
Understanding the container security
concepts that impact your organization

Why Container
Security Matters
to your Business

Google Cloud Whitepaper
November 2019

Table of Contents

Introduction . 01

What actually is a container .02

Supply Chain Security .06

Running Kubernetes Securely . 10

The CIS Kubernetes Benchmark: Gauging your Security 13

The shared responsibility model in GKE .17

Understanding Container Isolation . 25

Giving back to open source Kubernetes . 29

Putting it all together .31

User Story: . 33
How DroneDeploy achieved ISO-27001 certification on GKE

Further reading . 39

Introduction
Why container security matters to
your business

All around you, whether you know it or not, are containerized
applications. They provide Wifi in your local cafe, process your
purchase at the grocery store, and serve up your online banking. You
might send your doctor a message through a mobile app and then
play your favorite mobile game, all running in containers.

With real workloads come real consequences. Your business is your
data, and running your business-critical data in containers has
elevated this once-buzzword to something business leaders are
forced to make decisions about. If you’re evaluating a cloud provider
and your security lead says, “Cloud A offers managed images; for
Cloud B, we’d be on our own,” how important is that? Should it
influence your decision?

The goal of this book is to teach you the fundamentals of container
security so when it comes time to make business decisions, you’ll
have the context you need to help keep your business safe.

1

The TL;DR

• Don’t let the shipping
container imagery
fool you; containers
are not a special
security boundary

• Containers use
primitives of the Linux
kernel (cgroups,
namespaces) to
isolate processes in
an environment

• A “container image” is
your application and
its dependencies, and
uses a “base image”
as the basis for the
container image

• Container registries
host your container
images. It’s important
that you be able to
trust your base and
container images,
and that you use a
private, trusted
registry .

What actually is a container?

A container is a way of packaging a given application’s code and
dependencies so that the application will run easily in any
computing environment. This solves the common problem of
portability -- or, more precisely, the lack thereof. Applications are
built and tested using specific language, runtime, package, and
library versions. When Developer A hands off work to Developer B,
who merges it for testing and into production, inconsistencies
between these environments can cause the application to break.
(Operating system versions, for example, can be hard to keep in
sync between development and production; OS and application
upgrades risk accidentally pushing incompatible changes.) Also, if
you want to run multiple applications on the same host, these
applications may require incompatible OS versions.

Containers solve the portability problem by isolating the application
and its dependencies so they can be moved seamlessly between
machines. A process running in a container lives isolated from the
underlying environment. You control what it can see and what
resources it can access. This helps you use resources more
efficiently and not worry about the underlying infrastructure.

But while a container can be considered a boundary, it’s a boundary
with limitations. Just like VMs, containers can still be compromised
through various attacks, or left vulnerable through misconfigurations
or unpatched components. In “Running Kubernetes Securely,” we’ll
talk more about threats to containers, but a compromised or
misconfigured container can lead to unauthorized access to your
workloads and your compute resources, and even the potential to
recreate your application (and its data) somewhere else.

2

Containers

3

Core kernel container mechanisms and privilege restrictions

Containers use specific features of the Linux kernel that “trick” individual applications into thinking they’re in their
own unique environment, even though multiple applications share the same host kernel. (If you’re not familiar with
the Linux kernel, it’s a part of the operating system that communicates between processes--requests that do user
tasks like opening a file, running a program-- and the hardware. It manages resources like memory and CPU to
meet these requests).

The core components of the Linux kernel that are used for containers are cgroups — control groups, which define
the resources like CPU and memory which are available to a given process — and namespaces, which are a way of
separating processes by restricting what each process can see, so that system resources “appear” isolated to the
process.

Along with cgroups and namespaces, you can also use a Linux Security Module (LSM) to configure a container’s
capabilities. Two LSMs common in containers are AppArmor and SELinux. Both deny undesirable default
capabilities, like the ability to write to the proc filesystem. Another kernel feature, Secure Computing with filters
(seccomp) is a system call filter which prohibits certain syscalls from being made to the kernel, which reduces the
kernel’s attack surface.

https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html

Cgroups, namespaces, LSMs and seccomp are the parameters
which define what the process can do when it’s running, and what
creates our containerized environment. But there’s much more to
containers. With these tools we can isolate our processes on one
host, but our end goal is to package our applications to run in any
environment, and in order to accomplish that we'll need a container
runtime and image.

Container runtimes, images and registries

A container runtime is responsible for executing the container’s
specifications. Google Cloud Developer Advocate Ian Lewis explores
container runtimes’ mechanisms and functionalities in this four part
series. For now, we can think of the runtime as what configures the
container isolation primitives and runs a process inside them.
Different runtimes have different security capabilities, particularly in
the area of container isolation (covered in ”Understanding
Isolation”).

The container image specifies the container’s file system. For
example, if you’re running a Node.js application, the container image
would contain your app, Node.js, and other dependencies like Linux
system libraries (except the kernel). A container image usually
extends a base operating system image, or base image. This base
image is the basis of your container, so you’ll want to ensure that it’s
properly patched and free from known vulnerabilities.

Container images are static, which is part of what makes them a
security benefit; when you need to make a change to a deployed
container, you should build and deploy a new image rather than
changing the running container itself. Deploying your containers
with read-only filesystems in order to prevent intruders from
changing files is one way you can use containers’ inherent
architecture properties as a security tool.

Container images are stored in container registries. You can pull
your container image from a common repository like Docker Hub or
a private repository like Google Container Registry. Either way, it’s

4

A container image
usually extends a
base operating
system image, or
base image . This
base image is the
basis of your
container, so you’ll
want to ensure that
it’s properly patched
and free from known
vulnerabilities .

https://www.ianlewis.org/en/container-runtimes-part-1-introduction-container-r
https://www.ianlewis.org/en/container-runtimes-part-1-introduction-container-r

critical that you be able to trust this image, since it’s going in your
environment. You can easily imagine the risks of pulling from a
widely available but unknown source on the public internet (we’ll
discuss this further in “Supply Chain Security”).

You don’t need to understand how to configure SELinux and
namespaces yourself, but you should know that containers alone are
not a hardened security boundary; there are many necessary
components for running them -- like base images, container images,
and registries -- each of which comes with its own set of security
considerations.

5

Supply Chain Security

Adopting containers and container orchestration tools like
Kubernetes can sound intimidating. But in fact, you can use
containers to improve your overall security posture.

