
State of Kubernetes
Cost Optimization

Authored by: Billy Lamberti • Fernando Rubbo • Kent Hua • Li Pan • Melissa Kendall

June 2023

State of Kubernetes Cost Optimization 2

Executive summary	 	 3

Key Findings	 	 	 	 4

Kubernetes cost optimization golden
signals 	 	 	 	 6

Why do Elite performers establish
the practices to be followed?	 8

The At Risk segment	 	 10

Balancing reliability and cost
efficiency	 	 	 	 13

What do High and Elite performers
teach us about how to improve cost
efficiency?	 	 	 	 17

Final thoughts	 	 	 19

Acknowledgements	 	 20

Authors	 	 	 	 21

Methodology	 	 	 23

The Resources group	 	 24

Workload rightsizing	 	 	 24

Demand based downscaling	 	 25

Cluster bin packing	 	 	 25

The Discount group	 	 	 26

Other Metrics	 	 	 27

Research population	 	 27

Method	 	 	 	 27

Steps for analysis	 	 	 27

Table of contents

State of Kubernetes Cost Optimization 3

Given the economic headwinds that started with
the COVID-19 and the macroeconomic challenges
that followed (such as high inflation, supply chain
disruptions, and geopolitical tensions), IT teams
have been pursuing cloud cost optimization to
achieve better resilience and re-invest saved
resources in providing a better and more
innovative experience to their customers. While
FinOps is known to be a key practice for driving
both resiliency and cloud transformation, cost
optimization has proven to be challenging to
execute especially when cloud native platforms,
such as Kubernetes, are taken into account.

Kubernetes provides a rich feature set and
scheduling capabilities. However, optimizing the
use of Kubernetes without impacting the end
user experience and overall reliability of the
related applications requires great understanding
of the capabilities provided by the platform.

It is with great pleasure that Google presents the
State of Kubernetes Cost Optimization report.
This report is a quantitative analysis of real-world
large-scale anonymized data. It provides insights

and best practices to the community (e.g.
platform administrators, application operators,
and developers) on how to manage public cloud
Kubernetes clusters in a cost efficient manner,
without compromising the performance and
reliability of workloads. The findings of this report
are critical for organizations currently running
clusters in the public cloud and organizations
ramping up on Kubernetes, so that they can learn
while they are migrating to the cloud.

Our research focuses on examining how
capabilities and practices predict the outcome for
cost optimization performance of Kubernetes
clusters running on any cloud provider. Because
cloud cost optimization is a continuous process
that requires the engagement of different teams
across an organization, we propose that teams
should measure their performance using what we
call the golden signals: workload rightsizing,
demand based downscaling, cluster bin packing,
and discount coverage. As described in the
Methodology section, these signals are used by
this report to segment clusters into different
levels of cost optimization performance.

Executive summary

http://finops.org

State of Kubernetes Cost Optimization 4

1. Kubernetes cost optimization starts with
understanding the importance of setting
appropriate resource requests

In addition to Kubernetes using CPU and
memory requests for bin packing, scheduling,
cluster autoscaling, and horizontal workload
autoscaling, Kubernetes also uses resource
requests to classify a Pod's Quality of Service
(QoS) class. Kubernetes relies on this
classification to make decisions about which
Pods should be immediately killed when a
given node's utilization approaches its
capacity. Not setting requests indirectly
assigns the BestEffort class to Pods.
Whenever Kubernetes needs to reclaim
resources at node-pressure, without any
warning or graceful termination, BestEffort
Pods are the first to be killed, potentially
causing disruption to the overall application. A
similar problem happens with Burstable
workloads that constantly use more memory
than they have requested. Because cost
optimization is a discipline to drive cost
reduction while maximizing business value,
indiscriminately deploying these kinds of
workloads impacts the behavior of Kubernetes
bin packing, scheduling, and autoscaling
algorithms. It can also negatively affect end
user experience and, consequently, your
business.

2. Workload rightsizing is the most important
golden signal

The research has found that workload
resource requests are, on average,
substantially over-provisioned. Even Elite
performers that efficiently set memory
requests have room for improvement when it
comes to setting CPU requests. The research
also found that workload rightsizing has the
biggest opportunity to reduce resource waste.
Most importantly, cluster owners that focus on
addressing discount coverage or cluster bin
packing without addressing workload
rightsizing may find that they have to re-do
their efforts when their workloads become
properly sized. To reduce over-provisioning,
companies should first create awareness with
technical teams about the importance of
setting requests, and then focus on rightsizing
their workloads.

3. Some clusters struggle to balance
reliability and cost efficiency

There are some fairly large clusters (2.1x
bigger than Low performers) that
demonstrate, through a set of enabled
features, a bigger than average intent to
optimize costs. However, due to an
unintentional over use of both BestEffort and
memory under-provisioned Burstable Pods,
cluster nodes are often overloaded. This
situation increases the risk of intermittent and
hard to debug performance and reliability
issues that were discussed in finding #1. In our
exploratory analysis, cluster owners shared
that they either didn't know they were running
large amounts of BestEffort and memory
under-provisioned Burstable Pods, or they
didn't understand the consequences of
deploying them.

