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Given the economic headwinds that started with 
the COVID-19 and the macroeconomic challenges 
that followed (such as high inflation, supply chain 
disruptions, and geopolitical tensions), IT teams 
have been pursuing cloud cost optimization to 
achieve better resilience and re-invest saved 
resources in providing a better and more 
innovative experience to their customers. While 
FinOps is known to be a key practice for driving 
both resiliency and cloud transformation, cost 
optimization has proven to be challenging to 
execute especially when cloud native platforms, 
such as Kubernetes, are taken into account. 

Kubernetes provides a rich feature set and 
scheduling capabilities. However, optimizing the 
use of Kubernetes without impacting the end 
user experience and overall reliability of the 
related applications requires great understanding 
of the capabilities provided by the platform. 

It is with great pleasure that Google presents the 
State of Kubernetes Cost Optimization report. 
This report is a quantitative analysis of real-world 
large-scale anonymized data. It provides insights 

and best practices to the community (e.g. 
platform administrators, application operators, 
and developers) on how to manage public cloud 
Kubernetes clusters in a cost efficient manner, 
without compromising the performance and 
reliability of workloads. The findings of this report 
are critical for organizations currently running 
clusters in the public cloud and organizations 
ramping up on Kubernetes, so that they can learn 
while they are migrating to the cloud. 

Our research focuses on examining how 
capabilities and practices predict the outcome for 
cost optimization performance of Kubernetes 
clusters running on any cloud provider. Because 
cloud cost optimization is a continuous process 
that requires the engagement of different teams 
across an organization, we propose that teams 
should measure their performance using what we 
call the golden signals: workload rightsizing, 
demand based downscaling, cluster bin packing, 
and discount coverage. As described in the 
Methodology section, these signals are used by 
this report to segment clusters into different 
levels of cost optimization performance.

Executive summary

http://finops.org
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1. Kubernetes cost optimization starts with 
understanding the importance of setting 
appropriate resource requests 

In addition to Kubernetes using CPU and 
memory requests for bin packing, scheduling, 
cluster autoscaling, and horizontal workload 
autoscaling, Kubernetes also uses resource 
requests to classify a Pod's Quality of Service 
(QoS) class. Kubernetes relies on this 
classification to make decisions about which 
Pods should be immediately killed when a 
given node's utilization approaches its 
capacity. Not setting requests indirectly 
assigns the BestEffort class to Pods. 
Whenever Kubernetes needs to reclaim 
resources at node-pressure, without any 
warning or graceful termination, BestEffort 
Pods are the first to be killed, potentially 
causing disruption to the overall application. A 
similar problem happens with Burstable 
workloads that constantly use more memory 
than they have requested. Because cost 
optimization is a discipline to drive cost 
reduction while maximizing business value, 
indiscriminately deploying these kinds of 
workloads impacts the behavior of Kubernetes 
bin packing, scheduling, and autoscaling 
algorithms. It can also negatively affect end 
user experience and, consequently, your 
business.  

2. Workload rightsizing is the most important 
golden signal 

The research has found that workload 
resource requests are, on average, 
substantially over-provisioned. Even Elite 
performers that efficiently set memory 
requests have room for improvement when it 
comes to setting CPU requests. The research 
also found that workload rightsizing has the 
biggest opportunity to reduce resource waste. 
Most importantly, cluster owners that focus on 
addressing discount coverage or cluster bin 
packing without addressing workload 
rightsizing may find that they have to re-do 
their efforts when their workloads become 
properly sized. To reduce over-provisioning, 
companies should first create awareness with 
technical teams about the importance of 
setting requests, and then focus on rightsizing 
their workloads. 

3. Some clusters struggle to balance 
reliability and cost efficiency 

There are some fairly large clusters (2.1x 
bigger than Low performers) that 
demonstrate, through a set of enabled 
features, a bigger than average intent to 
optimize costs. However, due to an 
unintentional over use of both BestEffort and 
memory under-provisioned Burstable Pods, 
cluster nodes are often overloaded. This 
situation increases the risk of intermittent and 
hard to debug performance and reliability 
issues that were discussed in finding #1. In our 
exploratory analysis, cluster owners shared 
that they either didn't know they were running 
large amounts of BestEffort and memory 
under-provisioned Burstable Pods, or they 
didn't understand the consequences of 
deploying them.  

Key Findings

https://kubernetes.io/docs/concepts/workloads/pods/pod-qos/
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/
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4. End user experience can be compromised 
when cost optimization efforts don't 
consider reliability 

Due to how the Kubernetes scheduler works, 
clusters running large quantities of BestEffort 
Pods or memory under-provisioned Burstable 
Pods tend to have low cluster bin packing 
(slightly higher than Low performers). Platform 
admins could interpret this signal as a false 
opportunity for cost savings through scaling 
down the cluster or rightsizing cluster nodes. 
If platform admins implement these changes, it 
can result in application disruption due to the 
increased chances of Pods being terminated 
without warning or eviction time. 