You can use containers to improve your overall security posture:

1. Containers are short-lived and frequently re-deployed; you
can constantly be patching.

2. Containers are intentionally immutable; a modified container
is a built-in security alert.

3. Good security defaults are one line changes; setting secure
configurations is easy.

4. With isolation technologies, you can increase security
without adding resources.

Containers give you a software supply chain

With a monolithic application running on a virtual machine,
developers usually make changes by remotely logging in to the
machine or pushing code changes manually. This is not only hard to
debug, but it’s also a very informal process; the next time the
developer needs to make a change, they can just remotely log in to
the VM again to debug, patch, update, restart, or otherwise adjust
the app. That’s not a great security story, and it’s really tough on the
ops team, because they don’t know what exactly is running anymore.

With containers, things are a bit different. Containers have a defined
development pipeline, also known as a software supply chain. You
write your code and can ensure that it meets your requirements for
build, test, scan, and whatever else, before you deploy it. Further,
code can be intercepted at any step in the chain if it doesn’t meet
your requirements.

6

The TL;DR

There are properties
inherent to containers
that can be security
advantages:

• Containers have a
defined development
pipeline

• Containers are not
patched live; patches
can be rolled out as
part of your regular
pipeline

• Container images are
meant to be
immutable; if a new
vulnerability is
disclosed, you know
if that image is
affected

Containers let you patch continuously,
automatically

Even today, many security attacks that occur in the wild, especially
for containers, are ‘drive-by’ attacks in which bad actors look for
deployments with known vulnerabilities that they can exploit. And
those vulnerabilities are rarely freshly disclosed vulnerabilities that
haven’t been patched—we’re talking about problems that have been
left unfixed for years. Like wearing sunscreen, scanning for and
patching vulnerabilities is one of those boring best practices you
really should be doing (may we recommend Container Registry
Vulnerability Scanner?).

But patching containers is different than patching VMs. Containers
are meant to be immutable, meaning they don’t change once they’re
deployed; instead of remotely logging in to the machine, you rebuild,
and redeploy, the whole image. This happens quite often, since
containers are short-lived; Sysdig estimates that 95% of containers
live for less than a week.

But wait…isn’t that’s really often? If you look at traditional patch
management, Patch Tuesday comes just once a month. Maybe if
you’re extra busy, you might also have to manage some weekly patch
sets. You might still need Sunday 2 a.m. maintenance windows to
apply your patches (and there’s a poor soul who has to stay up for
this), but there’s simply not enough time in the day or coffee in the
world to deal with deployments that only live one week!

Here’s the thing though. With containers, you don’t patch live
containers, you patch the images in your container registry. By doing
so, the fully patched container image can be rolled out or rolled back
as one unit, so the patch rollout process becomes the same as your
(obviously very frequent) code rollout process, complete with
monitoring, canarying, and testing. This way, your patch rolls out
using your normal, predictable process. An alternative (though less
preferable because it happens on an unpredictable schedule) is to
let the rollout happen ad hoc. Then the next time your container dies,
Kubernetes spins up another one to compensate, and any patches
you’ve applied will naturally roll out to your infrastructure. Depending
on your containers’ lifespan, you should be fully patched in a matter
of days.

7

Even today, many
security attacks that
occur in the wild,
especially for
containers, are
‘drive-by’ attacks in
which bad actors
look for deployments
with known
vulnerabilities that
they can exploit .

https://cloud.google.com/container-registry/docs/get-image-vulnerabilities
https://cloud.google.com/container-registry/docs/get-image-vulnerabilities
https://sysdig.com/blog/2018-docker-usage-report/
https://sysdig.com/blog/2018-docker-usage-report/

Containers mean you can actually tell if you’re
affected by a new vulnerability

Since containers are immutable, they give you content
addressability—they’re stored in such a way that you’re able to
retrieve a container based on its contents. This means you actually
know what’s running in your environment -- for example, which
images you’ve deployed.

What does this mean for security? Suppose that when you scan your
image, it’s fully patched, so you deploy it. Later on, a new
vulnerability is found. Rather than scanning your production clusters
directly, you can just check your registry to see which versions are
susceptible.

This also simplifies your patch management by decoupling
decisions and processes about when to patch from actual patching.
Instead of trying to answer, “Is my container patched?” your security
team can ask, “Is my container image patched?” Then your ops team
can ask, “Is my (patched) image running?” This also lets you answer
the inevitable question from your CISO: “Are we affected?”

Containers made Google more secure, and more
reliable

Thankfully, you don’t have to take our word for it. Google's
infrastructure is containerized, based on our Borg container
orchestration system (the inspiration for Kubernetes), and we use it
to deploy services and security patches on billions of containers per
week.

By now it should be obvious how that’s possible: by patching
continuously, and deploying patched containers. In the event of a
disruptive incident, for example hardware maintenance or a critical
security patch, we use something called live migration. For GCP
workloads, live migration is basically a blue/green deployment,
where the new workload is deployed alongside the existing workload,
and a load balancer gradually moves traffic over until it’s fully

8

https://research.google.com/pubs/pub43438.html?hl=es
https://cloud.google.com/compute/docs/instances/live-migration

handled by the new instance. This means you can effectively patch a
running containerized workload, with no downtime, without the user
noticing. This is what let us patch Heartbleed in 2014 with no
downtime, and more recently Spectre/Meltdown.

In short, using containers allows you to easily patch your
infrastructure, with no downtime, and do so quickly in the event that
you’re affected by a newly discovered vulnerability. Better yet, you can
automate all the boring patching stuff you never liked doing anyway. If
you're serious about your production system’s security, your
infrastructure team can use containers to make patching your
production environment safer, faster and easier.

But what if you want to run multiple containers? Enter container
orchestration platforms. Next we’ll focus on the predominant
platform, Kubernetes, which helps you run containers at scale.

9

https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://www.youtube.com/watch?v=tz5ggxqEOos

Running Kubernetes Securely

Upstream Kubernetes, the open source version that you get from the
GitHub repository, wasn’t designed to be a locked-down security
environment out of the box. Rather, its defaults solve for flexibility
and usability; it is designed to be very extensible, and much of its
security relies on using those extension points to integrate with
other systems like identity and authorization.

And that’s okay! It means Kubernetes can fit lots of use cases. But it
also means that you can’t assume that upstream Kubernetes’
defaults are correct for you. If you want to deploy Kubernetes with a
“security first” mindset, there are several core components to keep in
mind.

