
The ROI of DevOps
Transformation

Traditionally, IT has been viewed as a cost center and, as such, was expected to justify its costs and
return on investment (ROI) up front. However, IT done right is a value driver and innovation engine.
Companies that fail to leverage the transformative, value-generating power of IT risk being disrupted
by those who do. What has been missing is an analytical, data-driven framework to forecast the value
and justify investment in DevOps transformations. This white paper helps to fill that gap. While the
methodology is not exhaustive, it does outline important considerations.¹

Using key metrics from the Accelerate: State of DevOps Report² and industry averages, we will forecast
the value of implementing DevOps practices for Elite, High, Medium, and Low IT Performers—important
characterizations that are described in this report. We will also show how you can use these metrics to
calculate your productivity and estimate the potential ROI of your transformation initiative by increasing
your capabilities and improving your IT performance.

The information presented is particularly well-suited for technology leaders and executives and/or
finance partners to help drive technology transformation within an organization. You should be able to
make a strong business case for undertaking a technology transformation in the form of investing in
DevOps tooling by quantifying the costs and returns possible, using your own numbers and the industry
benchmarks provided.

This guide also provides insight into the gains possible as you continually improve and progress. If you
are a Low, Medium or High Performer, take note of the benchmarks set by the Elite Performers, and be
aware that the industry is improving every year. If you aren’t improving, you will be left behind. If you are
an Elite Performer, see how you compare to other Elite Performers and strive to continually improve and
raise the bar, noting that we report the median benchmarks, and the industry continues to improve year
over year, particularly among Elite Performers.³

IT as a Value Driver and Innovation Engine

2

Software Development Speed and Stability

Elite IT performers Realize the highest benefits from superior software delivery, and are
delivering software at the highest levels. They experience the most value-add time out of
their days and spend the least amount of time doing non-value-add work of all groups.

High IT performers Still have room for improvement while being statistically better than
medium performers. Excelling at all aspects of throughput and stability, yet must continue
to improve in these areas to gain the most benefits from improved IT performance.

Medium IT performers Have the most to gain by burning down technical debt and
optimizing for speed and value over cost. Doing well in terms of stability but fall behind
high performers when it comes to speed.

Low IT performers Have the most opportunities for improvement by addressing
low-hanging fruit and setting measurable goals.

3

Companies that fail to leverage the
value-generating power of IT risk
being disrupted by those who do.

Contents

4

Introduction: IT as a Value Driver and Innovation Engine 02

Value Calculations 10

Payback Period 33

IT and Organizational Performance 05

Value Gained From Unnecessary Rework Avoided per Year 11

Return on Investment 34

What Makes up ROI? 07

Potential Value Added from Reinvestment in New Features 18

Conclusion: Technology Transformation Pays Off 35

Value-Driven Categories 08

Cost Savings Calculations 24

Authors 37

Gene Kim

Brenna Washington

Nikhil Kaul

Dustin Smith

37

38

38

38

Cost-Driven Categories 09

Cost of Downtime Per Year 24

Nicole Forsgren, PhD 37

About DORA 39

Calculating Return Using Value and Cost 09

Demonstrating Return on Investment 31

Adding it All Together 29

Jez Humble 37

Acknowledgments 40

The State of DevOps Reports, coauthored by DORA, classify technical patterns of software development
and delivery teams along the dimensions important to the core disciplines of DevOps. These include
agility (or throughput) of development and reliability for operations. We captured agility by measuring
how often code was deployed and how long it took code to be deployed. We also captured stability by
measuring mean time to restore service (MTTR) and change failure rate (i.e., how often changes to code
or infrastructure need to be rolled back or hotfixed).

These measures were selected for several key reasons. Measures of agility capture the goals of
developers well, and help to emphasize the importance of moving fast to deliver features to customers.
Similarly, measures of reliability capture the goals of IT operations well, and help to emphasize the
importance of reliable code and need a period of infrastructure. The advantage of using both approaches
is that these measures are in tension with one another, keeping teams from “gaming” the metrics, and
providing a good holistic view of the overall ability of the team to develop and deliver software.

Statistical analysis shows that teams fall into distinct groups based on these measures: Elite, High,
Medium, and Low IT Performers. (More detailed information can be found in the 2019 State of DevOps
Report, but basic information is outlined in Table 1.a) Elite Performers show the highest achievement in
terms of both throughput and stability, demonstrating superior performance in software development
and delivery without tradeoffs. That is, they apply principles and practices that enable them to improve
both throughput and stability in tandem.

One important note about IT performance: Each team in an organization is on its own journey. Therefore,
different teams within a single organization can—and often do—have different IT performance profiles.
By identifying where your own team falls, you can see where you are in your own journey for continuous
improvement and set goals for the future. In the context of this ROI exercise, you can use these IT
performance profiles for data points from industry benchmarks if you do not have the data easily
available within your own team or your own organization. For example, later in the report we will use
the percentage of unnecessary work in calculations of waste. If you don’t have those numbers readily
available for your own engineers, you can use the industry benchmarks provided and select the
one based on the IT performance profile that best fits your current technical performance. However, we
point out that there can be wide variation in these measurements and teams may vary greatly from these
benchmarks; therefore, we strongly encourage teams to provide their own measurements.

a In addition to the 2019 report, we strongly recommend readers refer to the 2017 and 2018 State of DevOps Reports, which contain additional
information and guidance on IT and organizational performance, and the technical, managerial, and cultural practices important for improvement work. 5

IT and Organizational Performance

Table 1.
Statistics from the 2019 Accelerate: State of DevOps Report

Aspect of software
delivery performance

Elite IT
performers

High IT
performers

Medium IT
performers

Low IT
performers

Deployment Frequency: For the
primary application or service
you work on, how often does

your organization deploy code to
production or release it to

end users?

On-demand
(multiple deploys

per day)

Between once per
day and once

per week

Between once per
week and once

per month

Between once per
month and once
every six months

Lead Time for Changesb: For the

primary application or service you
work on, what is your lead time for
changes (i.e., how long does it take
to go from code committed to code
successfully running in production)?

Less than
one day

Between one day
and one week

Between one week
and one month

Between one month
and six months

Mean Time to Restore (MTTR):
For the primary application or
service you work on, how long

does it generally take to restore
service when a service incident or
a defect that impacts users occurs
(e.g., unplanned outage or service

impairment)?

Less than
one hour

Less than
one dayc

Less than
one dayc

Between one week
and one month

Change Fail Rate: For the primary

application or service you work
on, what percentage of changes

to production or released to users
result in degraded service (e.g., lead

to service impairment or service
outage) and subsequently require
remediation (e.g., require a hotfix,

rollback, fix forward, patch)?

0-15%d,e 0-15%d,f 0-15%e,f 46-60%

Medians reported because distributions are not normal.

All differences are significantly different based on Tukey’s post
hoc analysis except where otherwise noted.

c,d,e Means are significantly different based on Tukey’s post
hoc analysis; medians do not exhibit differences because of
underlying distributions.

f Means are not significantly different based on Tukey’s post
hoc analysis.

b We focus on the point of time from code commit to code deploy because the point when
changes are introduced into version control represents the dividing point between different
parts of the value stream.

The first phase of work includes design and development and is akin to Lean Product
Development. It is highly variable and uncertain, often requiring creativity and work that
may never be performed again, resulting in highly variable process times.

In contrast, the second phase of work, which includes testing and operations, is akin to
Lean Manufacturing. It too requires creativity and expertise, but we expect testing and
operations to be predictable, fast and mechanistic, with the goal of achieving work outputs
with minimized variability (e.g., short and predictable lead times, near zero defects).

6

Elite IT performers were superior in all four measures at statistically significant levels. They
deployed code most often and in the fastest cycles, and had the shortest MTTR when they
did have failures, which were also the lowest at less than one hour.

High IT performers are performing better than most of their competitors. They are
deploying code and fixing their errors very quickly but must continue to improve in order to
match the level of their Elite counterparts.