Key Findings

https://kubernetes.io/docs/concepts/workloads/pods/pod-qos/
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/

State of Kubernetes Cost Optimization 5

4. End user experience can be compromised
when cost optimization efforts don't
consider reliability

Due to how the Kubernetes scheduler works,
clusters running large quantities of BestEffort
Pods or memory under-provisioned Burstable
Pods tend to have low cluster bin packing
(slightly higher than Low performers). Platform
admins could interpret this signal as a false
opportunity for cost savings through scaling
down the cluster or rightsizing cluster nodes.
If platform admins implement these changes, it
can result in application disruption due to the
increased chances of Pods being terminated
without warning or eviction time.

5. Demand-based downscaling relies heavily
on workload autoscaling

The research has found that Elite performers
can scale down 4x more than Low performers.
This happens because Elite performers take
advantage of existing autoscaling capabilities
more than any other segment. In this context,
autoscaling capabilities refers to Cluster
Autoscaler (CA), Horizontal Pod Autoscaler
(HPA), and Vertical Pod Autoscaler (VPA). The
data shows that Elite performers enable CA
1.4x, HPA 2.3x, and VPA 18x more than Low
performers. In other words, enabling CA is not
enough to make a cluster scale down during
off-peak hours. To autoscale a cluster, it is
necessary to configure workload autoscaling
(e.g. HPA and VPA) properly. The more
workloads you manage to scale down during
off-peak hours, the more efficiently CA can
remove nodes.

6. Elite and High performers take advantage
of cloud discounts

Elite and High performers adopt cloud
discounts 16.2x and 5.5x more than Low
performers, respectively. Because these
segments run the largest clusters (6.2x and
2.3x bigger than Low performers,
respectively), they tend to have better in-
house Kubernetes expertise and dedicated
teams focusing on cost optimization activities.
This allows them to incorporate the use of
significantly discounted Spot VMs and forecast
long term commitments.

7. Chargeback can be compromised if Pods
don't set requests properly

Most Kubernetes cost allocation tooling
leverages resource requests to compute
costs. When Pods do not set requests
properly, such as when using BestEffort Pods
and under-provisioned Burstable Pods, it can
limit showback and chargeback accuracy. For
example, even in a scenario where a given
BestEffort Pod consumes a large amount of
CPU and memory from a cluster, no cost is
attributed to the Pod because it requests no
resources.

https://www.finops.org/framework/capabilities/chargeback/

State of Kubernetes Cost Optimization 6

Both the increase in container costs and the
need to reduce waste are highlighted as top
challenges in the 2023 State of FinOps report.
The Flexera’s 2023 State of Cloud Report also
noted optimizing existing use of cloud as the top
initiative for the seventh year in a row. Despite
these items being broader to many public cloud
products, they are predominant and especially
challenging to Kubernetes clusters. Kubernetes is
a complex distributed system with many features
that, when not used correctly, can lead to
increased levels of over-provisioning. To avoid
being billed for resources that you don't need,
observability is critical; you can’t manage what
you can't see. After several years of iterating over
numerous metrics and feedback through
customer engagements, Google has identified
four key signals (“the golden signals”) that help
you to measure the cost optimization
performance of your Kubernetes clusters on
public clouds.

As you can see in the image above, the golden
signals are broken into two distinct groups. The
Resources group focuses on the capacity of
using the CPU and Memory that you are paying
for, while the Cloud discounts group focuses on
the ability to take advantage of cloud provider
discounts. Although it is recommended that
companies measure some of these signals, such
as workload rightsizing and demand based
downscaling, at both the cluster and workload
levels, this research segments and compares
clusters, not workloads. Furthermore, all data in
the report is measured at the cluster level. Along
with the signals, we also highlight the role
responsibilities that are often shared between
different teams.

Kubernetes cost optimization
golden signals

Note: We use the term application developer,
or simply developer, interchangeable with any
role that is responsible for managing
Kubernetes configuration files, usually
developers, DevOps, application operators, etc.

Workload
rightsizing

Actual resources utilization
vs

Requested resources

Demand based
downscaling

Low demand
should drive

cluster down scale

Cluster bin
packing

Requested resources
vs

Allocatable resources

Discount
coverage

% covered by either Spot or
cloud provider continuous

use discounting

Resources Cloud discounts

Platform admin

Application developer Budget owner

$

https://data.finops.org/%233388
https://data.finops.org/%233388
https://info.flexera.com/CM-REPORT-State-of-the-Cloud

State of Kubernetes Cost Optimization 7

The Resources group

Workload rightsizing measures the capacity of
developers to use the CPU and memory they
have requested for their applications.

Demand based downscaling measures the
capacity of developers and platform admins to
make their cluster scale down during off-peak
hours.

Cluster bin packing measures the capacity of
developers and platform admins to fully allocate
the CPU and memory of each node through Pod
placement.

The Cloud Discounts group

Discount coverage measures the capacity of
platform admins to leverage machines that offer
significant discounts, such as Spot VMs, as well
as the capacity of budget owners to take
advantage of long-term continuous use discounts
offered by cloud providers.

State of Kubernetes Cost Optimization 8

As discussed previously, this report uses
Kubernetes cost optimization golden signals to
group clusters into different segments. Using this
segmentation we analyzed the distinguishing
features of each segment. The following table
summarizes how Medium, High, and Elite
performing cluster metrics compare to Low
performers, in number of times, for each
individual golden metric signal. For example, 2.8x
represents 2.8 times better than Low performing
clusters.