5. Demand-based downscaling relies heavily 
on workload autoscaling 

The research has found that Elite performers 
can scale down 4x more than Low performers. 
This happens because Elite performers take 
advantage of existing autoscaling capabilities 
more than any other segment. In this context, 
autoscaling  capabilities refers to Cluster 
Autoscaler (CA), Horizontal Pod Autoscaler 
(HPA), and Vertical Pod Autoscaler (VPA). The 
data shows that Elite performers enable CA 
1.4x, HPA 2.3x, and VPA 18x more than Low 
performers. In other words, enabling CA is not 
enough to make a cluster scale down during 
off-peak hours. To autoscale a cluster, it is 
necessary to configure workload autoscaling 
(e.g. HPA and VPA) properly. The more 
workloads you manage to scale down during 
off-peak hours, the more efficiently CA can 
remove nodes. 

6. Elite and High performers take advantage 
of cloud discounts 

Elite and High performers adopt cloud 
discounts 16.2x and 5.5x more than Low 
performers, respectively. Because these 
segments run the largest clusters (6.2x and 
2.3x bigger than Low performers, 
respectively), they tend to have better in-
house Kubernetes expertise and dedicated 
teams focusing on cost optimization activities. 
This allows them to incorporate the use of 
significantly discounted Spot VMs and forecast 
long term commitments. 

7. Chargeback can be compromised if Pods 
don't set requests properly 

Most Kubernetes cost allocation tooling 
leverages resource requests to compute 
costs. When Pods do not set requests 
properly, such as when using BestEffort Pods 
and under-provisioned Burstable Pods, it can 
limit showback and chargeback accuracy. For 
example, even in a scenario where a given 
BestEffort Pod consumes a large amount of 
CPU and memory from a cluster, no cost is 
attributed to the Pod because it requests no 
resources. 

https://www.finops.org/framework/capabilities/chargeback/
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Both the increase in container costs and the 
need to reduce waste are highlighted as top 
challenges in the 2023 State of FinOps report. 
The Flexera’s 2023 State of Cloud Report also 
noted optimizing existing use of cloud as the top 
initiative for the seventh year in a row. Despite 
these items being broader to many public cloud 
products, they are predominant and especially 
challenging to Kubernetes clusters. Kubernetes is 
a complex distributed system with many features 
that, when not used correctly, can lead to 
increased levels of over-provisioning. To avoid 
being billed for resources that you don't need, 
observability is critical; you can’t manage what 
you can't see. After several years of iterating over 
numerous metrics and feedback through 
customer engagements, Google has identified 
four key signals (“the golden signals”) that help 
you to measure the cost optimization 
performance of your Kubernetes clusters on 
public clouds. 

As you can see in the image above, the golden 
signals are broken into two distinct groups. The 
Resources group focuses on the capacity of 
using the CPU and Memory that you are paying 
for, while the Cloud discounts group focuses on 
the ability to take advantage of cloud provider 
discounts. Although it is recommended that 
companies measure some of these signals, such 
as workload rightsizing and demand based 
downscaling, at both the cluster and workload 
levels, this research segments and compares 
clusters, not workloads. Furthermore, all data in 
the report is measured at the cluster level. Along 
with the signals, we also highlight the role 
responsibilities that are often shared between 
different teams.  

Kubernetes cost optimization 
golden signals

Note: We use the term application developer, 
or simply developer, interchangeable with any 
role that is responsible for managing 
Kubernetes configuration files, usually 
developers, DevOps, application operators, etc.

Workload 
rightsizing

Actual resources utilization 
vs  

Requested resources

Demand based 
downscaling

Low demand 
should drive 

cluster down scale

Cluster bin 
packing

Requested resources 
vs  

Allocatable resources

Discount 
coverage

% covered by either Spot or  
cloud provider continuous 

use discounting

Resources Cloud discounts

Platform admin

Application developer Budget owner

$

https://data.finops.org/%233388
https://data.finops.org/%233388
https://info.flexera.com/CM-REPORT-State-of-the-Cloud
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The Resources group 

Workload rightsizing measures the capacity of 
developers to use the CPU and memory they 
have requested for their applications. 

Demand based downscaling measures the 
capacity of developers and platform admins to 
make their cluster scale down during off-peak 
hours. 

Cluster bin packing measures the capacity of 
developers and platform admins to fully allocate 
the CPU and memory of each node through Pod 
placement. 

The Cloud Discounts group 

Discount coverage measures the capacity of 
platform admins to leverage machines that offer 
significant discounts, such as Spot VMs, as well 
as the capacity of budget owners to take 
advantage of long-term continuous use discounts 
offered by cloud providers. 
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As discussed previously, this report uses 
Kubernetes cost optimization golden signals to 
group clusters into different segments. Using this 
segmentation we analyzed the distinguishing 
features of each segment. The following table 
summarizes how Medium, High, and Elite 
performing cluster metrics compare to Low 
performers, in number of times, for each 
individual golden metric signal. For example, 2.8x 
represents 2.8 times better than Low performing 
clusters.  