Medium IT performers represent the largest proportion of IT performers as low performers
continually improve and high performers succumb to the increased complexity of the
industry. Medium performers must continue to improve in areas of throughput, but are
doing well in terms of stability.

Low IT performers were inferior in three of the four measures at statistically significant
levels. They deployed code the least often and took the longest to release. They report
the longest MTTR on average. Low performers have the most to gain financially from
advanced IT improvements.

When organizations and technology leaders
evaluate whether to undertake a technology
transformation initiative with a focus on
continuous improvement, they often ask about
the return on investment. This exercise requires
two sequences of numbers:

The investment, or how much money and
resources (converted to a dollar amount)
will be devoted to the technology, process,
training, and cultural improvements

The return, or how much money and resources
can be expected from their investment

While this white paper focuses on calculating
the return aspect of ROI, remember to include
costs beyond the technology acquisition
in your investment calculations. Important
considerations include training, lost productivity
from learning and integrating a new technology
or way of working, long-term maintenance
costs, and any lost time spent re-architecting
and replacing existing systems. Which costs are
included in these investments will depend on the
team and the organization, and where they are in
their journey.

When calculating return, organizations have two
categories of costs and resources they should
always consider. The first is value-driven; the
second is cost-driven.

What Makes up ROI?

7

Elite-performing organizations have demonstrated
that a value-driven approach should take priority
(or at least have equal importance with cost-
reduction efforts), with a strong appreciation for
market pressures and the ability to respond to
those pressures—such as customer demands, the
availability of new technologies, and competitor
pressure—quickly and reliably, and without
requiring heroics from their technology teams.
Visionary technical leaders understand this and
are notably optimizing for speed over cost, which
is a significant shift in mindset (a strategy cited
by DevOps leader Courtney Kissler4).

Value lost can include opportunity cost or the
resources you are currently spending on non–
value-added work (such as unnecessary rework
and manual testing) but which you could be
spending on value-added work (such as new
features or additional automated testing).

Value lost from postponing new products or
features is also a key concern, but is often
skipped because it is difficult to estimate. This
lost value can include the revenue and customers
that an organization does not earn, but would
have, if it had released software more quickly.
This can be thought of as an opportunity cost,
or cost of delay: the costs incurred from not
releasing features in a timely manner.

The ability to more rapidly discover and deliver
value to customers and your top line is a key
benefit of the lean / agile paradigm, and is a true
competitive advantage that remains relevant year
over year and quarter over quarter. Furthermore,
just because something is difficult to estimate
doesn’t mean it shouldn’t be done. A high level
of precision is not required in order to calculate
return on investment, and we show how to
calculate useful values for this number later on.

8

In 2008, AOL was struggling with installs that were taking longer and longer to deploy to production.
Gene Kim was working with Eric Passmore, who was the Senior Vice President of Global Engineering at
AOL at the time. Gene says of the project, “It took [months] for the ops team to update the Linux kernel
from 2.4 to 2.6, and the Dev teams required the multi-threading support that the 2.6 kernel provided.
For the company, the absence of multi-threading support was as debilitating to the company as a “code
freeze.” In other words, the development team had completed the new software features, but customers
couldn’t use it or get value from it until Ops finished the kernel upgrade.

Gene and Eric realized this was much more than a Dev or Ops problem – the delay of getting software
functionality to customers was a business problem. This translated into real money lost for the business.

By improving the software development and delivery process, Eric and his team were able to improve
deployment time from six hours to 45 minutes, removing bottlenecks in the process to allow AOL to
deliver features and value to the customer faster5.

Value-Driven Categories

In a cost-driven approach, the focus is on cost
savings and efficiencies realized by implementing
DevOps—for example, time savings from
implementing a technology, time and cost savings
from automating manual processes, etc. Cost
savings, such as time and efficiency-based
savings, are easy to identify and are often the
only category used when justifying investments
in IT. These can include the cost of downtime
and the cost of manual vs. automated work.
These savings can be achieved by adopting lean
practices and continually improving your work to
achieve efficiencies, such as eliminating sources

of waste and unnecessary rework. Lean thinking
is a strong foundation for improved economics
and ROI arguments. However, considering these
expenses exclusively is insufficient and rarely
yields systemic, long-term gains—efficiencies
that are realized in year one “no longer count”
beyond year two as the organization adjusts to a
new baseline of costs and performance. Worse,
only focusing on cost savings signals to technical
staff that they will be automated out of a job
rather than being liberated from drudge work to
better drive business growth, which has additional
negative effects on morale and productivity.

9

Let’s see how ROI calculations break down in terms of both value and savings, keeping in mind that all
costs that a business avoids are considered returns to the business. We used conservative estimates
for these calculations. Your numbers may be higher or lower based on your specific circumstances.
We present the complete methodology for the calculations so you can calculate return using your own
numbers. We also supply industry benchmarks and estimates to help you fill in any numbers you may not
have on hand.

Calculating Return Using Value and Cost

Cost-Driven Categories

Key idea: Costs avoided by a business are considered returns because any changes
in costs and revenue are compared to a starting budget, which acts as a baseline
for comparison.
For example, if the baseline budget has accounted for $100 million in expenses for the year in IT
spend, but through technology improvement initiatives that spend is reduced to $80 million, there
is now an “additional” $20 million available that was not previously planned for. Therefore, this
additional $20 million is a return to the business.

“By installing a rampant innovation culture, we performed 165 experiments in the peak three months
of tax season. Our business result? Conversion rate [in our customer acquisition funnel] is up 50%.
Employee result? Everyone loves it, because their new ideas can make it to market.”

—Scott Cook, Founder Intuit6

10

The best, most innovative companies undertake
their technology transformations with an eye
to the value they can deliver to their customers
and the business in addition to the cost savings
and efficiencies they can realize. However, many
companies focus only on cost savings, because
the concept is generally well-understood and
commonly used to justify investments
in technology.

While a focus on cost savings is a good first step,
it is not sufficient on its own. Cost savings can
have good impacts early, but provide diminishing
returns in future years.

In addition, treating cost savings as valuable in
and of itself is shortsighted. Pioneering
companies that use technology to win in the
market focus on value: They reinvest the returns
they see from these savings to discover new
customers and increase the value they deliver
to existing customers. By leveraging superior
software development and delivery capabilities,
they are able to continuously deliver valuable
new products and features, delighting customers,
employees and investors.

Pioneering companies that
use technology to win in the
market focus on value.

We include two types of value in our calculations
of return. The first is the value gained from
reducing inefficiencies in work. This comes
from continuous improvement initiatives, where
teams reduce waste and increase efficiency.
Many organizations categorize this type of
improvement work as cost savings, but we
make the case for this to be a value calculation
instead. The second type of value included in
our calculations of return is the value gained
from new development work that contributes to
revenue. These are discussed in detail below.

Value Calculations

11

Value Gained From Unnecessary Rework Avoided per Year

The amount of time, and therefore money, spent
and lost on unnecessary rework each year is a
significant hit to productivity and the technical
economy7. And yet, many organizations overlook
this cost. All costs avoided represent returns to
the business and can generate significant value.
Because unnecessary rework represents work
that can be avoided through improved processes,
some organizations calculate gains in efficiency
simply as cost savings. However, we point out
that these cost savings are only realized if costs
are fully avoided; that is, a reduction in workforce
equivalent to the accumulated time savings.
However, we strongly recommend organizations
do not adopt this strategy, which has a negative
impact on morale and organizational culture, can
reduce efficiencies, and even incentivize workers
to not improve their work processes. Because
hiring and retention in the technical sector is
a serious challenge right now, companies can

instead recoup this time and reinvest it in the
business, essentially getting “free” headcount.
Retaining and training existing talent is more
cost-effective, preserves institutional knowledge,
and gives organizations an advantage by having
a strong technical workforce that is engaged and
continuing to learn.