As you can see, the Elite segment performs
better on all golden signal metrics. Therefore, to
meet the demand of running cost-efficient
Kubernetes clusters without compromising the
reliability and the performance of applications,
the Elite performers establish the practices to be
followed. The main reasons are summarized as
follows.

Performers CPU Workload
rightsizing

Memory Workload
rightsizing

Demand based
downscaling

CPU Cluster bin
packing

Memory Cluster
bin packing

Discount
coverage

Medium 1.3x 1.3x 2.0x 1.6x 1.8x 1.7x

High 2.2x 2.1x 3.2x 1.9x 2.4x 5.4x

Elite 2.8x 2.7x 4.0x 2.1x 2.9x 16.2x

Why do Elite performers establish
the practices to be followed?

Elite performers take advantage of cloud
discounts 16.2x more than Low performers. They
also consistently consume the compute resources
they pay for better than the Low performers (5.1x
more for CPU and 2.7x more for memory). Because
Elite performers surpass the other segments on
both the golden signals and the adoption of cost
optimization related features (e.g. Cluster
Autoscaler, Horizontal Pod Autoscaler, cost
allocation tools, etc), we can assume their teams
have a better understanding of the Kubernetes
platform and are better prepared to forecast long
term commitments. These capabilities make it
possible for them to run considerably lower priced
workloads compared to other segments.

Elite performers take advantage of cloud
discounts 16.2x more than Low performers.

Compared to Low performers, Elite
performers consistently consume more of
the resources they pay for - 5.1x more CPU,
and 2.7x more memory.

Comparison of each segment to Low performers

State of Kubernetes Cost Optimization 9

When it comes to correctly sizing their workloads,
Elite performers achieve 2.8x better CPU and 2.7x
better memory than Low performers. These
numbers show that developers deploying to Elite
performer clusters have a better understanding
of the resources required by their applications in
each environment (eg. testing, staging, and
production environments).

For the demand based downscaling signal, Elite
performers demonstrate 4x more capacity to
scale down their clusters during off-peak hours
than Low performers. It is important to remember
that scaling down a cluster is a shared
responsibility between developers and platform
teams. If developers don't scale down their
workloads, platform teams' ability to scale down a
cluster is limited. On the other hand, if developers
manage to scale down their workloads during off-
peak hours, platform admins can fine tune Cluster
Autoscaler to satisfy demand according to
business needs.

For cluster bin packing, we have found that Elite
performers can better pack their Pods into their
cluster nodes for both CPU and memory
compared to Low performers (2.1x and 2.9x,
respectively). Cluster bin packing is another
shared responsibility between developers and
platform teams, where both should collaborate to
find the appropriate machine shape to better fit
the workloads.

In the next section we discuss the At Risk
segment, which has the highest probability
across all segments to negatively impact end user
experience. Balance reliability and cost efficiency
discusses best practices for avoiding the pitfall of
having your workloads killed without any warning
or graceful termination. What do High and Elite
performers teach us about how to improve cost
efficiency? presents best practices, and Final
thoughts presents concluding remarks.

Compared to Low performers, Elite
performers rightsize their workloads 2.8x
better on CPU, and 2.7x better on memory.

Elite performers demonstrate 4x more
capacity to scale down their clusters during
off-peak hours than Low performers.

Compared to Low performers, Elite
performers better pack their Pods into their
cluster nodes - 2.1x better on CPU and 2.9x
better on memory.

State of Kubernetes Cost Optimization 10

In addition to segmenting Elite from High,
Medium, and Low performers, we created
another segment, which we call the At Risk
segment, with clusters where the sum of actual
resource utilization is generally higher than the
sum of their workloads' requested resources. We
decided to separate these clusters into a different
segment because after several years of customer
engagements, Google has identified that the
usage pattern of these cluster's results in a
higher risk of intermittent and hard to debug
reliability issues caused by the way Kubernetes
reclaims resources at node-pressure.

In summary, whenever a cluster's node resource
utilization approaches its capacity, kubelet enters
into a "self-defense mode" by terminating Pods
immediately, meaning without any warning or
graceful termination, to reclaim the starved
resources. This situation is caused by Pods that
use more resources than they have requested,
such as BestEffort Pods and memory under-
provisioned Burstable Pods. These Pods are also

the first ones to be killed by kubelet. Even though
the default Kubernetes behavior prefers to
schedule incoming Pods on nodes with low bin
packing, the bin packing algorithm doesn't take
into account actual resource utilization, it only
considers resources requested. However, the
Kubernetes scheduler continues to schedule
incoming BestEffort and under-provisioned
Burstable Pods on a few low bin packed nodes,
causing these nodes to have higher than
requested utilization. This situation can trigger
the kubelet "self-defense mode".

To avoid negatively impacting end user
experience and to avoid spending time
debugging intermittent and hard to predict
application errors, both BestEffort Pods and
memory under-provisioned Burstable Pods must
be used with caution. Because they can be killed
by kubelet whenever a node is under pressure,
application developers and operators must fully
understand the consequences of running them.

The At Risk segment

https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

State of Kubernetes Cost Optimization 11

The research has found that the clusters in the At
Risk segment use more resources than they have
requested because they deploy significantly more
BestEffort Pods (1.6x more than Low performers
and 2.7x more than Elite performers).

Both BestEffort Pods and memory-
underprovisioned Burstable Pods remain useful
for utilizing the temporary idle capacity from a
cluster, but developers should adopt these kinds
of Pods only for best effort workloads that can
be killed at any moment, without any eviction
time.