Just as we established a mental model for what a container is (and
isn’t), it’s important to do the same for Kubernetes. Kubernetes has
many components, and from an attacker’s point of view, each one
comes with a different reward if compromised. Understanding this
will help you understand what your security team can do to protect
your Kubernetes instance and your applications.

Kubernetes from the attacker’s view

In Kubernetes, a container runs in a pod, which in turn runs on a node,
a virtual or physical machine. The nodes running pods are called
worker nodes, which contain the container runtime, have their own
operating system, and are managed by the Kubernetes control plane.
Finally, etcd is a key-value store that keeps the state of the control
plane. All of these pieces together make up your cluster.

10

The TL;DR

• There are multiple
components to
Kubernetes that
should be protected

• Reasons for attacking
containers include
abusing compute
resources, accessing
workload data, or
gaining access to
application code

• The defaults in
upstream Kubernetes
should not be
assumed to provide
adequate protection
based on your use
case

Why would an attacker want to compromise these components?

Let’s start with the container itself. A common reason for attacking containers today is to abuse compute
resources, for example, for cryptocurrency mining. But attacking the container can also offer access to customer
or workload data.

Attackers could also try to escape the container in order to get at the node. Compromised Kubernetes nodes give
malicious actors numerous attack opportunities, including a chance to propagate to other nodes in the cluster and
also gain persistent access to valuable user code, compute and/or data. “Container escape” is a type of privilege
escalation attack that uses the fact that containers share a host kernel. If a malicious actor compromises a con-
tainer and receives privileged access, they could potentially access information running in the other containers.
We’ll cover more about this attack and how to prevent it in “Understanding Isolation.”

The Kubernetes master controls your cluster. An attacker that can compromise the master can control the environ-
ment, including the ability to take it offline. And a compromised etcd can mean the ability to modify or destroy the
cluster, steal secrets and credentials, or gain enough information about the application it’s running to go recreate it
somewhere else.

Kubernetes architecture

Pod

Container

Node

Master

etcd

Cluster

Pods are collections of containers which are deployed on nodes.

Nodes talk to the master, and are the machines that run your
containers using the standard kernel.

The master controls the cluster.

etcd is used for storing the cluster state.

A cluster is a set of nodes on which containers are scheduled.

Kubernetes architecture

11

The good news: you can proactively harden your Kubernetes deploy-
ment to increase your container security. If you’re using a managed
service, your provider may have implemented some of these for you
(in Google Kubernetes Engine (GKE), you can see what we offer to
protect these Kubernetes components). There are also tools, like the
CIS Benchmark, that will help you compare where your Kubernetes
deployment is now, and where you want to be.

12

https://cloud.google.com/containers/security
https://cloud.google.com/containers/security

The CIS Kubernetes Benchmark
Gauging your security

The Center for Internet Security (CIS) Kubernetes Benchmark is a set
of recommendations for configuring Kubernetes to support a strong
security posture. The CIS Benchmark is tied to a specific Kubernetes
release; the first Benchmark was for Kubernetes 1.6, at the time of
writing, the latest is for the 1.15 Kubernetes release. These CIS
Benchmarks are meant to be widely applicable to many Kubernetes
distributions.

Each CIS Benchmark is community-contributed, and written by
experts in a variety of disciplines in order to reflect multiple
perspectives, including security consulting, development,
compliance and operations. These experts are volunteering their
time, so if you meet a CIS editor, thank them for developing this
resource!

CIS Benchmark recommendations are defined as either Level 1 -- a
fundamental security configuration with an immediate benefit -- or
Level 2, an extension of a Level 1 recommendation that, while
improving security, may inhibit performance or harm compatibility,
and thus requires evaluation before implementation.

The CIS Kubernetes Benchmark is written for the open source
Kubernetes distribution and intended to be as universally applicable
across distributions as possible. So you shouldn’t read it as a step-
by-step required configuration manual, and it isn’t fully applicable to
hosted distributions like GKE. “With any security standard, it is very
important for companies to consider their threat model,” says Rory
McCune, Principal Consultant, NCC Group PLC, and CIS Benchmark
editor. “Some security controls will always have trade-offs in terms
of performance impact or usability, so organizations should not treat
methodologies like the CIS Benchmark as an ‘all or nothing’ exercise,
but instead should consider each recommendation and whether it
makes sense in the context of their environment.”

13

The TL;DR

• The CIS Kubernetes
Benchmark contains
a set of
recommendations for
a strong Kubernetes
security posture

• It is not written to be
a must-do checklist,
but rather
recommendations
that you should
evaluate

• If you are using a
managed service,
some
recommendations in
the CIS Benchmark
may not apply

If you’re using a managed service, not all items on the CIS
Benchmark are your responsibility, nor are they directly exposed to
or configurable by you, as they fall under your provider’s purview. In
GKE, for example, etcd -- the key value store that keeps the state of
your cluster -- is part of what Google hardens per GKE’s shared
responsibility model. If you were to run a tool like kube-bench, an
open source tool that checks for the CIS Benchmark’s recommended
configurations, you wouldn’t be able to inspect certain elements,
such as the control plane, and might see false Benchmark item
“FAILs” for other items due to that limitation.

How to apply the CIS Benchmark to your
deployment

How you will want to apply the CIS Benchmark will depend on how
you consume Kubernetes and what other CIS Benchmarks you also
plan to use.

If you’re running open source Kubernetes

If you’re running Kubernetes straight from upstream, you can see
how you’re doing against the CIS Benchmark by using kube-bench, a
line-by-line list of recommendations, each with a PASS/FAIL. The
output includes the corresponding recommendation number in the
Benchmark guide. If you fail item 1.1.7, for example, you can simply
check 1.1.7 in the guide for their recommendation and
implementation.

14

“It is impossible to
inspect the master
nodes of managed
clusters, e .g . GKE,
EKS and AKS, using
kube-bench as one
does not have
access to such
nodes, although it is
still possible to use
kube-bench to
check worker node
configuration in
these environments .”