By retaining your workforce and utilizing the
time recovered by decreasing inefficiencies,
organizations gain value through additional
manpower hours. Therefore, we categorize this
as the value gained from unnecessary rework
avoided, and accumulate it per year. While the
exact steps undertaken to improve processes
and become more efficient will differ for each
organization and even each team, using lean
thinking and continuous improvement can enable
teams to reduce waste and achieve efficiencies.

“[In the beginning], we brought prices down, down, down, so they are now essentially commodities.
[Now…] to succeed in the business, we had to move in a direction of adding other value to the
relationship with our clients.”

 - Charles Schwab8

12

To calculate the Value Gained from Unnecessary Rework Avoided per Year,
we use the following equation:

g A study by the Center for American Progress found that the typical cost of turnover is 21% of an employee’s annual salary.
https://www.americanprogress.org/wp-content/uploads/2012/11/CostofTurnover.pdf

Cost of
Unnecessary

Rework
Avoided per

Year

Technical
Staff Size Average Salary Benefits

Multiplier

Percent of
Time Spent on
Unnecessary

Rework

Key idea: Recognize the value of labor hours recovered by reducing inefficiencies.
Organizations are essentially getting additional capacity without having to recruit and hire – just
by improving processes. Our research also shows that improving DevOps practices leads to higher
employee satisfaction and employees in high-performing teams were 2.2x more likely to recommend
their organization as a great place to work. This is a huge win where current competition for technical
talent is fierce and costs of turnover far outstrip costs of retaining talent.g

Retaining existing talent is more cost-effective, preserves institutional
knowledge, and gives organizations an advantage by having a strong
technical workforce that is engaged and continuing to learn.

13

Technical Staff Size

Organizations should include the total number of technical employees they have, since unnecessary
rework affects everyone along the value chain, from development, QA, and test, all the way to operations.
For illustrative purposes, we use the following groups for different-sized organizations:

For large organizations whose primary business relies on software largely created in-house (e.g.,
financial services), we estimate 8,500 technical employees.

For medium to large technical organizations, we estimate 2,000 technical employees.

For small to medium businesses and non-technical enterprises, we estimate 250
technical employees.

Of course, when calculating the cost of unnecessary rework for your own organization, you should use
the number of technical staff involved in software development and delivery at your company.

Average Salary

According to a 2019 report by Glassdoor, the overall median salary for DevOps professionals is
$143,0009. While this number increases for larger teams and varies based on geographic location and
cost of living, we use this number in our calculations. When performing the calculations for your own
purposes, use a typical salary appropriate for the technical staff in your organization.

Cost of
Unnecessary

Rework
Avoided per

Year

Cost of
Unnecessary

Rework
Avoided per

Year

Technical
Staff Size

Technical
Staff Size

Average Salary

Average Salary

Benefits
Multiplier

Benefits
Multiplier

Percent of
Time Spent on
Unnecessary

Rework

Percent of
Time Spent on
Unnecessary

Rework

14

Benefits Multiplier

Employee benefits such as insurance, vacation, and retirement cost money beyond base salary. While we
have seen benefits multipliers range from 30% to 110% of salary costs (resulting in a benefits multiplier
of 1.3 to 2.1), we use a conservative 1.5 multiplier for our calculations.

Percentage of Time Spent on Unnecessary Rework

For our purposes, we reference the reported percentage of time spent on unnecessary rework, on
average, reported by 2018 State of DevOps survey respondents. This number represents the amount of
time spent on non-value-added work – labor hours that are essentially wasted through inefficiencies.

Of course, not all unnecessary rework can be eliminated but teams should set goals to continuously
improve on unnecessary rework. We suggest a goal of 18%, based on two sources. First, research
reports that between 19% and 40% of code is reworked prior to final release10. Second, our own
research in the 2018 Accelerate: State of DevOps Report finds that Elite Performers report 19%
unnecessary rework. Therefore, 18% unnecessary rework appears to be a goal in line with the best
performance studied.

Cost of
Unnecessary

Rework
Avoided per

Year

Cost of
Unnecessary

Rework
Avoided per

Year

Technical
Staff Size

Technical
Staff Size

Average Salary

Average Salary

Benefits
Multiplier

Benefits
Multiplier

Percent of
Time Spent on
Unnecessary

Rework

Percent of
Time Spent on
Unnecessary

Rework

15

For Elite IT Performers, the amount of
unnecessary rework reported is 19%. While Elite
Performers demonstrate the gold standard of the
industry, there is always room for improvement.
So we use 1% as their goal for unplanned work;
the difference between the amount of rework
reported and the goal of 18% rework. They
perform the best in every metric but still have
reactive unplanned work because of interruptions,
errors and reactions to bugs in code. Still Elite
performers get the most value-add time out of
their days and are spending the least amount of
time doing non-value-add work of all groups.

For High IT Performers, the amount of
unnecessary rework reported is 19.5%. Because
we believe that High Performers still have
improvements to make in their work and should
be continuously striving for Elite status, we use
the 1.5% difference between reported rework and
goal in our calculations. However, teams working
on more static projects, such as mature project
maintenance, may set more aggressive goals
for unnecessary rework. While there is always
some unplanned work to be done, catching errors
early and having fast feedback loops helps to
minimize this for High Performers. The best
news here? By catching errors early, this group is
also able to spend about 10% more time on new
work compared to medium and low performers,
reporting approximately 50% of their time spent
on new work.

For Medium IT Performers, the amount of
unplanned rework reported by the industry is
20%. Subtracting the 18% goal gives us 2% for
our calculations. Medium Performers may not
have the level of automated tests and other
mechanisms in place to catch many defects
as early as the Elite or High Performers, so

they spend more time on unnecessary rework.
This is likely to do to the time consuming work
Medium Performers must implement to clean
their technical debt. Note Medium Performers are
still deploying more frequently and pushing code
through the pipeline fast, and are doing it more
reliably than Low Performers.

For Low IT Performers, the amount of
unnecessary rework reported by the industry is
20%. Subtracting the 18% goal, gives us 2% to
use in our calculations. In all of these estimates
of unnecessary rework, Low Performers are
most likely to have immature and unreliable
measurement practices, and therefore have less
visibility into how much time they are spending on
unnecessary rework. Therefore, we suggest this
estimate may be low because Low Performers
just don’t realize how much time they are wasting.
Based on the reported number, Low Performers
spend most of their time on unnecessary and
unplanned work, with only about 30% of time
spent on new work. The lowest of all other
groups. Low Performers are overwhelmed with
the total amount of work at hand, and they
may not care to keep up with the unplanned,
reactionary work - disregarding it in favor of
shipping new code at any cost. This is often the
case when the business prioritizes new features
and functions in order to gain a strategic position
in the market, but this strategy is not sustainable.
While doing new work and delivering new features
is good, ignoring defects and unnecessary rework
is a losing strategy in the long run— technical
debt adds up, increasing the costs of maintaining
existing systems and reducing the rate at which
new functionality can be deliveredh. The journey
from Low to Elite performer involves the hard
work necessary to catch up on the tech debt
accumulated in the past and get to a point where
you are catching defects early and often.

h This post by Greger Wikstrand outlines how technical debt adds up over time and decreases throughput.
http://www.gregerwikstrand.com/technical-debt-reduction/

16

The 2019 Accelerate: State of DevOps report found:

Elite IT performers have nearly tripled, growing from 7% to 20%, showing that excellence is
possible - it just requires execution.

High IT performers similar to their Elite counterparts, have grown year over year and report
superior availability, which is significantly correlated with software delivery performance
profile.

Medium IT performers are doing well in terms of stability, on par with the High Performers,
but fall behind in speed of delivery.

Low IT performers were inferior in all four measures at statistically significant levels. They
deployed code the least often and took the longest to release. They report the longest
MTTR on average, but report a change fail rate lower than Medium Performers.