The At Risk segment is composed of medium size
clusters (2.1x bigger than Low performers and 3x
smaller than Elite performers, in number of
nodes). These clusters demonstrate, through a
set of enabled features, bigger than the average
intent to optimize cost (3.9x more adoption of
cloud discounts, 1.5x more adoption of cost
allocation tools, and 3.1x more VPA deployments
using recommendation mode than Low
performers). Despite intent to optimize, their
chargeback or showback solutions are more likely
to attribute inaccurate costs to teams or divisions.
This happens because most Kubernetes cost
allocation tools leverage resource requests to
compute costs, and the large adoption of
BestEffort Pods causes this segment to
constantly use more CPU and memory than they
have requested. For example, the research shows
that clusters in this segment use close to 60%
more memory than they have requested. Because
most Kubernetes cost allocation tools don't
examine actual utilization, any usage that
exceeds what was requested is not accounted
from a cost perspective. For example, if a
cluster's Pods request 25 mCPU but use 75
mCPU, cost allocation tools consider the
additional 50 mCPU as unused.

At Risk segment deploys more BestEffort
Pods - 1.6x more than Low performers,
and 2.7x more than Elite performers.

Both BestEffort Pods and memory-
underprovisioned Burstable Pods remain
useful for utilizing the temporary idle
capacity from a cluster, but developers
should adopt these kinds of Pods only for
best effort workloads that can be killed
at any moment, without any eviction
time.

State of Kubernetes Cost Optimization 12

We also found that the At Risk segment has
relatively low cluster bin packing (1.3x worse CPU
bin packing and 1.7x worse memory bin packing
than Medium performers). Some platform teams
may view this as a false opportunity for cost
optimizing their clusters. If cluster operators act
on this false optimization opportunity, they can
cause disruption due to the increased chance of
BestEffort Pods and memory under-provisioned
Burstable Pods being terminated without any
warning or eviction time.

Based on low cluster bin packing and minimal
adoption, between all segments, of cost
optimization features (1.3x smaller adoption of
Cluster Autoscaler, 2.2x less fine tuning of Cluster
Autoscaler downscaling, and 1.7x smaller
adoption of HPA than Low performers), we
believe that the At Risk segment is attempting to
mitigate reliability issues discussed in this section
by keeping clusters artificially over-provisioned.

The next section discusses strategies and best
practices you can follow to avoid the pitfalls faced
by clusters in the At Risk segment.

At Risk segment adopts 1.3x less Cluster
Autoscaler than Low performers.

At Risk segment fine tune 2.2x less Cluster
Autoscaler than Low performers.

At Risk segment adopts 1.7x less
Horizontal Pod Autoscaler than Low
performers.

State of Kubernetes Cost Optimization 13

Burstable

apiVersion: v1
…
spec:
 containers:
 - name: qos-example
 image: nginx
 resources:
 requests:
 cpu: 500m
 memory: 100Mi
 limits:
 cpu: 1
 memory: 200Mi

Pod can be killed and
marked as Fail while
using more memory
than requested

As discussed previously, beyond making it harder to horizontally scale your applications and
impacting cost attribution solutions, Kubernetes bin packing, scheduling, and cluster
autoscaler algorithms, the unintentional over use of BestEffort Pods and memory under-
provisioned Burstable Pods can also negatively affect the end user experience. Although the
At Risk segment has a higher risk of facing such problems, the research has found that all
segments have the opportunity to reduce the use of BestEffort Pods and memory under-
provisioned Burstable Pods, and consequently reduce, or even eliminate, debugging
intermittent errors caused by kubelet killing Pods without warning.

To accomplish this task, companies must invest in providing technical teams with training,
visibility, and guardrails.

For training, companies should ensure developers and operators understand the Kubernetes
Quality of Service (QoS) model and how their configuration choices can impact the reliability
of their applications when cluster nodes are under resource pressure:

● BestEffort Pods are Pods that don't have any requests and limits set for their containers.
Kubernetes kills these Pods first when a node is running out of memory. As the name
suggests, these Pods are meant exclusively for running best effort workloads. In other
words, it is not a problem if the workload doesn't run right away, if it takes longer to finish,
or if it is inadvertently restarted or killed.

Balancing reliability and
cost efficiency

BestEffort

apiVersion: v1
…
spec:
 containers:
 - name: qos-example
 image: nginx

Guaranteed

apiVersion: v1
…
spec:
 containers:
 - name: qos-example
 image: nginx
 resources:
 requests:
 cpu: 3
 memory: 200Mi
 limits:
 cpu: 3
 memory: 200Mi

Pod can be killed and
marked as Fail at any
time

As the name says, Pod
is guaranteed to run! !

https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/

State of Kubernetes Cost Optimization 14

Best practice for Burstable workloads

Burstable

apiVersion: v1
…
spec:
 containers:
 - name: qos-example
 image: nginx
 resources:
 requests:
 cpu: 500m
 memory: 100Mi
 limits:
 cpu: 1
 memory: 200Mi

Burstable

apiVersion: v1
…
spec:
 containers:
 - name: qos-example
 image: nginx
 resources:
 requests:
 cpu: 500m
 memory: 200Mi
 limits:
 cpu: 1
 memory: 200Mi

Pod can be killed and marked
as Fail while using more
memory than requested

● Burstable Pods are Pods with containers that have resource requests with upper, or
unbounded (not set), limits. Pods using more memory than they have requested while
the node is under resource pressure can also be killed because the Pod's memory can't
be compressed. Burstable Pods are not meant to be constantly running above what was
requested. Instead, they are meant for workloads that occasionally require additional
resources, such as speeding up the Pod's startup time or bursting while HPA is creating
a new replica.