As you can see, the Elite segment performs 
better on all golden signal metrics. Therefore, to 
meet the demand of running cost-efficient 
Kubernetes clusters without compromising the 
reliability and the performance of applications, 
the Elite performers establish the practices to be 
followed. The main reasons are summarized as 
follows.

Performers CPU Workload 
rightsizing

Memory Workload 
rightsizing

Demand based 
downscaling

CPU Cluster bin 
packing

Memory Cluster 
bin packing

Discount 
coverage

Medium 1.3x 1.3x 2.0x 1.6x 1.8x 1.7x

High 2.2x 2.1x 3.2x 1.9x 2.4x 5.4x

Elite 2.8x 2.7x 4.0x 2.1x 2.9x 16.2x

Why do Elite performers establish 
the practices to be followed?

Elite performers take advantage of cloud 
discounts 16.2x more than Low performers. They 
also consistently consume the compute resources 
they pay for better than the Low performers (5.1x 
more for CPU and 2.7x more for memory). Because 
Elite performers surpass the other segments on 
both the golden signals and the adoption of cost 
optimization related features (e.g. Cluster 
Autoscaler, Horizontal Pod Autoscaler, cost 
allocation tools, etc), we can assume their teams 
have a better understanding of the Kubernetes 
platform and are better prepared to forecast long 
term commitments. These capabilities make it 
possible for them to run considerably lower priced 
workloads compared to other segments.

Elite performers take advantage of cloud 
discounts 16.2x more than Low performers.

Compared to Low performers, Elite 
performers consistently consume more of 
the resources they pay for - 5.1x more CPU, 
and 2.7x more memory.

Comparison of each segment to Low performers
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When it comes to correctly sizing their workloads, 
Elite performers achieve 2.8x better CPU and 2.7x 
better memory than Low performers. These 
numbers show that developers deploying to Elite 
performer clusters have a better understanding 
of the resources required by their applications in 
each environment (eg. testing, staging, and 
production environments).  

For the demand based downscaling signal, Elite 
performers demonstrate 4x more capacity to 
scale down their clusters during off-peak hours 
than Low performers. It is important to remember 
that scaling down a cluster is a shared 
responsibility between developers and platform 
teams. If developers don't scale down their 
workloads, platform teams' ability to scale down a 
cluster is limited. On the other hand, if developers 
manage to scale down their workloads during off-
peak hours, platform admins can fine tune Cluster 
Autoscaler to satisfy demand according to 
business needs. 

For cluster bin packing, we have found that Elite 
performers can better pack their Pods into their 
cluster nodes for both CPU and memory 
compared to Low performers (2.1x and 2.9x, 
respectively). Cluster bin packing is another 
shared responsibility between developers and 
platform teams, where both should collaborate to 
find the appropriate machine shape to better fit 
the workloads.  

In the next section we discuss the At Risk 
segment, which has the highest probability 
across all segments to negatively impact end user 
experience. Balance reliability and cost efficiency 
discusses best practices for avoiding the pitfall of 
having your workloads killed without any warning 
or graceful termination. What do High and Elite 
performers teach us about how to improve cost 
efficiency? presents best practices, and Final 
thoughts presents concluding remarks.

Compared to Low performers, Elite 
performers rightsize their workloads 2.8x 
better on CPU, and 2.7x better on memory.

Elite performers demonstrate 4x more 
capacity to scale down their clusters during 
off-peak hours than Low performers.

Compared to Low performers, Elite 
performers better pack their Pods into their 
cluster nodes - 2.1x better on CPU and 2.9x 
better on memory.
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In addition to segmenting Elite from High, 
Medium, and Low performers, we created 
another segment, which we call the At Risk 
segment, with clusters where the sum of actual 
resource utilization is generally higher than the 
sum of their workloads' requested resources. We 
decided to separate these clusters into a different 
segment because after several years of customer 
engagements, Google has identified that the 
usage pattern of these cluster's results in a 
higher risk of intermittent and hard to debug 
reliability issues caused by the way Kubernetes 
reclaims resources at node-pressure.  

In summary, whenever a cluster's node resource 
utilization approaches its capacity, kubelet enters 
into a "self-defense mode" by terminating Pods 
immediately, meaning without any warning or 
graceful termination, to reclaim the starved 
resources. This situation is caused by Pods that 
use more resources than they have requested, 
such as BestEffort Pods and memory under-
provisioned Burstable Pods. These Pods are also 

the first ones to be killed by kubelet. Even though 
the default Kubernetes behavior prefers to 
schedule incoming Pods on nodes with low bin 
packing, the bin packing algorithm doesn't take 
into account actual resource utilization, it only 
considers resources requested. However, the 
Kubernetes scheduler continues to schedule 
incoming BestEffort and under-provisioned 
Burstable Pods on a few low bin packed nodes, 
causing these nodes to have higher than 
requested utilization. This situation can trigger 
the kubelet "self-defense mode". 