Cost of
Unnecessary

Rework
Avoided per

Year

Technical
staff size Average salary Benefits

multiplier

Percent of
time spent on
unnecessary

rework

Using the formula and inputs given above provides the following estimates for cost of
unnecessary rework per year:

17

Elite IT
performers

High IT
performers

Medium IT
performers

Low IT
performers

Large organization that relies on

in-house software

(8,500 technical staff)

8,500 staff x

$143,000 salary x
1.5 benefits x

1% rework
= $18.2M

8,500 staff x

$143,000 salary x
1.5 benefits x
1.5% rework

= $27.3M

8,500 staff x

$143,000 salary x
1.5 benefits x

2% rework
= $36.5M

8,500 staff x

$143,000 salary x
1.5 benefits x

2% rework
= $36.5M

Medium to large technical

organization

(2,000 technical staff)

2,000 staff x

$143,000 salary x
1.5 benefits x

1% rework
= $4.3M

2,000 staff x

$143,000 salary x
1.5 benefits x
1.5% rework

= $6.4M

2,000 staff x

$143,000 salary x
1.5 benefits x

2% rework
= $8.6M

2,000 staff x

$143,000 salary x
1.5 benefits x

2% rework
= $8.6M

Table 2.
Yearly returns possible from cost of unnecessary rework avoided

Small to medium businesses and

non-technical enterprises

(250 technical staff)

250 staff x

$143,000salary x
1.5 benefits x

1% rework
= $536K

250 staff x

$143,000salary x
1.5 benefits x
1.5% rework

= $804K

250 staff x

$143,000 salary x
1.5 benefits x

2% rework
= $1M

250 staff x

$143,000 salary x
1.5 benefits x

2% rework
= $1M

While the Low Performers see lower yearly costs of unnecessary rework, this likely comes at a cost of
letting technical debt accumulate. If true, this strategy will create problems in the future. In addition,
Medium and Low Performers have greater unpredictability in their software development and delivery
environments when compared to High and Elite Performers, which creates uncertainty. Managing this
uncertainty translates into far greater overhead and unnecessary rework downstream that they are
unable to foresee.

Undergoing a technical transformation with an eye toward continuous improvement in terms of building
quality into the product results in a reduction of unnecessary rework and its associated costs. This is
a waste-reduction strategy, and a key goal of the technical practices of continuous delivery. Note that
these costs, if avoided, represent significant returns to the business. A reduction in these costs will be
categorized as returns in our calculations shown in Table 2. Organizations may choose to realize these
costs through headcount reduction, however adopting this strategy will have negative implications
for morale and the gains cannot be utilized to create value; indeed, often the best people to make
contributions and innovations to your product and technical environment are those who are already
experts in it.

https://continuousdelivery.com/

18

Similar business value calculations can be done for other improvement initiatives, such as automation,
by using the percentage of time recovered through automation efforts across several initiatives, such
as testing, infrastructure, workflow, and compliance. We don’t include these calculations in our analysis
because there are not yet good estimates of the savings and value available through automation
improvement initiatives, but you should consider including these in your own calculations.

Potential Value Added from Reinvestment in New Features

While more difficult to forecast, lost revenue is
just as important to consider when calculating
savings and efficiency returns from technology
investments, if not more so. These lost
opportunity costs, if avoided, have the potential
to continue adding value to your product and your
portfolio year over year and catapult you over your
competitors. The best organizations understand
this, and include the value of technology
transformation in their ROI calculations. However,
since this concept is tricky to estimate and
communicate, we have provided a framework to
help you quantify it here. We use the ongoing value
realized from delivering features to customers as
our proxy. By delivering customer value, we hope
to create the conditions to generate revenue or
create our desired business value.

While delivering new features to customers
brings revenue, not all features are winners: Only
about one-third of well-designed, well-researched
features in mature products deliver top-line value
to organizations. The statistics are considerably
worse for new products and business models11.
Therefore, we see high performing companies
such as Amazon leverage their ability to deploy
frequently to run experiments in production. They
do this so they can avoid building and maintaining
features that don’t deliver value. For our
calculations, we base the revenue potential of new
features on the current revenue of the business.
This revenue potential represents potential return
to the business from embarking on a technology
transformation.

Key idea: Leverage time recovered from reducing inefficiencies, and turn that into
value by using it to generate revenue through new features for your customers.

19

Time Recovered and Reinvested in New Features

This is captured as the percentage of time recovered from reduction in unnecessary rework and
reinvested in new features.i Frequency of experiments (below) assumes that all of a team’s time is spent
working on and delivering new features. While that may be possible for a new dedicated team, this
analysis will focus on the gains possible through a technology transformation initiative and therefore
only the portion of time that is recovered through improvement. This is an estimate, and each team’s
results may vary depending on their organizational and technical maturity.

We use the same methodology as above to estimate the amount of time that can be recovered by
improving inefficiencies and use our stated goal of 18% rework.

These particular gains in value are only possible when the efficiencies realized from reduction in
unnecessary rework are reinvested in the business. That is, by allowing your technology professionals
to take their newly discovered free time and use it for work that is devoted to features that have the
potential to create revenue for the business. If, for example, this recovered time is spent on work such
as documenting processes or automating tests, the organization still benefits from the additional labor
hours recovered (accounted for above), but it does not have the potential to realize revenue.

i Additional time may be recovered from the elimination of other types of non-value-add time, such as coordination time, transaction time, and queueing
time. We do not include these categories because industry benchmarks were not available. Activities such as Value Stream Mapping can help teams
identify and eliminate these inefficiencies.

Potential
Revenue from
Reinvestment

Time
recovered and
reinvested in
new features

Revenue
generating

features

Revenue
generating

features

Frequency of
experiments

per line of
business

Lines of
business in the

organization

Idea
success

rate
Idea impact Product

business size

We calculate Potential Value Added from Reinvestment using the following equation:

Where

20

For this number, we also refer to the 2018 Accelerate: State of DevOps industry benchmark data.

Elite performers are able to redirect their efforts to value add work by 1%. (This group
reported 19% of their time spent on unnecessary rework; aiming for a goal of 18%, the
difference is 1% of technical staff’s time that will be spent on value add work.)

High performers are able to reduce unnecessary rework, and therefore redirect their efforts
to value-add work, by 1.5%. (Reporting 19.5% originally, this group can realize a 1.5%
increase in value-add work by redirecting technical staff’s efforts to value add work by
hitting the suggested goal of 18% of time spent on unnecessary rework.)

Medium performers are able to redirect their efforts to value-add work by 2%. (This group
reported 20% of their time spent on unnecessary rework; aiming for a goal of 18%, the
difference is 2% of technical staff’s time that can now be spent on value-add work.)

Low performers are able to redirect their efforts to value-add work by 2%.
(This group reported 20% of their time spent on unnecessary rework; by reducing their
unnecessary rework to 18%, they recover 2% of their time for value-add activities.)

Frequency of Experiments

The ability of an organization to test out features on customers through A/B tests or through other
kinds of user research, both quantitative and qualitative, is a huge benefit to organizations seeking
an objective test. However, this feedback from customers is much harder for software products if the
team cannot deploy code regularly. That is, deployment frequency creates a constraint to their ability to
experiment and test features with customers. Conservatively, we suggest an experiment frequency of
one experiment per week per line of business, because this is the locus of experiments in organizations
for this calculation. We refer to the State of DevOps industry benchmark data to verify if it is possible
for each group:

21

Elite performers are able to deploy code on demand, multiple deploys per day. Therefore
an experiment frequency of twice per day (or 730 times per year) is achievable. We will use
this number for our calculation.

High performers are able to deploy code between once per day and once per week. For
this group we use the high end of these durations, or once per week, for our calculation.

Medium performers deploy between once per week and once per month. For this group,
we use the high end of these two durations for experiments, or once every month, for
our calculation.