“It is impossible to
inspect the master
nodes of managed
clusters, e .g . GKE,
EKS and AKS, using
kube-bench as one
does not have
access to such
nodes, although it is
still possible to use
kube-bench to
check worker node
configuration in
these environments .”

https://cloud.google.com/blog/products/containers-kubernetes/exploring-container-security-the-shared-responsibility-model-in-gke-container-security-shared-responsibility-model-gke
https://cloud.google.com/blog/products/containers-kubernetes/exploring-container-security-the-shared-responsibility-model-in-gke-container-security-shared-responsibility-model-gke
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench

If you’re using a managed service

As the kube-bench docs call out, “It is impossible to inspect the
master nodes of managed clusters, e.g. GKE, EKS and AKS, using
kube-bench as one does not have access to such nodes, although it
is still possible to use kube-bench to check worker node
configuration in these environments.”

One benefit of a managed service is that, depending on your
provider’s shared responsibility model, the security of certain
components (the master nodes, for example) isn’t your
responsibility. You can still use the CIS Benchmark and kube-bench
to test your security posture, but the inspection limitations means
you shouldn’t expect to see an “all pass” status. For components you
don’t control (and might not be able to test directly), your service
provider should be able to tell you what measures they’ve taken to
harden them -- and indeed, what measures they take to protect your
workloads. (For GKE, see Control plane security and Cluster trust).

For components that you’re responsible for protecting, your provider
should be able to offer further distribution-specific steps you can
take to improve your security, such as, for example, the GKE
hardening guide.

Finally: there’s an ongoing effort to develop distribution-specific
benchmarks based on the general CIS Kubernetes Benchmark. If
you’re interested, you can follow progress and contribute directly in
the CIS WorkBench tool.

Combining multiple CIS Benchmarks

Some tools attempt to analyze Kubernetes nodes against multiple
CIS Benchmarks (e.g. Linux, Docker, and Kubernetes) and combine
the results. Because those benchmarks weren’t designed to be
combined and applied in a Kubernetes environment, This often
results in confusing and potentially contradictory advice. For
example, it doesn’t make much sense to invest deeply in a
recommendation from the CIS Docker Benchmark, like configuring

15

One benefit of a
managed service is
that, depending on
your provider’s
shared responsibility
model, the security
of certain
components (the
master nodes, for
example) isn’t your
responsibility .

https://cloud.google.com/kubernetes-engine/docs/concepts/control-plane-security
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster
https://workbench.cisecurity.org/

Docker authorization plugins, when Kubernetes will be handling the
authorization and scheduling of containers. In fact, it makes the
most sense to remove much of the unused Docker functionality and
run using the GKE container node image as recommended in the
GKE hardening guide.

Similarly, the CIS Linux Benchmark is designed for a different serving
environment that doesn’t translate completely to Kubernetes and
hosted cloud computing. For example, some advice centers around
not being able to modify security sensitive configuration without a
reboot. This makes sense in traditional server or desktop
deployments where reboots would be fairly visible and unusual.
Contrast that with a Kubernetes cluster whose nodes are largely
disposable and may be created and destroyed regularly in response
to application needs. A hosted cloud computing environment may
freeze certain configurations and leave others open for users to
configure It might also be undesirable to have the cloud provider
freeze configuration in some cases if customers need configurability
to meet their security needs.

If you’re using tools that combine benchmarks in this way, you
should consider each recommendation on its merits and decide if it
makes sense and is applicable to your environment, rather than
treating it as established best practice.

16

The shared responsibility model in
GKE

Security in the cloud is a responsibility shared between the cloud
provider and its customer. Google Cloud is committed to doing our
part to protect the underlying infrastructure, like encryption at rest
by default, and provide capabilities you can use to protect your
workloads, like access controls in Cloud Identity and Access
Management (IAM). As newer infrastructure models emerge, though,
it’s not always easy to figure out what exactly you and your provider
are each responsible for. Here we’ll we clarify what Google
Kubernetes Engine (GKE) does and doesn’t do—and where to look for
resources to lock down the rest.

Google Cloud’s shared responsibility model

The shared responsibility model depends on the workload—the more
we manage, the more we can protect. This starts at the bottom of
the stack and moves upward, from the infrastructure as a service
(IaaS) layer, where only the hardware, storage, and network are the
provider’s responsibility, up to software as a service (SaaS), where
almost everything except the content and its access are up to the
provider. (For a deep dive check out the Google Infrastructure
Security Design Overview whitepaper). Platform as a service (PaaS)
layers like GKE fall somewhere in the middle; hence the ambiguity
that arises.

17

The TL;DR

• The security of cloud
services is a shared
responsibility
between the provider
and the user

• It is important your
security and incident
response teams
understand what they
are responsible for
hardening and
protecting

• It is important that
your team
understand how your
provider
communicates in the
event of an incident
affecting a
component they’re
responsible for

https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://cloud.google.com/security/infrastructure/design/
https://cloud.google.com/security/infrastructure/design/

For GKE, at a high level, we are responsible for protecting:

• The underlying infrastructure, including hardware, firmware, kernel, OS, storage, network, and more. This
includes encrypting data at rest by default, encrypting data in transit, using custom-designed hardware,
laying private network cables, protecting data centers from physical access, and following secure software
development practices.

• The nodes’ operating system, such as Container-Optimized OS (COS) or Ubuntu. GKE promptly makes all
available patches to these images. If you have auto-upgrade enabled, this will happen automatically. This
is the base layer of your container—it’s not the same as the operating system running in your containers.

• The Kubernetes distribution. GKE provides the latest upstream versions of Kubernetes, and supports
several minor versions. Providing updates to these, including patches, is our responsibility.

Content

Access policies

Usage

Deployment

Web application security

Identity

Operations

Access and authentication

Network security

Guest OS, data & content

Audit logging

Network

Storage + encryption

Hardened Kernel + IPC

Boot

Hardware

IaaS PaaS SaaS

Google’s responsibility User’s responsibility

Shared responsibility on Google Cloud

18

• The control plane. In GKE, we manage the control plane,
which includes the master VMs, the API server and other
components running on those VMs, as well as the etcd
database. This includes upgrades and patching, scaling, and
repairs, all backed by an SLO.

• Google Cloud integrations, for IAM, Cloud Audit Logging,
Stackdriver, Cloud Key Management Service, Cloud Security
Command Center, etc. These enable controls available for
IaaS workloads across Google Cloud on GKE as well.