To avoid negatively impacting end user 
experience and to avoid spending time 
debugging intermittent and hard to predict 
application errors, both BestEffort Pods and 
memory under-provisioned Burstable Pods must 
be used with caution. Because they can be killed 
by kubelet whenever a node is under pressure, 
application developers and operators must fully 
understand the consequences of running them. 

The At Risk segment

https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
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The research has found that the clusters in the At 
Risk segment use more resources than they have 
requested because they deploy significantly more 
BestEffort Pods (1.6x more than Low performers 
and 2.7x more than Elite performers).  

Both BestEffort Pods and memory-
underprovisioned Burstable Pods remain useful 
for utilizing the temporary idle capacity from a 
cluster, but developers should adopt these kinds 
of Pods only for best effort workloads that can 
be killed at any moment, without any eviction 
time. 

The At Risk segment is composed of medium size 
clusters (2.1x bigger than Low performers and 3x 
smaller than Elite performers, in number of 
nodes). These clusters demonstrate, through a 
set of enabled features, bigger than the average 
intent to optimize cost (3.9x more adoption of 
cloud discounts, 1.5x more adoption of cost 
allocation tools, and 3.1x more VPA deployments 
using recommendation mode than Low 
performers). Despite intent to optimize, their 
chargeback or showback solutions are more likely 
to attribute inaccurate costs to teams or divisions. 
This happens because most Kubernetes cost 
allocation tools leverage resource requests to 
compute costs, and the large adoption of 
BestEffort Pods causes this segment to 
constantly use more CPU and memory than they 
have requested. For example, the research shows 
that clusters in this segment use close to 60% 
more memory than they have requested. Because 
most Kubernetes cost allocation tools don't 
examine actual utilization, any usage that 
exceeds what was requested is not accounted 
from a cost perspective. For example, if a 
cluster's Pods request 25 mCPU but use 75 
mCPU, cost allocation tools consider the 
additional 50 mCPU as unused.

At Risk segment deploys more BestEffort 
Pods - 1.6x more than Low performers, 
and 2.7x more than Elite performers.

Both BestEffort Pods and memory-
underprovisioned Burstable Pods remain 
useful for utilizing the temporary idle 
capacity from a cluster, but developers 
should adopt these kinds of Pods only for 
best effort workloads that can be killed 
at any moment, without any eviction 
time.
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We also found that the At Risk segment has 
relatively low cluster bin packing (1.3x worse CPU 
bin packing and 1.7x worse memory bin packing 
than Medium performers). Some platform teams 
may view this as a false opportunity for cost 
optimizing their clusters. If cluster operators act 
on this false optimization opportunity, they can 
cause disruption due to the increased chance of 
BestEffort Pods and memory under-provisioned 
Burstable Pods being terminated without any 
warning or eviction time. 

Based on low cluster bin packing and minimal 
adoption, between all segments, of cost 
optimization features (1.3x smaller adoption of 
Cluster Autoscaler, 2.2x less fine tuning of Cluster 
Autoscaler downscaling, and 1.7x smaller 
adoption of HPA than Low performers), we 
believe that the At Risk segment is attempting to 
mitigate reliability issues discussed in this section 
by keeping clusters artificially over-provisioned. 

The next section discusses strategies and best 
practices you can follow to avoid the pitfalls faced 
by clusters in the At Risk segment.

At Risk segment adopts 1.3x less Cluster 
Autoscaler than Low performers.

At Risk segment fine tune 2.2x less Cluster 
Autoscaler than Low performers.

At Risk segment adopts 1.7x less 
Horizontal Pod Autoscaler than Low 
performers.
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Burstable 

apiVersion: v1 
… 
spec: 
 containers: 
 - name: qos-example 
   image: nginx 
   resources: 
     requests: 
       cpu: 500m 
 memory: 100Mi 
     limits: 
       cpu: 1 
 memory: 200Mi 

Pod can be killed and 
marked as Fail while 
using more memory 
than requested

As discussed previously, beyond making it harder to horizontally scale your applications and 
impacting cost attribution solutions, Kubernetes bin packing, scheduling, and cluster 
autoscaler algorithms, the unintentional over use of BestEffort Pods and memory under-
provisioned Burstable Pods can also negatively affect the end user experience. Although the 
At Risk segment has a higher risk of facing such problems, the research has found that all 
segments have the opportunity to reduce the use of BestEffort Pods and memory under-
provisioned Burstable Pods, and consequently reduce, or even eliminate, debugging 
intermittent errors caused by kubelet killing Pods without warning.  

To accomplish this task, companies must invest in providing technical teams with training, 
visibility, and guardrails.  

For training, companies should ensure developers and operators understand the Kubernetes 
Quality of Service (QoS) model and how their configuration choices can impact the reliability 
of their applications when cluster nodes are under resource pressure:

● BestEffort Pods are Pods that don't have any requests and limits set for their containers. 
Kubernetes kills these Pods first when a node is running out of memory. As the name 
suggests, these Pods are meant exclusively for running best effort workloads. In other 
words, it is not a problem if the workload doesn't run right away, if it takes longer to finish, 
or if it is inadvertently restarted or killed. 