Low performers deploy between once per month and once every six months. For this
group, we use the high end of these two durations for experiments, or once every six
months, for our calculation.

Lines of Business in the Organization

Organizations create and deploy software in strategic business units, or lines of business. Every line of
business has a core software product or service that allows it to serve its customers. This core software
product or service is the locus of experimentation in organizations. Large technology organizations have
more products (which support lines of business), and therefore can run more experiments. There is a
high amount of variability in how many lines of business each organization has, depending on industry
and company structure. While you should insert your own numbers, for illustrative purposes, we use the
following numbers for different-sized organizations:

For large organizations whose primary business relies on software largely created in-house (e.g.,
financial services) with an estimated 8,500 technical employees, we assume 20 lines of business.

For medium to large technical organizations with an estimated 2,000 technical employees, we
assume 8 lines of business.

For small to medium businesses and non-technical enterprises, with an estimated 250 technical
employees, we assume 1 line of business.

22

Idea Success Rate

While the time spent on innovation and value-
added work is generally a win to organizations,
and definitely time better spent than
unnecessary rework, not every piece of work
will generate revenue. Numerous experiments
have shown that only one-third of well-designed
features improve key metrics12, so we use this in
our calculations. Note that this metric applies to
products with a strong, existing user base—for
new products, the odds of building something
that delivers value to the business may be
considerably lower. Because this estimate may
be optimistic for your context, use rates that
accurately represent your environment.

Idea Impact

Each idea or feature has the potential
to contribute to our bottom line. For our
calculations, we assume that each successful
idea or feature contributes an average of 1% to
revenuej based on conversations with industry
experts working on established web software
properties that are undergoing incremental
feature improvements and not significant
changes. You will want to base your idea
conversion on rates seen in your own products.

Product Portfolio
Business Size

For many organizations, the revenue potential of
new features is a function of the current revenue
of the current product or business. We perform
these calculations for a product portfolio with
$100M in revenue.

j In reality, this will be a distribution of percentages, where some ideas contribute 0.01% to revenue, while other ideas contribute 200% to revenue.
For our calculations, we use 1% as an average contribution to revenue across all ideas.

While difficult to forecast, lost
revenue is important to consider
when calculating savings
and efficiency returns from
technology investments.

Potential
Revenue from
Reinvestment

Time
recovered and
reinvested in
new features

Revenue
generating

features

Revenue
generating

features

Frequency of
experiments

per line of
business

Lines of
business in the

organization

Idea
success

rate
Idea impact Product

business size

Where

23

Based on the formula and inputs above, we summarize the potential value added to the business by
recovering time lost in unnecessary rework and reinvesting it in value-add activities (see Table 3). This
can also be thought of as value lost from the business by not improving work processes and reinvesting
in new features each year, as the best and most innovative companies do.

Table 3.
Potential value added from reinvestment in new featuresk

k These numbers may seem high for organizations not used to estimating returns based on value. We urge readers to consider current revenues and
extrapolate potential returns from this; the results may surprise you.

$100M product
portfolio

business size

Elite IT
performers

High IT
performers

Medium IT
performers

Low IT
performers

Large organization

that relies on in-
house software

(8,500

technical staff)

1% time recovered x

730 experiments/year x
20 lines of business x

1/3 success rate x
1% idea impact x
$100M product

business

= $48.7M return

1.5% time recovered x
52 experiments/year x
20 lines of business x

1/3 success rate x
1% idea impact x
$100M product

business

= $5.2M return

2% time recovered x

12 experiments/year x
20 lines of business x

1/3 success rate x
1% idea impact x
$100M product

business

= $1.6M return

2% time recovered x
2 experiments/year x
20 lines of business x

1/3 success rate x
1% idea impact x
$100M product

business

= $267K return

Medium to
large technical

organization

(2,000
technical staff)

1% time recovered x
730 experiments/year x

8 lines of business x
1/3 success rate x
1% idea impact x
$100M product

business

= $19.5M return

1.5% time recovered x
52 experiments/year x
8 lines of business x
1/3 success rate x
1% idea impact x
$100M product

business

= $2.1M return

2% time recovered x
12 experiments/year x
8 lines of business x
1/3 success rate x
1% idea impact x
$100M product

business

= $640K return

2% time recovered x
2 experiments/year x
8 lines of business x
1/3 success rate x
1% idea impact x
$100M product

business

= $107K return

Small to medium
businesses and
non-technical

enterprises

(250
technical staff)

1% time recovered x
730 experiments/year x

1 lines of business x
1/3 success rate x
1% idea impact x
$100M product

business

= $2.4M return

1.5% time recovered x
52 experiments/year x

1 line of business
1/3 success rate x
1% idea impact x
$100M product

business

= $260K return

2% time recovered x
12 experiments/year x

1 line of business
1/3 success rate x
1% idea impact x
$100M product

business

= $80K return

2% time recovered x
2 experiments/year x

1 line of business
1/3 success rate x
1% idea impact x
$100M product

business

= $13.3K return

24

Cost Savings Calculations

Savings calculations start with cost savings from time and effort avoided. From a business standpoint,
any costs that are planned or usual expenses that are then avoided represent returns to the organization.
That is, even though it is not new money coming into the business, it is categorized as such. We will
highlight this throughout the report.

Any costs that are planned or expenses that are then avoided represent
returns to an organization.

Cost of Downtime Per Year

Application and infrastructure downtime carries significant costs, with a recent report by Steven Elliot
and the IDC team suggesting hourly downtime costs can range from $1.25 to $2.5 billion dollars for a
Fortune 1000 firm13. Downtime costs are highly variable depending on the nature of the business, with
high-volume financial transaction businesses seeing much higher costs of downtime than a small brick
and mortar business that simply maintains a web presence to notify customers of its operating hours.
In addition, the ability to recover from an outage depends on the architecture. While we provide these
calculations as an example, we strongly suggest that you calculate these costs with your own composite
costs and IT architecture in mind.

Downtime numbers highlight the importance of a team’s ability to restore service quickly and (as much
as possible), avoid failure in the first place by designing resilient systems. An elimination or reduction in
downtime costs represents returns to the business. This section identifies the amount of downtime that
Elite, High, Medium, and Low IT Performers may be able to avoid each year.

Key idea: Find a way to estimate outage costs, because when these are avoided, they
can represent savings to the business.

This section provides an example.

25

Cost of
Downtime
per year

Deployment
frequency

Change
fail rate

percentage

Mean time
to restore Outage cost

To calculate Cost of Downtime per Year, we use the following equation:

Deployment Frequency

The frequency with which a team deploys will affect how often it has a chance to introduce changes
that can cause an incident. However, remember that less frequent deployments result in releasing much
larger, more complex bundles of code into your production environment, making integration and support
of that new code challenging and identification of any failures increasingly difficult. We refer to our 2019
Accelerate: State of DevOps industry benchmarks for these statistics:

Elite performers are able to deploy on demand or multiple deploys per day. For this
calculation, we will code this as 2 deploys per day, or 730 deploys per year. While two
deploys per day may seem high, Etsy reports 80+ deploys per day and Netflix and Amazon
deploy thousands of times per day, making our estimate quite conservative.

High performers are able to deploy between once per day and once per week. For this
calculation we use the average of these two, or 209 deploys per year.

Medium performers deploy between once per week and once per month. For this
calculation we use the average of these two, or 32 deploys per year.

Low performers deploy between once per month and once every six months. For this
calculation we again used the average of the two, or 7 deploys per year.

26

Change Fail Rate

Every change introduced into production has a chance of causing a failure, incident, or service
degradation. These interruptions in service must be addressed by the team, and have the potential to
lead to larger outages. We refer to the 2019 Accelerate: State of DevOps industry benchmarks for these
statistics, but suggest you use your own if they are available:

Elite performers report 0% to 15% of changes result in a degraded service or require
remediation. For our calculation we will use the average of these two numbers: 7.5%

High performers report 0% to 15% of changes result in a degraded service or require
remediation. For our calculation we will use the average of these two numbers: 7.5%.