● Guaranteed Pods are Pods where containers have either an equal amount of request
and limit resources or set limits only (Kubernetes automatically copies limits to
requests). These Pods are meant for running workloads with strict resource needs. As
they cannot burst, these Pods have higher priority and are guaranteed to not be killed
before BestEffort and Burstable Pods.

Because deploying BestEffort Pods and memory under-provisioned Burstable Pods can
cause disruption to workloads, we recommend the following best practices:

● Avoid using BestEffort Pods for workloads that require a minimum level of reliability.

● Set memory requests equal to memory limits for all containers in all Burstable Pods. You
can set upper limits for CPU because Kubernetes can throttle CPU requests whenever
needed, though this can impact application performance. Setting upper limits for CPU
allows your applications to use idle CPU from nodes without worrying about abrupt
workload termination.

! Pod can have CPU throttled
to request

State of Kubernetes Cost Optimization 15

For visibility, both DevOps and platform admins should provide application owners with
rightsizing recommendations, while highlighting and tracking the use of workloads that are at
reliability risk, such as all BestEffort Pods and memory under-provisioned Burstable Pods. It is
important to adopt dashboards, warnings, alerts, and actionable strategies such as
automatic issue ticketing or automatic pull requests with actual recommendations. These
strategies are even more effective when they are integrated into the developers workstreams,
such as into developer IDEs, developer portals, CI/CD pipelines, etc. Such alternatives have
been shown to be useful, not only for improving reliability of the overall applications, but also
for building a more cost conscious culture.

For guardrails, both DevOps and platform teams can build solutions that enforce the best
practices discussed in this section. Enforcement can be done using standard Kubernetes
constructs, such as validation and mutation webhooks, or by using policy controller
frameworks, such as Open Policy Agent (OPA) Gatekeeper. It is also important to have an in-
place break glass process to allow teams that understand Kubernetes QoS and its
consequences to take advantage of idle cluster resources. For example, when a developer
creates a merge request without setting resources, a validation pipeline could either demand
a specialized peer review or annotate the merge request with a warning. If the code is
merged into the main branch and run in production, the team could enforce an annotation
that states the team understands the consequences and they want to bypass organization
policy validations.

In the situation where a team has prepared workloads for abrupt termination and they fully
understand the consequences of running BestEffort Pods, there is an opportunity to utilize
their idle cluster resources and increase savings by running best effort workloads on Spot
VMs. Spot VMs are often offered at a discounted price in exchange for cloud providers being
allowed to terminate and reclaim resources on short notice. Platform teams can implement
this strategy using a mutation webhook to append a node affinity preference to Spot VMs on
all Pods not setting requests. This leaves room on standard nodes for workloads that require
greater reliability. Once this strategy is incorporated into an organization's policy or
automation pipeline, if no Spot VMs are provisioned, standard VMs are used.

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://github.com/open-policy-agent/gatekeeper
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/%23node-affinity

State of Kubernetes Cost Optimization 16

If the platform team doesn't want to allow best practices to be bypassed, the
recommendation is to validate and reject non-compliant workloads. If that is not a possibility,
for workloads that are tolerant to graceful restarts, an alternative is to either recommend or
enforce the adoption of Vertical Pod Autoscaler using the Auto mode.

Finally, as shown below, you can also set defaults for container resources using the
Kubernetes LimitRange API. Because defaults can result in your workload becoming either
under- or over-provisioned, this should not replace the recommendation of adopting VPA for
rightsizing Pods. The benefit of using defaults for resources is that resources can be applied
when the workload is first deployed, while VPA is still in LowConfidence mode. In this mode,
VPA does not update Pod resources due to not having enough data to make a confident
decision.

apiVersion: v1
kind: LimitRange
metadata:
 name: my-container-resources-defaults
 namespace: my-namespace
spec:
 limits:
 - default: # defines default resources for limits
 memory: 500Mi
 defaultRequest: # defines default resources for requests
 cpu: 250m
 memory: 500Mi
 type: Container

Note: When this report was written, VPA required Pods to be restarted to update Pod's
resources. However, the KEP #1287: In-Place Update of Pod Resources became an alpha
feature in Kubernetes 1.27. This feature will allow future versions of VPA to, in the majority
of the cases, update resource values without restarting a Pod.

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#quick-start
https://kubernetes.io/docs/concepts/policy/limit-range/
https://github.com/kubernetes/autoscaler/blob/vertical-pod-autoscaler-0.13.0/vertical-pod-autoscaler/pkg/apis/autoscaling.k8s.io/v1/types.go#L280
https://github.com/kubernetes/enhancements/issues/1287

State of Kubernetes Cost Optimization 17

Cluster owners that adopt a continuous practice
to measure and improve Kubernetes cost
optimization golden signals can earn significant
cost savings by running lower priced workloads in
the public cloud. Therefore, to meet the demand
of cost-efficient Kubernetes clusters without
compromising reliability and performance, it is
important to understand and follow the practices
of High and Elite performers.