Balancing reliability and 
cost efficiency

BestEffort 

apiVersion: v1 
… 
spec: 
 containers: 
 - name: qos-example 
   image: nginx

Guaranteed 

apiVersion: v1 
… 
spec: 
 containers: 
 - name: qos-example  
   image: nginx 
   resources: 
     requests: 
       cpu: 3 
 memory: 200Mi 
     limits: 
       cpu: 3 
 memory: 200Mi 

Pod can be killed and 
marked as Fail at any 
time

As the name says, Pod 
is guaranteed to run! !

https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
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Best practice for Burstable workloads

Burstable 

apiVersion: v1 
… 
spec: 
 containers: 
 - name: qos-example 
   image: nginx 
   resources: 
     requests: 
       cpu: 500m 
 memory: 100Mi 
     limits: 
       cpu: 1 
 memory: 200Mi 

Burstable 

apiVersion: v1 
… 
spec: 
 containers: 
 - name: qos-example 
   image: nginx 
   resources: 
     requests: 
       cpu: 500m 
 memory: 200Mi 
     limits: 
       cpu: 1 
 memory: 200Mi

Pod can be killed and marked 
as Fail while using more 
memory than requested

● Burstable Pods are Pods with containers that have resource requests with upper, or 
unbounded (not set), limits. Pods using more memory than they have requested while 
the node is under resource pressure can also be killed because the Pod's memory can't 
be compressed. Burstable Pods are not meant to be constantly running above what was 
requested. Instead, they are meant for workloads that occasionally require additional 
resources, such as speeding up the Pod's startup time or bursting while HPA is creating 
a new replica. 

● Guaranteed Pods are Pods where containers have either an equal amount of request 
and limit resources or set limits only (Kubernetes automatically copies limits to 
requests). These Pods are meant for running workloads with strict resource needs. As 
they cannot burst, these Pods have higher priority and are guaranteed to not be killed 
before BestEffort and Burstable Pods. 

Because deploying BestEffort Pods and memory under-provisioned Burstable Pods can 
cause disruption to workloads, we recommend the following best practices: 

● Avoid using BestEffort Pods for workloads that require a minimum level of reliability. 

● Set memory requests equal to memory limits for all containers in all Burstable Pods. You 
can set upper limits for CPU because Kubernetes can throttle CPU requests whenever 
needed, though this can impact application performance. Setting upper limits for CPU 
allows your applications to use idle CPU from nodes without worrying about abrupt 
workload termination.  

! Pod can have CPU throttled 
to request
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For visibility, both DevOps and platform admins should provide application owners with 
rightsizing recommendations, while highlighting and tracking the use of workloads that are at 
reliability risk, such as all BestEffort Pods and memory under-provisioned Burstable Pods. It is 
important to adopt dashboards, warnings, alerts, and actionable strategies such as 
automatic issue ticketing or automatic pull requests with actual recommendations. These 
strategies are even more effective when they are integrated into the developers workstreams, 
such as into developer IDEs, developer portals, CI/CD pipelines, etc. Such alternatives have 
been shown to be useful, not only for improving reliability of the overall applications, but also 
for building a more cost conscious culture.

For guardrails, both DevOps and platform teams can build solutions that enforce the best 
practices discussed in this section. Enforcement can be done using standard Kubernetes 
constructs, such as validation and mutation webhooks, or by using policy controller 
frameworks, such as Open Policy Agent (OPA) Gatekeeper. It is also important to have an in-
place break glass process to allow teams that understand Kubernetes QoS and its 
consequences to take advantage of idle cluster resources. For example, when a developer 
creates a merge request without setting resources, a validation pipeline could either demand 
a specialized peer review or annotate the merge request with a warning. If the code is 
merged into the main branch and run in production, the team could enforce an annotation 
that states the team understands the consequences and they want to bypass organization 
policy validations.  

In the situation where a team has prepared workloads for abrupt termination and they fully 
understand the consequences of running BestEffort Pods, there is an opportunity to utilize 
their idle cluster resources and increase savings by running best effort workloads on Spot 
VMs. Spot VMs are often offered at a discounted price in exchange for cloud providers being 
allowed to terminate and reclaim resources on short notice. Platform teams can implement 
this strategy using a mutation webhook to append a node affinity preference to Spot VMs on 
all Pods not setting requests. This leaves room on standard nodes for workloads that require 
greater reliability. Once this strategy is incorporated into an organization's policy or 
automation pipeline, if no Spot VMs are provisioned, standard VMs are used.  

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://github.com/open-policy-agent/gatekeeper
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/%23node-affinity
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If the platform team doesn't want to allow best practices to be bypassed, the 
recommendation is to validate and reject non-compliant workloads. If that is not a possibility, 
for workloads that are tolerant to graceful restarts, an alternative is to either recommend or 
enforce the adoption of Vertical Pod Autoscaler using the Auto mode.  