Medium performers report 0% to 15% of changes result in a degraded service or require
remediation. For our calculation we will use the average of these two numbers: 7.5%.

Low performers report 46% to 60% of changes result in a degraded service or require
remediation. For our calculation we will use the average of these two numbers: 53%.

Imagine your code base and infrastructure as a Jenga tower. Frequent releases are like adding a single
Jenga piece onto the tower. It is manageable to support and easy to identify which addition caused an
outage if there is one. We can also continue to strengthen and support the underlying infrastructure as
we go, seeing how the small additions affect the tower. Infrequent releases are like adding a giant ball of
hundreds of Jenga pieces, glued together, on top of your Jenga tower. That tower is much more likely to
topple from that single large addition, and now you must figure out which piece or pieces in that ball of
Jenga additions caused the outage.

27

Mean Time to Restore (MTTR)

We work with complex systems, and some failure and downtime is inevitable. The key is the ability to
restore systems quickly. We again refer to the 2019 Accelerate: State of DevOps industry benchmarks for
these statistics:

Elite performers report being able to restore service in less than one hour when an outage
occurs. Because elite performers are so sensitive to outages and prioritize system uptime,
we will use the midpoint of this range for our calculation: .5 hours.

High performers report being able to restore service in less than one day. For our
calculation we will use the midpoint of this range: 4 hours.

Medium performers report being able to restore service in less than one day when an
outage occurs. For our calculation we will use the upper end of this range: 8 hours.

Low performers report being able to restore service between one week and one month
when an outage occurs. For our calculation we will use the midpoint of one month, or 15
days (equivalent to 120 hours)

Outage Cost

Outages are costly to organizations. However, the cost of outages is highly variable and depends, in
particular, on the “blast radius” of the outage (has it taken out your entire infrastructure or just a single
non-mission-critical application?) and the level of service degradation (is the whole system unavailable,
or are we seeing a long tail in response times for certain kinds of requests?). You will need to gather your
own data in order to refine these calculations. At a low level of precision, a recent report from Stephen
Elliot and the IDC team put the average hourly cost of an infrastructure failure at $100K, and the average
hourly cost of a critical application failure between $500K and $1M14. Because DevOps is involved in
developing and delivering core application functionality, we will use the numbers supplied for critical
application failures. We will also remain conservative and use $500K in our estimates. It should be
noted, however, that some businesses, such as retailers and financial institutions, report outage costs of
millions of dollars per minute, so these costs should not be overlooked. We suggest you use your own
average per-hour outage costs if they are available.

28

Table 4.
Returns Possible from Cost of Downtime Avoided

Using the formula and the numbers identified above, we calculate the cost of downtime per year to be:

Cost of
Downtime
per year

Deployment
frequency

Change
fail rate

percentage

Mean time
to restore Outage cost

Elite IT
performers

High IT
performers

Medium IT
performers

Low IT
performers

730 deploys per

year x
7.5% change fail rate x

½ hour MTTR x
$500,000/hr outage cost

= $13.7M

downtime cost per year

= $18.8K
downtime cost per

deployment

209 deploys per

year x
7.5% change fail rate x

4 hour MTTR x
$500,000/hr outage cost

= $31.4M

downtime cost per year

= $150K
downtime cost per

deployment

32 deploys per

year x
7.5% change fail rate x

8 hours MTTR x
$500,000/hr outage cost

= $9.6M

downtime cost per year

= $300K
downtime cost per

deployment

7 deploys per

year x
53% change fail rate x

120 hours MTTR x
$500,000/hr outage cost

= $222.6M

downtime cost per year

= $31.8M
downtime cost per

deployment

29

Adding it All Together

Now that we have identified the primary cost and value components of technology transformation and
improvement work, we will combine them to find the potential returns of a technology transformation
such as DevOps. Keep in mind that all costs saved represent a return to the business.

Potential
return

Value of
rework

recovered

Value lost from
new features

Cost of
downtime

According to our model, it is clear that Low
Performers incur the highest downtime costs
both per year and per deployment. High
performers have higher downtime cost per year
compared to Medium performers, likely due to the
High performers deploying nearly six times more
than Medium performers and the subsequent
costs they make incur to fix those changes. That
being said, the model shows that High Performers
have a lower spend per-deployment than Medium
Performers. In reality, these numbers should
be lower, since Elite and High Performers will
typically architect systems so that outages will
be localized rather than systemic, and will result
in service degradations rather than completely
taking systems down. These important

architectural characteristics substantially reduce
the business impacts—and costs—of downtime.
The solution to decreasing downtime costs is
not to decrease deployment frequency but to
decrease change failure rates, reduce MTTR, build
resiliency into the system, and contain failures so
that the system gracefully degrades rather than
leading to cascading, global outages. The hidden
costs of not deploying frequently include the lack
of feedback from customers, a factor that gives
the best companies the edge as they experiment,
adjust, and continue to win in the market. Note
that all down-time costs saved represent a return
to the business; we categorize them as such in
our calculations moving forward.

Table 5.
Potential return of large product business ($100M)

$100M product portfolio
business size

Elite IT
performers

High IT
performers

Medium IT
performers

Low IT
performers

Large organization that relies on

in-house software

(8,500 engineers)

$18.2M value of

rework recovered +

$48.7M value lost
from new features +

$13.7M cost of

downtime

= $80.6M return

$27.3M value of

rework recovered +

$5.2M value lost
from new features +

$31.4M cost of

downtime

= $63.9M return

$36.5M value of

rework recovered+

$1.6M value lost
from new features +

$9.6M cost of

downtime

= $47.7M return

$36.5M value of

rework recovered +

$267K value lost
from new features +

$222.6M cost of

downtime

= $259.3M return

Medium-to-large technical

organization

(2,000 engineers)

$4.3M value of

rework recovered +

$19.5M value lost
from new features +

$13.7M cost of

downtime

= $37.4M return

$6.4 cost of

rework +

$2M value lost from
new features +

$31.4M cost of

downtime

= $39.9M return

$8.6M cost of

rework +

$640K value lost
from new features +

$9.6M cost of

downtime

= $18.8M return

$8.6M cost of

rework +

$107K value lost
from new features +

$222.6M cost of

downtime

= $231.3M return

Small to medium businesses and

non-technical enterprises

(250 engineers)

$536K value of

rework recovered +

$2.4M value lost
from new features +

$13.7M cost of

downtime

= $16.7M return

$804K value of

rework recovered +

$260K value lost
from new features +

$31.4M cost of

downtime

= $32.4M return

$1M value of rework

recovered+

$80K value lost
from new features +

$9.6M cost of

downtime

= $10.8M return

$1M value of rework

recovered+

$13.3K value lost
from new features +

$222.6M cost of

downtime

= $223.7M return

30

The yearly returns are much larger than most people estimate, illustrating that investments in
technology—if done with true transformation and continuous improvement in mind—can deliver
worthwhile results.

31

Now consider the additional gains available that
we haven’t included in the above calculations.
One example is the value organizations could
realize by reinvesting resources elsewhere: for
example, taking the time saved by reducing
unnecessary rework and reinvesting that time to
new projects, creating value for the company. In
this example, the calculations could be imagined
as a straight investment, almost like “free work”
or additional headcount. Alternatively, they
could be analyzed as a capital investment, using
the excess resources as an input in traditional
reinvestment calculations, evaluated by hurdle
rate and internal rate of return. In our discussions
with forward-thinking companies, they do this
exercise routinely, planning to leverage their

gains in efficiency to realize innovation and value.
While we won’t include these calculations in this
exercise, we encourage you to consider them in
your own thinking.

Finally, the benefits to employees and
organizational culture should not be ignored.
Consider the morale improvement of teams
spending less time on rework and more time on
value-added development. Studies have shown
that engaged, happy employees contribute to IT
and organizational performance15 and correlates
to company growth16. Furthermore, it helps teams
attract and retain additional good talent, creating
a virtuous cycle.