Our research shows that both High and Elite
performers run the largest clusters across all
segments (High performers run clusters 2.3x
larger and Elite performers run clusters 6.2x
larger, in number of nodes, than Low performers).
Larger clusters allow resources to be better
utilized. For example, while a few workloads are
idle, other workloads can be bursting. Large
clusters also tend to be multi-tenant clusters. The
higher the number of tenants, the more
operational challenges need to be managed.
Such a pattern demands specialized platform
teams that need to put in place company cost
optimization policies, best practices, and
guardrails.

The platform teams from High and Elite
performers also tend to enable more cluster level
cost optimization features than Low performers,
such as Cluster Autoscaling (1.3x and 1.4x,
respectively) and cost allocation tooling (3x and
4.6x, respectively). While Cluster Autoscaler
allows clusters to automatically add and remove
nodes as needed, cost allocation tools enable
companies to implement showback or

chargeback processes to allocate or even bill the
costs associated with each department's or
division's usage from multi-tenant Kubernetes
clusters.

However, to enable clusters to scale down during
off-peak hours as much as High and Elite
performers do (3.2x and 4x more than Low
performers, respectively), it is also necessary to
scale workloads according to demand. The
research shows that High and Elite performers
use two main approaches. Firstly, the adoption of
workload autoscaling APIs (e.g. HPA and VPA in
Auto/Init mode), in which High and Elite
performers demonstrate 1.5x and 2.3x higher
adoption than Low performers, respectively.
Secondly, High and Elite clusters run 3.6x and 4x
more jobs to completion than Low performers,
respectively. Unfortunately, it was not possible to
measure which strategy has the biggest impact,
as the segments contain clusters that use a
variety of such approaches.

The research has also found that the adoption of
workload autoscaling and jobs to completion is
much more important for downscaling a cluster
than optimizing Cluster Autoscaler for a faster
and more aggressive scale down. In other words,
if developers don't properly configure their
workloads to scale according to demand, platform
teams are limited in their ability to scale down
their cluster. The research has also found that all
segments, including Elite performers, could
improve demand based autoscaling efficiency by
increasing the adoption of HPA and VPA.

What do High and Elite
performers teach us about how
to improve cost efficiency?

https://www.finops.org/framework/capabilities/chargeback/
https://kubernetes.io/docs/concepts/security/multi-tenancy/
https://www.finops.org/framework/capabilities/chargeback/

State of Kubernetes Cost Optimization 18

High and Elite segments also demonstrate better
adherence to workload best practices. For
example, developers from High and Elite
performers rightsize their workloads up to 2.2x
and 2.8x better than Low performers, and deploy
50% and 70% less BestEffort Pods than clusters
in the At Risk segment, respectively. These
excellent results reflect developers' better
knowledge of their applications and demonstrate
the value of High and Elite segments specialized
platform teams that can build tools and custom
solutions. As a result, the High and Elite segments
can continuously enforce policies, provide golden
paths, optimize rightsizing (e.g. VPA at
recommendation mode deployed 12x and 16.1x
more by these segments, respectively, than Low
performers) and provide best practices
recommendations to developer teams.

Lastly, despite the challenges of building and
operating data-centric applications on
Kubernetes, the community has seen a rapid
increase in deployments of databases and other
stateful workloads. High and Elite performers,
who run 1.8x and 2x more StatefulSets than Low
performers, are the main drivers of this increase.

The Data on Kubernetes 2022 research
shows the benefits of running data-centric
applications include:

● ease of scalability

● ability to standardize management of
workloads

● consistent environments from
development to production

● ease of maintenance

● improved security

● improved use of resources

● co-location of latency sensitive
workloads

● ease of deployment

https://dok.community/wp-content/uploads/2022/10/DoK_Report_2022.pdf
https://dok.community/wp-content/uploads/2022/10/DoK_Report_2022.pdf

State of Kubernetes Cost Optimization 19

As discussed throughout this report, many
Kubernetes features and external tools rely on
Pods setting resource requests properly so that
organizations can achieve the best reliability,
performance, and cost efficiency from the
platform. The unintentional over use of Pods that
don't set requests or constantly utilize more
memory than requested can cause unexpected
behavior in clusters and applications, including
negatively impacting end user experience. Even
though the At Risk segment faces these issues at
higher frequency, the research has found that
there are opportunities for all segments, including
Elite performers, to improve both reliability and
cost efficiency.

It is important to highlight that addressing the
opportunities presented by the Kubernetes cost
optimization signals should be continuously
prioritized. Moreover, both cluster and application
owners should prioritize correctly sizing
applications and ensuring applications can
automatically scale based on demand, instead of
primarily focusing on cluster bin packing and
seeking additional discount coverage. This is
because significant changes in workload
rightsizing and autoscaling may result in re-work
required for bin packing and long-term discount
strategies.

Even though this research did not analyze
clusters across segments within a company,
Google has identified a pattern through cost
optimization engagements with customers, where
larger multi-tenant clusters tend to gather the
majority of organizational Kubernetes expertise.
This has resulted in many long tail clusters being
managed by teams whose main goal is to deliver
a service, not manage a platform. This pattern

can also be seen in this report where the largest
clusters, while being the hardest to operate, have
demonstrated the best cost optimization
performance. To overcome the long tail
challenges, organizations should invest in
defining and enforcing company-wide policies,
patterns, and golden pre-approved paths, as well
as finding the right balance between control,
extensibility, and flexibility.