Finally, as shown below, you can also set defaults for container resources using the 
Kubernetes LimitRange API. Because defaults can result in your workload becoming either 
under- or over-provisioned, this should not replace the recommendation of adopting VPA for 
rightsizing Pods. The benefit of using defaults for resources is that resources can be applied 
when the workload is first deployed, while VPA is still in LowConfidence mode. In this mode, 
VPA does not update Pod resources due to not having enough data to make a confident 
decision. 

apiVersion: v1 
kind: LimitRange 
metadata: 
  name: my-container-resources-defaults 
  namespace: my-namespace 
spec: 
  limits: 
  - default: # defines default resources for limits 
      memory: 500Mi 
    defaultRequest: # defines default resources for requests 
      cpu: 250m 
      memory: 500Mi 
    type: Container

Note: When this report was written, VPA required Pods to be restarted to update Pod's 
resources. However, the KEP #1287: In-Place Update of Pod Resources became an alpha 
feature in Kubernetes 1.27. This feature will allow future versions of VPA to, in the majority 
of the cases, update resource values without restarting a Pod.

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#quick-start
https://kubernetes.io/docs/concepts/policy/limit-range/
https://github.com/kubernetes/autoscaler/blob/vertical-pod-autoscaler-0.13.0/vertical-pod-autoscaler/pkg/apis/autoscaling.k8s.io/v1/types.go#L280
https://github.com/kubernetes/enhancements/issues/1287
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Cluster owners that adopt a continuous practice 
to measure and improve Kubernetes cost 
optimization golden signals can earn significant 
cost savings by running lower priced workloads in 
the public cloud. Therefore, to meet the demand 
of cost-efficient Kubernetes clusters without 
compromising reliability and performance, it is 
important to understand and follow the practices 
of High and Elite performers.  

Our research shows that both High and Elite 
performers run the largest clusters across all 
segments (High performers run clusters 2.3x 
larger and Elite performers run clusters 6.2x 
larger, in number of nodes, than Low performers). 
Larger clusters allow resources to be better 
utilized. For example, while a few workloads are 
idle, other workloads can be bursting. Large 
clusters also tend to be multi-tenant clusters. The 
higher the number of tenants, the more 
operational challenges need to be managed. 
Such a pattern demands specialized platform 
teams that need to put in place company cost 
optimization policies, best practices, and 
guardrails.  

The platform teams from High and Elite 
performers also tend to enable more cluster level 
cost optimization features than Low performers, 
such as Cluster Autoscaling (1.3x and 1.4x, 
respectively) and cost allocation tooling (3x and 
4.6x, respectively). While Cluster Autoscaler 
allows clusters to automatically add and remove 
nodes as needed, cost allocation tools enable 
companies to implement showback or 

chargeback processes to allocate or even bill the 
costs associated with each department's or 
division's usage from multi-tenant Kubernetes 
clusters. 

However, to enable clusters to scale down during 
off-peak hours as much as High and Elite 
performers do (3.2x and 4x more than Low 
performers, respectively), it is also necessary to 
scale workloads according to demand. The 
research shows that High and Elite performers 
use two main approaches. Firstly, the adoption of 
workload autoscaling APIs (e.g. HPA and VPA in 
Auto/Init mode), in which High and Elite 
performers demonstrate 1.5x and 2.3x higher 
adoption than Low performers, respectively. 
Secondly, High and Elite clusters run 3.6x and 4x 
more jobs to completion than Low performers, 
respectively. Unfortunately, it was not possible to 
measure which strategy has the biggest impact, 
as the segments contain clusters that use a 
variety of such approaches.  

The research has also found that the adoption of 
workload autoscaling and jobs to completion is 
much more important for downscaling a cluster 
than optimizing Cluster Autoscaler for a faster 
and more aggressive scale down. In other words, 
if developers don't properly configure their 
workloads to scale according to demand, platform 
teams are limited in their ability to scale down 
their cluster. The research has also found that all 
segments, including Elite performers, could 
improve demand based autoscaling efficiency by 
increasing the adoption of HPA and VPA.  

What do High and Elite 
performers teach us about how 
to improve cost efficiency?

https://www.finops.org/framework/capabilities/chargeback/
https://kubernetes.io/docs/concepts/security/multi-tenancy/
https://www.finops.org/framework/capabilities/chargeback/
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High and Elite segments also demonstrate better 
adherence to workload best practices. For 
example, developers from High and Elite 
performers rightsize their workloads up to 2.2x 
and 2.8x better than Low performers, and deploy 
50% and 70% less BestEffort Pods than clusters 
in the At Risk segment, respectively. These 
excellent results reflect developers' better 
knowledge of their applications and demonstrate 
the value of High and Elite segments specialized 
platform teams that can build tools and custom 
solutions. As a result, the High and Elite segments 
can continuously enforce policies, provide golden 
paths, optimize rightsizing (e.g. VPA at 
recommendation mode deployed 12x and 16.1x 
more by these segments, respectively, than Low 
performers) and provide best practices 
recommendations to developer teams. 