Engaged, happy employees contribute to IT and organizational performance
and correlates to company growth.

Armed with a monetary representation for the return of your technology transformation, you are almost
ready to demonstrate your return on investment. You also need to calculate the cost of investment in this
transformation. While this white paper will not go into the details of these costs, remember to include the
costs of:

Technology, including acquisition, licensing, etc.

Training, including the costs of productivity lost while your technical staff is in training
(include the benefits multiplier)

Downtime while new technology and processes are learned
(including the cost of salary and benefits)

Consulting services

Other related expenses, such as refactoring or re-architecting

Demonstrating Return on Investment

32

Sample Calculation

Using an investment value of $6.8M (which is inclusive of all acquisition, training, and personnel costs)
for a large technical organization’s technology transformation with a product line valued at $100M, we
will demonstrate two methods: payback period and return on investment.

An example $6.8M investment breakdown could look like:

Item Spend amount

Consulting: assessment and roadmap development for technology

transformation initiative

$400,000

Automation software

$1,000,00

SREs and DevOps engineers to augment team

(5 x $180,000 x 1.5 benefits multiplier)l

$1,350,000

Training and DevOps/Kanban/agile coaching for teams

$200,000

Dedicated time and resources of existing workforce

(equivalent to 18 FTE x $143,000 x 1.5 benefits multiplier)

$3,861,000m

Total Investment

$6,811,000

l This calculation uses a higher salary number than that used earlier because hiring and retention is a challenge for organizations, and finding senior SREs and
DevOps engineers will likely require paying a premium.

m This number may seem disproportionately high, but it is likely much higher; technology transformations rely heavily on labor. Research from the 2000s suggests
the cost of labor is 2x the cost of technology17. In a more recent example, Forrester’s Cloud App Migration Cost Model also finds that labor costs far exceed service
and infrastructure costs18.

Patterson: Patterson, D. (2002, Nov 3-8, 2002). A Simple Way to Estimate the Cost of Downtime. Paper presented at the Large Installation System Administrator’s
Conference (LISA ‘02), Philadelphia, PA.

Forrester: https://www.forrester.com/report/Brief+The+Cost+Of+Migrating+An+Enterprise+Application+To+A+Public+Cloud+Platform/-/E-RES132801

Payback Period

One of the simplest methods of talking about return on investment is payback period. Simply put, this
method asks how long an investment takes to pay itself back in terms of profit or savings. In terms of
our calculations, how long it takes our investment to cover the returnsn. The output of the equation is
in years.

Using the potential return of a large product business, in the Elite category, we are considering an
investment that will cost $6.8M and will generate $80.6M per year in returns. If we assume equal cash
flow each year, we calculate the payback period by dividing the investment by the returns:

Payback
period

Investment $6,811,000

.085 years

Returns $80,586,667

33
n Payback period ignores the time value of money and reinvestment and is often done “on the back of a napkin.” It is
generally done with cash based calculations but can also be used with all investment and returns for estimation purposes,
as we show here.

The payback period is .085 years, or about 31 days, meaning this investment will “pay itself back” very
quickly. In this calculation, faster is better. Payback period is considered useful from a risk analysis
perspective because it reveals how long the investment will pose a risk to the firm. It is particularly
relevant in industries such as technology where investments can become obsolete quickly. The benefit
of this analysis is that it is easily understood and communicated. The reader should note that this
method for calculating payback period assumes that cash flows are equal; if they are accelerated or
uneven, your calculations should take that into account.

The ROI for this investment is 10.832. You may be asking: Is this a good ROI? That depends on what an
organization considers “good” and what it is comparing it to. However, we can say that the organization
made ~$10.83 for every dollar it invested in its technology transformation initiative. You can also
think of an ROI ratio in comparison to other investment assets: What kind of returns are available from
investments outside the firm, such as stocks and bonds? While investments in a diversified stock
portfolio are less risky, investments in your own company that have a large ROI can be a good way to
increase your opportunity for returns. That is, if you can achieve similar returns from investing in your
own technology transformation (or even better returns, which is likely in the example above), and those
internal investments will also help you win in the market, why wouldn’t you choose that strategy?

34
o ROI is another estimation method that ignores time value of money.

Return on Investment

Return on investment calculates the profitability of a project and reports the return as a percentage of
the investmento. The output of the equation is a ratio. This ratio is meaningful to investors and people in
business who compare it to other investments.

Given the example above, we are considering an investment that will cost $6.8M and will generate
$80.6M per year in returns (rounded). To calculate the return on investment, we subtract the investment
from the return and divide that number from the investment:

ROI

Return - Investment $80,586,667 - $6,811,000

Investment $6,811,000

10.832

35

As we’ve demonstrated, undertaking a technology
transformation initiative can produce sizeable
returns for any organization. Of course, when
undertaking any cost-estimation exercise, there
are risks that costs may be over- or under-
estimated, as well as risks that returns may
not be realized in the expected timeframe or
that market conditions may shift, leading to
changes in customer preferences or interest
rates. That said, cost and value estimations are
still worthwhile, providing team members and
leadership a basis for decision making. For
each type of IT performer, there are lessons to
be learned.

The data suggests that Medium Performers
have the most to gain by continuing to burn
down technical debt and optimize for speed and
value over cost. We urge Medium Performers to
continue this work and not reach a point where,
after a time of doing hard work, they think they
are not making progress and shift back to their
old ways, settling for short-term improvements
and building up technical debt again. Medium
Performers must continue making progress
toward operational efficiency, implementing
smart technical practices of continuous delivery
such as continuous integration, automated tests,
and version control to achieve sustained high
performance in both throughput and stability.

Low Performers face a paradox. On the one
hand, they lag well behind competitors, often due
to complex legacy systems and conservative

cultures. However, in these organizations there
is typically plenty of low-hanging fruit, provided
the political will exists to seize it. As with all
initiatives, it’s essential to set measurable
business goals for your initiatives and work with
stakeholders throughout the organization to
experiment with bold ideas to achieve results.
Start with teams that have the capacity and
desire for change and have support at the senior
leadership level, and look for quick wins that will
deliver measurable results in weeks, not months,
even if the impact is limited.

For any team starting a technology
transformation, remember that many
improvement initiatives follow a “J-curve,” so be
prepared for early disappointments. The J-curve
is the performance hit teams often experience
when a new member joins a team or when new
processes are put in place and there’s an initial
negative impact on performance before things
get better. As Julia Wester notes, the size of the
change often affects the depth of the negative
impact19. A technology transformation initiative
is a big change, so don’t give up if (realistically,
when) there is an initial hit to performance or
productivity. This pattern is seen in our data, with
the path taken from Low performance to Elite
performance taking a dip through higher rates
of unnecessary rework as teams tackle their
technical debt. When teams stick with it, they are
rewarded with superior software development
and delivery capabilities, and the lowest rates of
unnecessary rework, on par with those reported
in other studies.

Conclusion:
Technology Transformation Pays Off

36

J-Curve of Transformation

Teams begin
transformation
and identify
quick wins

Automation increases test
requirements, which are dealt
with manually. A mountain of
technical debt blocks progress

Technical debt and
increased complexity
cause additional
manual controls and
layers of process
around changes,
slowing work

Automation helps
low performers progress
to medium performers

Relentless improvement work leads to
excellence and high performance! High and elite
performers leverage expertise and learn from
their environments to see jumps in productivity

For more information on what steps you can take and what technical practices you should
implement to truly improve your IT and organizational performance, visit our website at
cloud.google.com/devops.

https://cloud.google.com/devops

37

Authors

Nicole Forsgren, PhD

Dr. Nicole Forsgren is an IT impacts expert best known for her work
with tech professionals and as the lead investigator on the largest
DevOps studies to date. She is a consultant, expert, and researcher
in knowledge management, IT adoption and impacts, and DevOps.
Nicole is the CEO and Chief Scientist at DORA. In a previous life,
she was a professor, sysadmin, and hardware performance analyst.
She has been awarded public and private research grants (funders
include NASA and the NSF), and her work has been featured in
various media outlets and several peer-reviewed journals and
conferences. She holds a PhD in Management Information Systems
and a Masters in Accounting.

