payload messages.

The Handshake protocol was reviewed by Thai Duong from Google’s
internal security analysis team and formally verified using the Proverif
tool15 by Bruno Blanchet with the assistance of Martin Abadi.

4.2 Record Protocol

Section 4.1 described how we use the Handshake protocol to negoti-
ate a Record protocol secret. This protocol secret is used to encrypt
and authenticate network traffic. The layer of the stack that performs
these operations is called the ALTS Record Protocol (ALTSRP).

ALTSRP contains a suite of encryption schemes with varying key
sizes and security features. During the handshake, the client sends its
list of preferred schemes, sorted by preference. The server chooses
the first protocol in the client list that matches the server’s local
configuration. This method of scheme selection allows both clients
and servers to have different encryption preferences and allows us to
phase in (or remove) encryption schemes.

4.2.1 Framing

Frames are the smallest data unit in ALTS. Depending on its size,
each ALTSRP message can consist of one or more frames. Each
frame contains the following fields:

 • Length: a 32-bit unsigned value indicating the length of the frame,
 in bytes. This 4-byte length field is not included as part of the total
 frame length.
 • Type: a 32-bit value specifying the frame type, e.g., data frame
 • Payload: the actual authenticated and optionally encrypted
 data being sent.

15 ProVerif: Cryptographic protocol verifier in the formal model.

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

94

The maximum length of a frame is 1MB plus 4 length bytes. For
current RPC protocols, we further limit the frame length as shorter
frames require less memory for buffering. Larger frames could also
be exploited by a potential attacker during a Denial of Service (DoS)
attack in an attempt to starve a server. As well as limiting the frame
length, we also restrict the number of frames that can be encrypted
using the same record protocol secret M. The limit varies depending
on the encryption scheme that is used to encrypt and decrypt the
frame payload. Once this limit is reached, the connection must
be closed.

4.2.2 Payload

In ALTS each frame contains a payload that is integrity protected and
optionally encrypted16. As of the publication of this paper, ALTS sup-
ports the following modes:

 • AES-128-GCM, AES-128-VCM: AES-GCM and AES-VCM modes,
 respectively, with 128-bit keys. These modes protect the
 confidentiality and integrity of the payload using the GCM, and
 the VCM schemes17, respectively.

 • AES-128-GMAC, AES-128-VMAC: these modes support
 integrity-only protection using GMAC and VMAC, respectively,
 for tag computation. The payload is transferred in plaintext
 with a cryptographic tag that protects its integrity.

At Google, we use different modes of protection depending on the
threat model and performance requirements. If the communicating
entities are within the same physical boundary controlled by or on
behalf of Google, integrity-only protection is used. These entities can
still choose to upgrade to authenticated encryption based on the
sensitivity of their data. If the communicating entities are in different
physical boundaries controlled by or on behalf of Google, and so the
communications pass over the Wide Area Network, we automatically
upgrade the security of the connection to authenticated encryption,
regardless of the chosen mode. Google applies different protections
to data in transit when it is transmitted outside a physical boundary
controlled by or on behalf of Google, since the same rigorous security
measures cannot be applied.

16 Payload encryption is negotiated as part of the Record protocol in the handshake.
17 The 128-bit AES-GCM scheme is based on NIST 800-38D, and AES-VCM is discussed in details in AES-VCM, An AES-GCM Construction Using an Integer-Based
Universal Hash Function.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://research.google.com/pubs/pub46483.html
https://research.google.com/pubs/pub46483.html

95

Each frame is separately integrity protected and optionally encrypted.
Both peers maintain both request and response counters, which
synchronize during normal operation. If the server receives requests
that are out of order, or repeated, cryptographic integrity verification
fails, dropping the request. Similarly, the client drops a repeated or
mis-ordered response. Furthermore, having both peers maintain the
counters (as opposed to including their values in the frame header)
saves additional bytes on the wire.

4.3 Session Resumption

ALTS allows its users to resume previous sessions without the
need to perform heavy asymmetric cryptographic operations.
Session resumption is a feature that is built into the ALTS
Handshake protocol.