Now, here’s what you are responsible for protecting:

• The nodes that run your workloads. You are responsible for
any extra software installed on the nodes, or configuration
changes made to the default. You’re also responsible for
keeping your nodes updated. We provide hardened VM
images and configurations by default, manage the
containers that are necessary to run GKE, and provide
patches for your OS. You’re just responsible for upgrading. If
you use node auto-upgrade, it moves the responsibility of
upgrading these nodes back to us.

• The workloads themselves, including your application code,
dockerfiles, container images, data, RBAC/IAM policy, and
containers and pods that you’re running. This means
leveraging GKE features and other Google Cloud products to
help protect your containers.

Hardening the control plane is Google’s
responsibility

Google is responsible for improving the security of the control plane
— the component that manages how Kubernetes communicates
with the cluster, and applies the user’s desired state. The control
plane includes the master VM, API server, scheduler, controller

19

manager, cluster CA, root-of-trust key material, IAM authenticator
and authorizer, audit logging configuration, etcd, and various other
controllers. All of your control plane components run on Compute
Engine instances that we own and operate. These instances are
single tenant, meaning each instance runs the control plane and its
components for only one customer. (You can learn more about GKE
control plane security here.)

We make changes to the control plane to further harden these
components on an ongoing basis—as attacks occur in the wild,
when vulnerabilities are announced, or when new patches are
available. For example, we updated clusters to use RBAC rather than
ABAC by default, and locked down and eventually disabled the
Kubernetes dashboard.

How we respond to vulnerabilities depends on which
component the vulnerability is found in:

• The kernel or an operating system: We apply the patch to
affected components, including obtaining and applying the
patch to the host images for Kubernetes, COS and Ubuntu.
We automatically upgrade the master VMs, but you are
responsible for upgrading nodes. Spectre/Meltdown and
L1TF are examples of such vulnerabilities.

• Kubernetes: With Googlers on the Kubernetes Product
Security Team, we often help develop and test patches for
Kubernetes vulnerabilities when they’re discovered. Since
GKE is an official distribution, we receive the patch as part of
the Private Distributors’ List. We’re responsible for rolling out
these changes to the master VMs, but you are responsible
for upgrading your nodes. Take a look at these security
bulletins for the latest examples of such vulnerabilities,
CVE-2017-1002101, CVE-2017-1002102, and
CVE-2018-1002105.

20

https://cloud.google.com/kubernetes-engine/docs/concepts/control-plane-security
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#disable_abac
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#disable_abac
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#disable_kubernetes_dashboard
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#disable_kubernetes_dashboard
https://cloud.google.com/container-optimized-os/docs/concepts/features-and-benefits
https://cloud.google.com/kubernetes-engine/docs/how-to/upgrading-a-cluster
https://support.google.com/faqs/answer/7622138#gke
https://cloud.google.com/kubernetes-engine/docs/security-bulletins#august-14-2018
https://github.com/kubernetes/sig-release/blob/master/security-release-process-documentation/security-release-process.md#product-security-team-pst
https://github.com/kubernetes/sig-release/blob/master/security-release-process-documentation/security-release-process.md#product-security-team-pst
https://github.com/kubernetes/sig-release/blob/master/security-release-process-documentation/security-release-process.md#fix-development-process
https://cloud.google.com/kubernetes-engine/docs/security-bulletins#march-12-2018
https://cloud.google.com/kubernetes-engine/docs/security-bulletins#december-3-2018

• Components used in Kubernetes Engine’s default
configuration, like Calico components for Network Policy, or
etcd. We don’t control the open-source projects used in GKE,
but we select open-source projects that have demonstrated
robust security practices and that take security seriously.
For these projects, we may receive a patch from upstream
Kubernetes, a partner, or the distributor list of another open-
source project. We’re responsible for rolling out these
changes, and/or notifying you if there is action required.
TTA-2018-001 is an example of such a vulnerability that we
patched automatically.

• GKE: If a vulnerability is discovered in GKE, for example
through our Vulnerability Reward Program, we are
responsible for developing and applying the fix.

In all of these cases, we make these patches available as part of
general GKE releases (patch releases and bug fixes) as soon as
possible given the level of risk, embargo time, and any other
contextual factors.In all of these cases, we make these patches
available as part of general GKE releases (patch releases and bug
fixes) as soon as possible given the level of risk, embargo time, and
any other contextual factors.

We do most of the hard work to protect nodes,
but it’s your responsibility to upgrade and reap
the benefits

Your worker nodes in Kubernetes Engine consist of a few different
surfaces that need to be protected, including the node OS, the
container runtime, Kubernetes components like the kubelet and
kube-proxy, and Google system containers for monitoring and
logging. We’re responsible for developing and releasing patches for
these components, but you’re responsible for upgrading your system
to apply these patches.

21

https://cloud.google.com/kubernetes-engine/docs/security-bulletins#november-13-2018
https://www.google.com/about/appsecurity/reward-program/
https://cloud.google.com/kubernetes-engine/versioning-and-upgrades#versioning_scheme

Kubernetes components like kube-proxy and kube-dns, and Google-
specific add-ons to provide logging, monitoring, and other services
run in separate containers. We’re responsible for these containers’
control plane compatibility, scalability, upgrade testing, as well as
security configurations. If these need to be patched, it’s your
responsibility to upgrade to apply these patches.

To ease patch deployment, you can use node auto-upgrade. Node
auto-upgrade applies updates to nodes on a regular basis, including
updates to the operating system and Kubernetes components from
the latest stable version. This includes security patches. If you’re
using node auto-upgrade, upgrading becomes Google's
responsibility. Notably, if a patch contains a critical fix and can be
rolled out before the public vulnerability announcement without
breaking embargo, your GKE environment will be upgraded before
the vulnerability is even announced.

Protecting workloads is still your responsibility

What we’ve been talking about so far is the underlying infrastructure
that runs your workload, but you, of course, are still responsible for
application security and other protections to your workload itself.

You’re also responsible for the Kubernetes configurations that
pertain to your workloads. This includes setting up a NetworkPolicy
to restrict pod to pod traffic and using a PodSecurityPolicy to restrict
pod capabilities. For an up-to-date list of the best practices we
recommend to protect your clusters, including node configurations,
see Hardening your cluster’s security.

If there’s a vulnerability in your container image or application, it is
also your responsibility to patch it. But there are tools you can use to
help:

• Google-managed base images, which are regularly patched
for known vulnerabilities.