Jez Humble

Jez Humble is co-author of The DevOps Handbook, Lean Enterprise,
and the Jolt Award winning Continuous Delivery. He has spent his
career tinkering with code, infrastructure, and product development
in companies of varying sizes across three continents, most recently
working for the US Federal Government at 18F. He’s currently a Staff
Developer Advocate at Google Cloud and teaching at UC Berkeley.

Gene Kim

Gene Kim is a multi-award winning CTO, researcher, and author. He
has been studying high-performing technology organizations since
1999. He is the founder of Tripwire and served as CTO for thirteen
years. He has co-authored four books including The Phoenix Project:
A Novel About IT, DevOps, and Helping Your Business Win (2013), The
DevOps Handbook (2016), and The Visible Ops Handbook (2004).

https://www.amazon.com/dp/1942788002?tag=contindelive-20
https://www.amazon.com/dp/1449368425?tag=contindelive-20
https://www.amazon.com/dp/0321601912?tag=contindelive-20
https://18f.gsa.gov/
https://www.ischool.berkeley.edu/people/jez-humble

Brenna Washington

Brenna Washington is Product Marketing Manager at Google. In
her role, she is responsible for developer marketing and crafting the
product story behind some of Google Clouds most used developer
tools. Prior to working on Google Cloud, Brenna worked with
YouTube to drive advertisers’ awareness in understanding the critical
role YouTube plays throughout the marketing funnel, from awareness
to acquisition. Brenna holds a bachelors in Business Administration
and Cinematic Arts with a certificate in Big Data Analytics from the
University of Southern California.

Nikhil Kaul

Nikhil Kaul leads DevOps product marketing at Google Cloud, where
he is responsible for driving positioning, messaging, and go-to-
market for DevOps products and solutions. Prior to Google, Nikhil
spent his time in a variety of technology roles, including software
engineering and product management. Nikhil holds a master of
business administration (MBA) from Georgetown University.

Dustin Smith

Dr. Dustin Smith is a human factors psychologist and staff user
experience researcher at Google. He studies how people are affected
by the systems and environments around them in a variety of
contexts: software engineering, free-to-play gaming, and healthcare.
His research at Google has emphasized identifying areas where
software developers can feel happier and more productive during
development. Dustin received his PhD in Human Factors Psychology
from Wichita State University.

38

39

About DORA

DevOps Research and Assessment (DORA) was founded by Dr. Nicole Forsgren, Jez Humble, and Gene
Kim to conduct research into understanding high performance in the context of software development
and the factors that predict this high performance. In 2018, DORA was acquired by Google. As part of
Google Cloud, DORA continues to create delightful experiences for developers and operators through
data-driven insights. Additionally, DORA’s research over the last six years with more than 31,000
professionals serves as the basis for a set of evidence-based tools for evaluating and benchmarking
technology organizations.

Learn more at cloud.google.com/devops.

Are you evaluating your own technology transformation?
We offer assessments directly to organizations.

Request a demo at camp-info@google.com

https://cloud.google.com/devops
mailto:camp-info%40google.com?subject=

40

References

1. Kim, G. (n.d.) The Amazing DevOps Transformation of The HP LaserJet Firmware Team (Gary Gruver). Retrieved from
 https://itrevolution.com/the-amazing-devops-transformation-of-the-hp-laserjet-firmware-team-gary-gruver/

2. DevOps Research and Assessment & Google Cloud. (n.d.).2019 Accelerate: State of DevOps Report (Rep.)

3. DevOps Research and Assessment & Google Cloud. (n.d.).2019 Accelerate: State of DevOps Report (Rep.)

4. DevOps Enterprise Summit 2014. (2014, October 29). DOES14 – Courtney Kissler – Nordstrom – Transforming to a Culture
 of Continuous Improvement Retrieved from https://www.youtube.com/watch?v=0ZAcsrZBSlo

5. Earnshaw, A. (2013, July 18). DevOps Solves Business Problems: Gene Kim’s Top Aha Moments. Retrieved from https:
 puppet.com/blog/devops-solves-business-problems-gene-kim%E2%80%99s-top-aha-moments

6. Divine, C. (2011, April 20). Leadership in an Agile Age: An Interview With Scott Cook. Retrieved from https://web.archive.org
 web/20160205050418/http://network.intuit.com/2011/04/20/leadership-in-the-agile-age/

7. Ippolito, B., & Murman, E. (2001, December). Improving the Software Upgrade Value Stream. In 43rd AIAA Aerospace
 Sciences Meeting and Exhibit (p. 1252).

8. Chron 200 / Interview with CEO of the Year Charles Schwab. (2007, April 9). Retrieved from http://www.sfgate
 com/business/article/Chron-200-Interview-with-CEO-of-the-Year-2603664.phphttp://dspace.mit.edu/bitstream
 handle/1721.1/83541/REP_0101_Ippo.pdf?sequence=1

9. Hainzinger, Brittany. “DevOps Salary Report for 2019 Is Here.” App Developer Magazine, 22 Jan. 2019,
 appdevelopermagazine.com/devops-salary-report-for-2019-is-here/.

10. Morozoff, E. (2009, September 4). Using a Line of Code Metric to Understand Software Rework. Retrieved from http:
 ieeexplore.ieee.org/document/5232799/

11. Kohavi, R., Crook, T., Longbotham, R., Frasca, B., Henne, R., Ferres, J., Melamed, T. (2009). Online Experimentation at
 Microsoft. Retrieved from http://ai.stanford.edu/~ronnyk/ExPThinkWeek2009Public.pdf

12. Kohavi, R., Crook, T., Longbotham, R., Frasca, B., Henne, R., Ferres, J., Melamed, T. (2009). Online Experimentation at
 Microsoft. Retrieved from http://ai.stanford.edu/~ronnyk/ExPThinkWeek2009Public.pdf

13. Elliot, S. (2014). DevOps and the Cost of Downtime: Fortune 1000 Best Practice Metrics Quantified. Retrieved from http:
 info.appdynamics.com/DC-Report-DevOps-and-the-Cost-of-Downtime.html

14. Shimel, A. (2015, February 11). The real cost of downtime. Retrieved from http://devops.com/2015/02/11/real-cost
 downtime/.

15. DevOps Research and Assessment, LLC. (n.d.). 2019 Accelerate: State of DevOps Report (Rep.)

16. Reichheld, F. F. (2003, December). The One Number You Need to Grow. Retrieved from https://hbr.org/2003/12/the-one
 number-you-need-to-grow

17. Patterson, D. (2002, Nov 3-8, 2002). A Simple Way to Estimate the Cost of Downtime. Paper presented at the Large
 Installation System Administrator’s Conference (LISA ‘02), Philadelphia, PA

18. Rymer, J. R., Bartoletti, D, Martorelli, B, Mines, C, Tajima, C. (2016, March 9). Brief: The Cost Of Migrating An Enterprise
 Application To A Public Cloud Platform. Retrieved from https://www.forrester.com/report/Brief The Cost Of Migrating An
 Enterprise Application To A Public Cloud Platform/-/E-RES132801

19. Wester, J. (2016, February 6). Why improvement initiatives fail. Retrieved from http://www.everydaykanban
 com/2013/02/26/why-improvement-initiatives-fail/

https://www.youtube.com/watch?v=0ZAcsrZBSlo
http://www.everydaykanban.com/2013/02/26/why-improvement-initiatives-fail/
http://www.everydaykanban.com/2013/02/26/why-improvement-initiatives-fail/