Lastly, despite the challenges of building and 
operating data-centric applications on 
Kubernetes, the community has seen a rapid 
increase in deployments of databases and other 
stateful workloads. High and Elite performers, 
who run 1.8x and 2x more StatefulSets than Low 
performers, are the main drivers of this increase. 

The Data on Kubernetes 2022 research 
shows the benefits of running data-centric 
applications include: 

● ease of scalability 

● ability to standardize management of 
workloads 

● consistent environments from 
development to production 

● ease of maintenance 

● improved security 

● improved use of resources 

● co-location of latency sensitive 
workloads 

● ease of deployment

https://dok.community/wp-content/uploads/2022/10/DoK_Report_2022.pdf
https://dok.community/wp-content/uploads/2022/10/DoK_Report_2022.pdf
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As discussed throughout this report, many 
Kubernetes features and external tools rely on 
Pods setting resource requests properly so that 
organizations can achieve the best reliability, 
performance, and cost efficiency from the 
platform. The unintentional over use of Pods that 
don't set requests or constantly utilize more 
memory than requested can cause unexpected 
behavior in clusters and applications, including 
negatively impacting end user experience. Even 
though the At Risk segment faces these issues at 
higher frequency, the research has found that 
there are opportunities for all segments, including 
Elite performers, to improve both reliability and 
cost efficiency.  

It is important to highlight that addressing the 
opportunities presented by the Kubernetes cost 
optimization signals should be continuously 
prioritized. Moreover, both cluster and application 
owners should prioritize correctly sizing 
applications and ensuring applications can 
automatically scale based on demand, instead of 
primarily focusing on cluster bin packing and 
seeking additional discount coverage. This is 
because significant changes in workload 
rightsizing and autoscaling may result in re-work 
required for bin packing and long-term discount 
strategies. 

Even though this research did not analyze 
clusters across segments within a company, 
Google has identified a pattern through cost 
optimization engagements with customers, where 
larger multi-tenant clusters tend to gather the 
majority of organizational Kubernetes expertise. 
This has resulted in many long tail clusters being 
managed by teams whose main goal is to deliver 
a service, not manage a platform. This pattern 

can also be seen in this report where the largest 
clusters, while being the hardest to operate, have 
demonstrated the best cost optimization 
performance. To overcome the long tail 
challenges, organizations should invest in 
defining and enforcing company-wide policies, 
patterns, and golden pre-approved paths, as well 
as finding the right balance between control, 
extensibility, and flexibility.  

Finally, platform teams should be aware that 
measuring cluster bin packing alone doesn't tell 
the entire story. Looking at the At Risk segment, 
we can see low values for cluster bin packing and 
high values (sometimes above 100%) for 
workload rightsizing. This is a reflection of the 
over use of BestEffort Pods and under-
provisioned Burstable Pods, in which the Pods 
use more cluster resources than they have 
requested, consequently skewing both signals. If 
platform teams decide to save money by packing 
better clusters in such a situation, the risk of 
running into reliability issues increases 
accordingly. 

Final thoughts
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Methodology 
The State of Kubernetes Cost Optimization report groups anonymized GKE clusters into 5 
segments (i.e. At Risk, Low, Medium, High, Elite) based on Kubernetes cost optimization 
golden signals. Due to possible privacy concerns, the original dataset and the actual metrics 
values are not shared. Instead, the report provides the comparison ratio between different 
segments. For instance, the relative magnitude of Elite performers compared to Low 
performers in a given metric. For example, if the Elite and Low performers have 45 and 10 for 
a given metric, respectively, the corresponding ratio would be 4.5. This ratio means that the 
typical Elite performers are 4.5 times better than the typical Low performers for a given 
metric. 

Each observation represents an anonymized GKE cluster on a given day. Therefore, each 
unique anonymous GKE cluster can appear more than once. Our notation is as follows: 

● Let there be total unique clusters. 

● For a given cluster, k, the number of times the  cluster occurs (or the number of days 
the cluster is "alive") is       .  

● This leads us to,  and  where  is the cardinality 
operator. 

The cardinality operator counts the number of observations that belong to a set. For 
example, if the number of alive days with a particular cluster from 01/01/2023 to 01/31/2022 
was 10, then the cardinality would be 10. 

There can be many nodes within a cluster. In this report, we only measured the user nodes, 
excluding control plane nodes, as described in the following sections.

https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture#control_plane
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The Resources group 
We assume that some clusters are well utilized, and others that are not. The following three 
metrics capture such behavior: 

● Workload rightsizing 

● Demand based downscaling 

● Cluster bin packing 

Workload rightsizing 
The CPU and RAM workload rightsizing is defined for the cluster as, respectively:

In the previous equations: 

● The Average Recommended CPU/RAM is the mean of Vertical Pod Autoscaler (VPA) 
Recommendations over the daily average. 

○ Google computes VPA recommendations at scale for every single workload running in 
any GKE cluster. Instead of using actual Pod utilization, we have chosen to use Pod's 
VPA recommendations, which is more constant and slightly higher than actual Pod 
utilization.  