Finally, platform teams should be aware that
measuring cluster bin packing alone doesn't tell
the entire story. Looking at the At Risk segment,
we can see low values for cluster bin packing and
high values (sometimes above 100%) for
workload rightsizing. This is a reflection of the
over use of BestEffort Pods and under-
provisioned Burstable Pods, in which the Pods
use more cluster resources than they have
requested, consequently skewing both signals. If
platform teams decide to save money by packing
better clusters in such a situation, the risk of
running into reliability issues increases
accordingly.

Final thoughts

State of Kubernetes Cost Optimization 20

Acknowledgements
A large family of passionate contributors made this research possible. Data gathering, data
engineering, analysis, writing, editing, and report design are just a few of the ways that our
colleagues helped to realize this large effort. The authors would like to thank all of these
people for their input and guidance on the report this year. All acknowledgements are listed
alphabetically.

Abby Holly

Ameenah Burhan

Andre Ellis

Anthony Bushong

Bobby Allen

Dave Bartoletti

Drew Bradstock

Eric Lam

Erwan Menard

Frank Lamar

Geoffrey Anderson

Harish Jayakumar

Iain Foulds

Jerzy Foryciarz

Michael Chen

Pathik Sharma

Piotr Koziorowski

Praveen Rajasekar

Rahul Khandkar

Richard Seroter

Roman Arcea

Slav Tringov

Thorgane Marques

Yana Lubell

State of Kubernetes Cost Optimization 21

Authors
Billy is a Data Scientist for the Cloud Product
Analytics Team at Google. He works on projects
related to identifying opportunities to make
products at Google Cloud more efficient and
effective. Before his time at Google, he worked on
projects related to satellite imagery, medical and
health sciences, image shape analysis, and
explainable artificial intelligence. He received his
PhD in Computational Sciences and Informatics
with a specialization in Data Science.

Fernando Rubbo is a Cloud Solutions Architect at
Google, where he builds global solutions and
advises customers on best practices for
modernizing and optimizing applications running on
Google Cloud. Throughout his career, he has worn
many hats, including customer solutions engineer,
team lead, product manager, software and platform
architect, software and platform consultant, and
software developer. Fernando also holds a MS in
Computer Science from UFRGS University.

Kent Hua is a Global Solution Manager at Google
Cloud, advocating solutions that help organizations
modernize applications and accelerate their
adoption of cloud technologies on Google Cloud.
He is a co-author of Cloud Native Automation with
Google Cloud Build, a book to help individuals and
organizations automate software delivery. His focus
on customer success is paramount in his current
and previous roles as an enterprise architect, pre-
sales engineer and consultant.

Billy Lamberti

Fernando Rubbo

Kent Hua

State of Kubernetes Cost Optimization 22

Li Pan is an Operations and Infrastructure Data
scientist at Google Cloud, where she leads a team
to optimize GCE efficiency, focusing on intelligence
to allocate virtual machines into optimal locations,
and strategies for new products or new features to
existing products to consume unsold capacity.
Before Google, she worked in other tech
companies as a data scientist. She received her
Ph.D. in Mathematics from the University of
California, San Diego in 2013.

Melissa Kendall is a technical writer at Google
where she focuses on GKE networking, cost
optimization, and observability. Outside Google,
she is a creative writer, public speaker, and lover of
all things Halloween.

Li Pan

Melissa Kendall

State of Kubernetes Cost Optimization 23

Methodology
The State of Kubernetes Cost Optimization report groups anonymized GKE clusters into 5
segments (i.e. At Risk, Low, Medium, High, Elite) based on Kubernetes cost optimization
golden signals. Due to possible privacy concerns, the original dataset and the actual metrics
values are not shared. Instead, the report provides the comparison ratio between different
segments. For instance, the relative magnitude of Elite performers compared to Low
performers in a given metric. For example, if the Elite and Low performers have 45 and 10 for
a given metric, respectively, the corresponding ratio would be 4.5. This ratio means that the
typical Elite performers are 4.5 times better than the typical Low performers for a given
metric.

Each observation represents an anonymized GKE cluster on a given day. Therefore, each
unique anonymous GKE cluster can appear more than once. Our notation is as follows:

● Let there be total unique clusters.

● For a given cluster, k, the number of times the cluster occurs (or the number of days
the cluster is "alive") is .

● This leads us to, and where is the cardinality
operator.

The cardinality operator counts the number of observations that belong to a set. For
example, if the number of alive days with a particular cluster from 01/01/2023 to 01/31/2022
was 10, then the cardinality would be 10.

There can be many nodes within a cluster. In this report, we only measured the user nodes,
excluding control plane nodes, as described in the following sections.

https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture#control_plane

State of Kubernetes Cost Optimization 24

The Resources group
We assume that some clusters are well utilized, and others that are not. The following three
metrics capture such behavior:

● Workload rightsizing

● Demand based downscaling

● Cluster bin packing

Workload rightsizing
The CPU and RAM workload rightsizing is defined for the cluster as, respectively:

In the previous equations:

● The Average Recommended CPU/RAM is the mean of Vertical Pod Autoscaler (VPA)
Recommendations over the daily average.

○ Google computes VPA recommendations at scale for every single workload running in
any GKE cluster. Instead of using actual Pod utilization, we have chosen to use Pod's
VPA recommendations, which is more constant and slightly higher than actual Pod
utilization.