22

https://cloud.google.com/kubernetes-engine/docs/how-to/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#restrict_with_network_policy
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#restrict_with_network_policy
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#restrict_pod_permissions
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#restrict_pod_permissions

• Container Registry vulnerability scanning to analyze your
container images and packages for potential known
vulnerabilities.

• Cloud Security Scanner to help you detect common
application vulnerabilities.

Incident response in GKE

So what if you’ve done your part, we’ve done ours, and your cluster is
still attacked?

Well, our first advice is, don’t panic! Google Cloud takes the security
of our infrastructure—including where user workloads run—very
seriously, and we have documented processes for incident response.
Our security team’s job is to protect Google Cloud from potential
attacks and protect the components outlined above. When it comes
to the pieces for which you’re responsible, Google Cloud already has
a range of container security partners integrated with the Cloud
Security Command Center. The alerting and remediation you can
receive from Cloud Security Command Center and its partner
integrations can help you respond to issues in the pieces you’re
responsible for protecting.

If you’re responding to an incident, you can leverage Stackdriver
Incident Response & Management (alpha) to help you reduce your
time to incident mitigation, refer to sample queries for Kubernetes
audit logs, and check out the Cloud Forensics 101 talk from Next ‘18
to learn more about conducting forensics.

What’s the tl;dr of GKE security? For GKE, we’re responsible for
protecting the control plane, which includes your master VM, etcd,
and controllers; and you’re responsible for protecting your worker
nodes, including deploying patches to the OS, runtime and
Kubernetes components, and of course securing your own workload.

An easy way to do your part is to:

23

Google Cloud takes
the security of our
infrastructure—
including where user
workloads run—very
seriously, and we
have documented
processes for
incident response .

https://cloud.google.com/blog/products/identity-security/trust-through-transparency-incident-response-in-google-cloud
https://cloud.google.com/blog/products/gcp/exploring-container-security-using-cloud-security-comma
https://cloud.google.com/blog/products/gcp/exploring-container-security-using-cloud-security-comma
https://cloud.google.com/blog/products/identity-security/trust-through-transparency-incident-response-in-google-cloud
https://cloud.google.com/blog/products/identity-security/trust-through-transparency-incident-response-in-google-cloud
https://cloud.google.com/blog/products/identity-security/trust-through-transparency-incident-response-in-google-cloud

1. Use node-autoupgrade

2. Protect your workload from common image and application
vulnerabilities, and

3. Follow the Google Kubernetes Engine hardening guide.

If you follow those three steps, together we can build GKE
environments that are resilient to attacks and vulnerabilities, to
deliver great uptime and performance.

24

https://cloud.google.com/kubernetes-engine/docs/how-to/node-auto-upgrades
https://cloud.google.com/container-registry/docs/get-image-vulnerabilities
https://cloud.google.com/container-registry/docs/get-image-vulnerabilities
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster

Understanding Container Isolation

One of the primary reasons to adopt containers is for your
applications to be decoupled from the underlying environment and
support higher resource utilization by “bin packing” multiple
workloads onto each server. As such, the architecture of containers
means that they’re deployed with multiple containers sharing the
same kernel.

Unfortunately, while sharing a kernel between workloads enables
higher density and efficiency, it also means that a single kernel bug
can compromise the entire host. Container escapes are a type of
attack that follow a specific pattern: a bad actor attacks one
container, escalates their privileges, gains access to the host, then to
a second container and its contents.

25

The TL;DR

• The shared kernel in
containers
architecture
introduces the threat
of “container escape”
attacks

• Emerging isolation
open source projects,
like gVisor and Kata
Containers, provide
defense-in-depth to
prevent these attacks

• Consider a managed
version of a project if
your team cannot
independently
manage an open
source tool

Containers don’t contain

Lateral movement
between containers
remains a top-of-
mind a threat for
users running
sensitive workloads,
providing SaaS
services, or
otherwise running
untrusted code .

Lateral movement between containers remains a top-of-mind a
threat for users running sensitive workloads, providing SaaS
services, or otherwise running untrusted code. These users need to
make a determination about the risk of their code and what sort of
tradeoffs they’re willing to tolerate, in terms of performance
overhead or compatibility, in order to increase that code’s isolation
and their environment’s security. (You can’t always have your cake
and eat it too!) For example, code written by your own teams, where
you already have security controls in place for code review, and
which accesses public data sets, would probably be classified as
lower risk than code that either consumes sensitive data or was
supplied by an external user, or both. In the latter case, an
organization might decide to take a certain performance tax in order
to increase the security measures they apply to that code.

This use case has spawned multiple open source projects aimed at
increasing container workloads’ isolation, while retaining their
density benefits as much as possible. Within these emerging
projects, there are two types of approaches: isolation through a
secondary kernel running in a virtual machine and isolation through
a unikernel. Understanding each solution’s approach and differences
will help you choose the right isolation project to support your
workload.

The hypervisor approach

Hypervisors are a better understood boundary, and so generally
considered stronger than merely a container boundary. Projects
taking this approach are finding methods for generating lightweight
virtual machines to act as a secondary boundary for each container
or pod, and for each container to have its own kernel. This approach
provides isolation of memory, network, I/O, and means that there’s a
breadth of options in this space for users with legacy virtualization
technologies.

26

One of the projects that’s using this approach is Kata Containers.
The Kata Containers architecture has multiple components, which
can increase start-up time and complexity. But the components are
intentionally highly pluggable, which gives users flexibility. For
example, users can decide to use QEMU, Firecracker, or Rust VMM
as their virtual machine monitor. Because Kata Containers relies on
hardware virtualization features, users must be using a cloud
services provider that supports nested virtualization, offers bare
metal, or Intel VTX, Arm HYP, IBM Power, or IBM Z mainframes.

The unikernel approach

The unikernel approach is about reducing the host kernel’s attack
surface by providing a stripped down kernel that only has the
functionality necessary for a containerized workload. The reduced
functionality means that an attacker has reduced methods for
reaching the host, and reduced exploit opportunities.

Because the unikernel approach introduces only a minimal set of
new components to the architecture, this approach can mean a rapid
start-up time and minimal performance impact based on the
workload. However, because the unikernel approach is about
intentionally limiting the functionality of the kernel, kernel
functionality needs to be compatible with the intended workload.

Projects like gVisor and Nabla Containers take the unikernel
approach to isolation. gVisor is based on an internal system used by
Google for isolating containers. gVisor uses not only a user space
kernel, but also a filesystem proxy to give the user space kernel
filtered filesystem access.