●          and          have a support (or a range of possible values) of    . However, they are 
usually between [0,1). There are cases where a user doesn’t set a requested CPU or RAM 
amount for some containers, which may result in a workload rightsizing at the cluster level 
being greater than 1.



State of Kubernetes Cost Optimization 25

Demand based downscaling 
Demand based downscaling is defined for the cluster as

Cluster bin packing 
CPU and RAM bin packing is defined for the  cluster as, respectively,

Note that both “Average Request” and "Average Allocatable" is the daily average. This 
value has a support of [0,1]. A value close to 0 corresponds to a cluster in which 
workloads are not requesting the allocated CPUs or RAM, while a value close to 1 
corresponds to a cluster in which workloads are requesting all the allocated CPUs or 
RAM. We would expect clusters with a "high" bin packing to have values closer to 1. 

This value has a support of [0,1]. A value close to 1 corresponds to a cluster that is using all of 
its nodes. A value close to 0 corresponds to a cluster that is not using all of its nodes. We 
would expect clusters with a "high" capacity of downscaling would have values closer to 1.
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The Discount group 
In the discount group, we only have one metric: discount coverage. This metric defines the 
percentage of cluster core hours which are covered by cloud discounts (or percentage 
discounted as a shorthand), is defined for the  cluster as 

Percentage discounted has a support of [0,1]. A value close to 0 or 1 indicates that the cluster 
is not or is utilizing discounted nodes, respectively. We would expect clusters with a "high" 
cloud discount to have values closer to 1. 

Spot VMs are often offered at a high discounted price in exchange for cloud providers being 
allowed to terminate and reclaim resources on short notice (Source, Source 2). Thus, 
customers should take a balanced approach of using Spot VMs for non-critical workloads 
that can tolerate disruption.  

Continuous use discounts (CUD) correspond to those renewed contracts at a larger discount. 
CUD are ideal for predictable and steady state usage (Source).  

Thus,  corresponds to the proportion of core hours utilizing Spot or CUD discounts. While 
Spot and CUD differ in their nature, they are part of all major public cloud providers offered 
as discount options.

https://cloud.google.com/compute/docs/instances/spot
https://spot.io/resources/aws-ec2-pricing/what-are-ec2-spot-instances/
https://cloud.google.com/compute/docs/instances/signing-up-committed-use-discounts
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Other Metrics 
Other metrics are provided in this report to 
describe the segments. However, none were used 
in the creation of the segments. Thus, they are 
not expanded in great detail. 

Research population 
To run this research we analyzed all GKE clusters 
in an anonymized form, except for those with 3 or 
less nodes. We chose to exclude these clusters 
as likely testing clusters or clusters with low 
usage. We chose to make this exclusion because 
the default GKE cluster creation includes 3 
nodes. Data was used from multiple separate 
months. This was done to confirm that the values 
were similar across the different months to avoid 
a seasonality effect. The final reported values 
utilized throughout the document are from 
January 2023.  

Method 
For this research we have used a classification 
tree technique. Tree models segment the feature 
space into partitions using rules. If the problem 
has a continuous outcome, a regression tree is 
used where the predicted value is the mean value 
of a given segment. If the output is a series of 
classes, then a classification tree is used where 
the prediction is a particular class. For more 
information about trees, see An Introduction to 
Statistical Learning with Applications in R. 

For this report, we constructed our classes and 
formulated a classification tree setup. We were 
able to formulate the problem as a classification 
tree by using handmade and data driven classes 
because we have domain expertise. Generally 
speaking, those observations with many metrics 
closer to one are considered “Elite Performers” 
clusters and those with many metrics closer to 0 

are considered “Low Performer” clusters. Thus, 
we made the naive assumption that each metric 
contributes equally to the consideration of which 
group it belongs to while also using quantiles to 
determine the exact cutoff values for each metric.  

This process resulted in 5 segments: Low, 
Medium, High, Elite, and At Risk. The “Low” to 
“Elite” segments are cohorts who range in their 
ability to be computationally efficient. For 
example, the “Elite” segment are able to use their 
resources in an exceptional manner. As another 
example, the “Medium” segment might excel in 
one area, but struggle in another. “At Risk” 
clusters have the sum of their actual resources 
utilization is more often than not above the sum 
of their workloads' resources requested 

Steps for analysis 
The high-level steps for performing this analysis 
were as follows: 

1. Collect the data. 

2. Build the class labels. 

a. Determine the inputs. 

b. Determine the number of classes. 

3. Build the classification tree. 

4. Summarize the segments based on the 
predictions from the tree. 

This process was repeated for each month of 
interest. For example, these 4 steps were 
performed for November independent of the 4 
steps performed for February. 

https://hastie.su.domains/ISLR2/ISLRv2_website.pdf
https://hastie.su.domains/ISLR2/ISLRv2_website.pdf
https://hastie.su.domains/ISLR2/ISLRv2_website.pdf
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