The ALTS handshake allows clients and servers to securely exchange
(and cache) resumption tickets which can be used to resume future
connections18. Each cached resumption ticket is indexed by a
Resumption Identifier (IDR) that is unique to all workloads running with
the same identity and in the same datacenter cell. These tickets are
encrypted using symmetric keys associated with their corresponding
identifiers.

ALTS supports two types of session resumption:

 1. Server side session resumption: a client creates and
 encrypts a resumption ticket containing the server identity
 and the derived resumption secret R. The resumption ticket is
 sent to the server at the end of the handshake, in the
 ClientFinished message. In future sessions, the server
 can choose to resume the session by sending the ticket back
 to the client in its ServerInit message. On receipt of the
 ticket, the client can recover both the resumption secret R
 and the server’s identity. The client can use this information
 to resume the session.

 The IDR is always associated with a identity and not with
 specific connections. In ALTS, multiple clients can use the
 same identity in the same datacenter. This allows clients to

18 Session resumption involves lightweight symmetric operations only if ephemeral parameters are not involved.

The ALTS handshake
allows clients and
servers to securely
exchange
resumption tickets
which can be used
to resume future
connections .

96

 resume sessions with servers that they may not have
 communicated with before, e.g. if a load balancer sends the
 client to a different server running the same application.

 2. Client side session resumption: at the end of a handshake
 the server sends an encrypted resumption ticket to the client
 in the ServerFinished message. This ticket includes the
 resumption secret R and the client’s identity. The client can
 use this ticket to resume a connection with any server sharing
 the same IDR.

When a session is resumed, the resumption secret R is used to derive
new session secrets M’, R’ and A’. M’ is used to encrypt and authenti-
cate payload messages, A’ is used to authenticate ServerFinished
and ClientFinished messages, and R’ is encapsulated in a new
resumption ticket. Note that the same resumption secret R is never
used more than once.

5. Tradeoffs

5.1 Key Compromise Impersonation Attacks

By design, the ALTS handshake protocol is susceptible to Key
Compromise Impersonation (KCI) attacks. If an adversary compro-
mises the DH private key, or the resumption key, of a workload they
can use the key to impersonate other workloads to this workload19.

19 Key Agreement Protocols and Their Security Analysis.

https://dl.acm.org/citation.cfm?id=742138

97

This is explicitly in our resumption threat model, as we want resump-
tion tickets issued by one instance of an identity to be usable by other
instances of that identity.

There is a variant of the ALTS handshake protocol that protects
against KCI attacks, but it would only be worth using in environments
where resumption is not desired.

5.2 Privacy for Handshake Messages

ALTS is not designed to disguise which internal identities are commu-
nicating, so it does not encrypt any handshake messages to hide the
identities of the peers.

5.3 Perfect Forward Secrecy

Perfect Forward Secrecy (PFS) is supported, but not enabled by
default, in ALTS. We instead use frequent certificate rotation to
establish forward secrecy for most applications. With TLS 1.2 (and its
prior versions), session resumption is not protected with PFS. When
PFS is enabled with ALTS, PFS is also enabled for resumed sessions.

5.4 Zero-Roundtrip Resumption

TLS 1.3 provides session resumption that requires zero roundtrips
(0-RTT), however this has weaker security properties20. We decided
not to include a 0-RTT option in ALTS because RPC connections at
Google are generally long-lived. Consequently, reducing the channel
setup latency was not a good tradeoff for the additional complexity
and/or reduced security that 0-RTT handshakes require.

6. Further References

For information on how Google encrypts data in transit, see our
Encryption in Transit in Google Cloud whitepaper.

For an overview of how security is designed into Google’s
technical infrastructure, see our Google Infrastructure Security
Design Overview.

20 Replay Attacks on Zero Round-Trip Time: The Case of the TLS 1.3 Handshake Candidates.

https://cloud.google.com/security/encryption-in-transit/
https://cloud.google.com/security/security-design/
https://cloud.google.com/security/security-design/
https://eprint.iacr.org/2017/082.pdf