27

https://gvisor.dev/
https://nabla-containers.github.io/

Determine your requirements first

Determining the isolation solution(s) that will meet your needs is a
joint effort between your development and security teams. The first
step is to determine the risk and threat profile of your organization
and your various containerized workloads, and decide which
workloads warrant additional isolation. From there, you can compare
the requirements and priorities of those workloads with the isolation
options available, as well as your team’s tolerance for independently
managing a project. If you decide you need a managed version, GKE
Sandbox is based on gVisor and available to GKE users. These
requirements will help you find the isolation solution that matches
your application’s needs.

28

Giving back to open source
Kubernetes

As an open source project, the Kubernetes development lifecycle
circles between users and developers. Users shape the project’s
direction through their needs and use cases; developers contribute
the code that takes Kubernetes to its next iteration. As an organiza-
tion that uses Kubernetes, even if you’re consuming it as a managed
service, there are many ways that you can give back to this worthy
project.

User feedback

Developers rely on user feedback. If you’re running Kubernetes and
encounter a problem or have a feature request, you can open an
issue on the Kubernetes GitHub and share what you found. Similarly,
if something is working well for you, the community would love to
hear about it. You can share your feedback with the community.

Set aside time for upstream contribution

Once your team is up and running, consider whether there’s room in
your organization for contributing upstream (meaning back to the
open source project), even if you’re consuming Kubernetes through a
service. Particularly if your team has a specific expertise that derives
from your use case (for example, you’re in a regulated industry such
as banking, or you run Kubernetes in a multi-tenant environment),
sharing your knowledge as a contributor comes back around to
benefit both you and the greater community.

29

The TL;DR

• Open source projects
thrive when users
contribute their
stories, time, and
talents to them

• Consider setting
aside time for your
teams to contribute
upstream either
through code or
community
involvement

But contributions don’t have to consist of code. There are plenty of
other ways to get involved, including documentation, release
management, or architecture-specific working groups (such as the
Multi-tenancy Working Group). You can learn how to get started
contributing upstream with the Kubernetes Contributor Guide.

Submit a case study or blog

The community is always looking to share Kubernetes stories. If you
have something to say about your migration journey, a problem you
encountered, or how Kubernetes has helped your organization, you
can submit your story to the Kubernetes blog . Or, if you have a larger
success story, you can develop a case study with the help of the
Cloud Native Computing Foundation.

Open source software thrives as more people and organizations
adopt it. This collective effort and resulting community of
collaboration provides tremendous learning, growth, and social
opportunities. Once your organization is up and running with
Kubernetes, consider what you can do to get involved with the open
source project community. Your voice and experience will help make
Kubernetes better for everyone.

30

https://github.com/kubernetes/community/tree/master/contributors/guide
https://kubernetes.io/docs/contribute/start/#write-a-blog-post
https://www.cncf.io/people/end-user-community/

Putting it all together

Modern applications run in containers; the data that matters to your
company is tied to container technology. As a business leader, you
might not need to know the ins and outs of Kubernetes security.
What you do need to know is that Kubernetes out-of-the-box won’t
give you the protection you need.

This isn’t unique to containers and Kubernetes; as with any other
technology, you’ll need to determine your particular security
requirements and invest in meeting them. For containers, this means
establishing your threat model and exploring solutions in the
following areas:

• Infrastructure security: How is the infrastructure that runs
your containers protected? If you’re using a managed
containers service, what are you responsible for protecting?
Does your team have an incident response plan?

• Supply chain security: How do you ensure trust throughout
the develop, build and deploy lifecycle? Where do your
container images come from? How do you verify that you
trust what you’re deploying?

• Runtime security: What applications warrant additional
security beyond your organization’s defaults? How can you
increase the depth of their defense and further isolate risky
applications? How can you be alerted to suspected
incidents?

References such as the CIS Benchmark can help your development
teams learn recommended practices. And encouraging your
development teams to spend time in the upstream Kubernetes
community will generate a plethora of valuable resources and
connections for your organization while supporting the overall health
of the Kubernetes project.

31

Security is an endless journey, not a one-time checklist. Just as the
technology that runs your applications has evolved, so too must the
steps you take to secure and protect the data that matters to your
business.

32

We achieved ISO-
27001
certification— all
from taking
advantage of the
existing security
practices in Google
Cloud and Google
Kubernetes Engine
(GKE) ."

User Story: How DroneDeploy
achieved ISO-27001 certification on
GKE

Editor’s note: Aerial data mapping company DroneDeploy wanted to
migrate its on-premises Kubernetes environment to Google
Kubernetes Engine—but only if it would pass muster with auditors.
Read on to learn how the firm leveraged GKE’s native security
capabilities to smooth the path to ISO-27001 certification.

At DroneDeploy, we put a lot of effort into securing our customers'
data. We’ve always been proud of our internal security efforts, and
receiving compliance certifications validates these efforts, helping
us formalize our information security program, and keeping us
accountable to a high standard. Recently, we achieved ISO-27001
certification— all from taking advantage of the existing security
practices in Google Cloud and Google Kubernetes Engine (GKE).
Here’s how we did it.

As a fast-paced, quickly growing B2B SaaS startup in San Francisco,
our mission is to make aerial data accessible and productive for
everyone. We do so by providing our users with image processing,
automated mapping, 3D modeling, data sharing, and flight controls
through iOS and Android applications. Our Enterprise Platform
provides an admin console for role-based access and monitoring of
flights, mapped routes, image capture, and sharing. We serve more
than 4,000 customers across 180 countries in the construction,
energy, insurance, and mining industries, and ingest more than 50
terabytes of image data from over 30,000 individual flights every
month.

Many of our customers and prospects are large enterprises that
have strict security expectations of their third-party service
providers. In an era of increased regulation (such as Europe’s GDPR
law) and data security concerns, the scrutiny on information security
management has never been higher.. Compliance initiatives are one
piece of the overall security strategy that help us communicate our
commitment to securing customer data. At DroneDeploy, we chose

33

https://cloud.google.com/kubernetes-engine/docs/concepts/security-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/security-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/security-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/security-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/security-overview

to start our compliance story with ISO-27001, an international
information security standard that is for recognized across a variety
of industries.