● and have a support (or a range of possible values) of . However, they are
usually between [0,1). There are cases where a user doesn’t set a requested CPU or RAM
amount for some containers, which may result in a workload rightsizing at the cluster level
being greater than 1.

State of Kubernetes Cost Optimization 25

Demand based downscaling
Demand based downscaling is defined for the cluster as

Cluster bin packing
CPU and RAM bin packing is defined for the cluster as, respectively,

Note that both “Average Request” and "Average Allocatable" is the daily average. This
value has a support of [0,1]. A value close to 0 corresponds to a cluster in which
workloads are not requesting the allocated CPUs or RAM, while a value close to 1
corresponds to a cluster in which workloads are requesting all the allocated CPUs or
RAM. We would expect clusters with a "high" bin packing to have values closer to 1.

This value has a support of [0,1]. A value close to 1 corresponds to a cluster that is using all of
its nodes. A value close to 0 corresponds to a cluster that is not using all of its nodes. We
would expect clusters with a "high" capacity of downscaling would have values closer to 1.

State of Kubernetes Cost Optimization 26

The Discount group
In the discount group, we only have one metric: discount coverage. This metric defines the
percentage of cluster core hours which are covered by cloud discounts (or percentage
discounted as a shorthand), is defined for the cluster as

Percentage discounted has a support of [0,1]. A value close to 0 or 1 indicates that the cluster
is not or is utilizing discounted nodes, respectively. We would expect clusters with a "high"
cloud discount to have values closer to 1.

Spot VMs are often offered at a high discounted price in exchange for cloud providers being
allowed to terminate and reclaim resources on short notice (Source, Source 2). Thus,
customers should take a balanced approach of using Spot VMs for non-critical workloads
that can tolerate disruption.

Continuous use discounts (CUD) correspond to those renewed contracts at a larger discount.
CUD are ideal for predictable and steady state usage (Source).

Thus, corresponds to the proportion of core hours utilizing Spot or CUD discounts. While
Spot and CUD differ in their nature, they are part of all major public cloud providers offered
as discount options.

https://cloud.google.com/compute/docs/instances/spot
https://spot.io/resources/aws-ec2-pricing/what-are-ec2-spot-instances/
https://cloud.google.com/compute/docs/instances/signing-up-committed-use-discounts

State of Kubernetes Cost Optimization 27

Other Metrics
Other metrics are provided in this report to
describe the segments. However, none were used
in the creation of the segments. Thus, they are
not expanded in great detail.

Research population
To run this research we analyzed all GKE clusters
in an anonymized form, except for those with 3 or
less nodes. We chose to exclude these clusters
as likely testing clusters or clusters with low
usage. We chose to make this exclusion because
the default GKE cluster creation includes 3
nodes. Data was used from multiple separate
months. This was done to confirm that the values
were similar across the different months to avoid
a seasonality effect. The final reported values
utilized throughout the document are from
January 2023.

Method
For this research we have used a classification
tree technique. Tree models segment the feature
space into partitions using rules. If the problem
has a continuous outcome, a regression tree is
used where the predicted value is the mean value
of a given segment. If the output is a series of
classes, then a classification tree is used where
the prediction is a particular class. For more
information about trees, see An Introduction to
Statistical Learning with Applications in R.

For this report, we constructed our classes and
formulated a classification tree setup. We were
able to formulate the problem as a classification
tree by using handmade and data driven classes
because we have domain expertise. Generally
speaking, those observations with many metrics
closer to one are considered “Elite Performers”
clusters and those with many metrics closer to 0

are considered “Low Performer” clusters. Thus,
we made the naive assumption that each metric
contributes equally to the consideration of which
group it belongs to while also using quantiles to
determine the exact cutoff values for each metric.

This process resulted in 5 segments: Low,
Medium, High, Elite, and At Risk. The “Low” to
“Elite” segments are cohorts who range in their
ability to be computationally efficient. For
example, the “Elite” segment are able to use their
resources in an exceptional manner. As another
example, the “Medium” segment might excel in
one area, but struggle in another. “At Risk”
clusters have the sum of their actual resources
utilization is more often than not above the sum
of their workloads' resources requested

Steps for analysis
The high-level steps for performing this analysis
were as follows:

1. Collect the data.

2. Build the class labels.

a. Determine the inputs.

b. Determine the number of classes.

3. Build the classification tree.

4. Summarize the segments based on the
predictions from the tree.

This process was repeated for each month of
interest. For example, these 4 steps were
performed for November independent of the 4
steps performed for February.

https://hastie.su.domains/ISLR2/ISLRv2_website.pdf
https://hastie.su.domains/ISLR2/ISLRv2_website.pdf
https://hastie.su.domains/ISLR2/ISLRv2_website.pdf

	Table of contents
	Executive summary
	Key Findings

	Kubernetes cost optimization golden signals
	Why do Elite performers establish the practices to be followed?
	The At Risk segment
	Balancing reliability and cost efficiency
	What do High and Elite performers teach us about how to improve cost efficiency?
	Final thoughts
	Acknowledgements
	Authors
	Methodology
	The Resources group
	Workload rightsizing
	Demand based downscaling
	Cluster bin packing
	The Discount group
	Other Metrics
	Research population
	Method
	Steps for analysis