DroneDeploy’s Architecture: Google Kubernetes
Engine (GKE)

DroneDeploy was an early adopter of Kubernetes, and we have long
since migrated all our workloads from virtual machines to containers
orchestrated by Kubernetes. We currently run more than 150,000
Kubernetes jobs each month with run times ranging from a few
minutes to a few days. Our tooling for managing clusters evolved
over time, starting with hand-crafted bash and Ansible scripts, to the
now ubiquitous (and fantastic) kops. About 18 months ago, we
decided to re-evaluate our hosting strategy given the decreased
costs of compute in the cloud. We knew that managing our own
Kubernetes clusters was not a competitive advantage for our
business and that we would rather spend our energy elsewhere if we
could.

We investigated the managed Kubernetes offerings of the top cloud
providers and did some technical due diligence before making our
selection—comparing not only what was available at the time but
also future roadmaps. We found that GKE had several key features
that were missing in other providers such as robust Kubernetes-
native autoscaling, a mature control plane, multi-availability zone
masters, and extensive documentation. GKE’s ability to run on
pre-emptible node pools for ephemeral workloads was also a huge
plus.

Proving our commitment to security hardening

But if we were going to make the move, we needed to document our
information security management policies and process and prove
that we were following best practices for security hardening.

34

Specifically, when it comes to ISO-27001 certification, we needed to
follow the general process:

1. Document the processes you perform to achieve compliance

2. Prove that the processes convincingly address the
compliance objectives

3. Provide evidence that you are following the process

4. Document any deviations or exceptions

While Google Cloud offers hardening guidance for GKE and several
GCP blogs to guide our approach, we still needed to prove that we
had security best practices in place for our critical systems. With
newer technologies, though, it can be difficult to provide clear
evidence to an auditor that those best practices are in place; they
often live in the form of blog posts by core contributors and
community leaders versus official, documented best practices.
Fortunately, standards have begun to emerge for Kubernetes. The
Center for Internet Security (CIS) recently published an updated
compliance benchmark for Kubernetes 1.11 that is quite
comprehensive. You can even run automated checks against the CIS
benchmark using the excellent open source project kube-bench.
Ultimately though, it was the fact that Google manages the
underlying GKE infrastructure that really helped speed up the
certification process.

Compliance with less pain thanks to GKE

As mentioned, one of the main reasons we switched from running
Kubernetes in-house to GKE was to reduce our investment in
manually maintaining and upgrading our Kubernetes clusters—
including our compliance initiatives. GKE reduces the overall
footprint that our team has to manage since Google itself manages

35

and documents much of the underlying infrastructure. We’re now
able to focus on improving and documenting the parts of our
security procedures that are unique to our company and industry,
rather than having to meticulously document the foundational
technologies of our infrastructure.

For Kubernetes, here’s a snippet of how we documented our
infrastructure using the four steps described above:

1. We implemented security best practices within our
Kubernetes clusters by ensuring all of them are
benchmarked using the Kubernetes CIS guide. We use kube-
bench for this process, which we run on our clusters once
every quarter.

2. A well respected third-party authority publishes this
benchmark, which confirms that our process addresses best
practices for using Kubernetes securely.

3. We provided documentation that we assessed our
Kubernetes clusters against the benchmark, including the
tickets to track the tasks.

4. We provided the results of our assessment and documented
any policy exceptions and proof that we evaluated those
exceptions against our risk management methodology.

Similarly to the physical security sections of the ISO-27001 standard,
the CIS benchmark has large sections dedicated to security settings
for Kubernetes masters and nodes. Because we run on GKE, Google
handled 95 of the 104 line items in the benchmark applicable to our
infrastructure. For those items that could not be assessed against
the benchmark (because GKE does not expose the masters), we
provided links to Google’s security documentation on those features
(see Cluster Trust and Control Plane Security). Some examples
include:

• Connecting kubelets to the masters

36

https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust
https://cloud.google.com/kubernetes-engine/docs/concepts/control-plane-security
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust#api_server_and_kubelets

• Handling of config files on the masters (e.g. scheduler,
controller manager, API server, etc.)

• Hardening the etcd database

Beyond GKE, we were also able to take advantage of many other
Google Cloud services that made it easier for us to secure our cloud
footprint (although the shared responsibility model for security
means we can’t rely on Google Cloud alone):

• For OS level security best practices, we we able to document
strong security best practices for our OS security because
we use Google’s Container-Optimized OS (COS), which
provides many security best practices by default by using
things such as a read-only file system. All that was left for us
to do was was follow best practices to help secure our
workloads.

• We use node auto-upgrade on our GKE nodes to handle
patch management at the OS layer for our nodes. For the
level of effort, we found that node auto-upgrade provides a
good middle ground patching and stability. To date, we have
not had any issues with our software as a result of node
auto-upgrade.

• We use Container Analysis (which is built into Google
Container Registry) to scan for known vulnerabilities in our
Docker images.

• ISO-27001 requires that you demonstrate the physical
security of your network infrastructure. Because we run our
entire infrastructure in the cloud, we were able to directly rely
on Google Cloud’s physical and network security for
portions of the certification (Google Cloud is ISO-27001
certified amongst other certifications).

37

https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust#root_of_trust
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust#etcd
https://cloud.google.com/security/incident-response/
https://cloud.google.com/container-optimized-os/docs/
https://cloud.google.com/container-optimized-os/docs/concepts/security
https://cloud.google.com/kubernetes-engine/docs/how-to/node-auto-upgrades
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/security/compliance/
https://cloud.google.com/security/compliance/iso-27001/
https://cloud.google.com/security/compliance/iso-27001/

DroneDeploy is dedicated to giving our customers access to aerial
imaging and mapping technologies quickly and easily. We handles
vast amounts of sensitive information on behalf of our customers,
and we want them to know that we are following best security
practices even when the underlying technology gets complicated,
like in the case of Kubernetes. For DroneDeploy, switching to GKE
and Google Cloud has helped us reduce our operational overhead
and increased the velocity with which we achieve key compliance
certifications.

38

Further reading

• cloud.google.com/containers/security

• “Anthos: An opportunity to modernize security”

• Google Kubernetes Engine security documentation

39

https://cloud.google.com/containers/security/
https://services.google.com/fh/files/misc/anthos_an_opportunity_to_modernize_application_security_white_paper.pdf
https://cloud.google.com/kubernetes-engine/docs/concepts/security-overview

